Japan
Localized Plasticity and Associated Cracking in Stable and Metastable High-Entropy Alloys Pre-Charged with Hydrogen
Dec 2018
Publication
We investigated hydrogen embrittlement in Fe20Mn20Ni20Cr20Co and Fe30Mn10Cr10Co (at.%) alloys pre-charged with 100 MPa hydrogen gas by tensile testing at three initial strain rates of 10−4 10−3 and 10−2 s−1 at ambient temperature. The alloys are classified as stable and metastable austenite-based high-entropy alloys (HEAs) respectively. Both HEAs showed the characteristic hydrogen-induced degradation of tensile ductility. Electron backscatter diffraction analysis indicated that the reduction in ductility by hydrogen pre-charging was associated with localized plasticity-assisted intergranular crack initiation. It should be noted as an important finding that hydrogen-assisted cracking of the metastable HEA occurred not through a brittle mechanism but through localized plastic deformation in both the austenite and ε-martensite phases.
CO2-Free Hydrogen Supply Chain Project and Risk Assessment for the Safety Design
Sep 2013
Publication
We at Kawasaki Heavy Industries have proposed a "CO2-Free H2 supply chain" using abundant brown coal of Australian origin as the energy source. This chain will store CO2 generated during the process for producing hydrogen from brown coal in a project (Carbon Net) that the Australia Government is promoting. Thus Japan can import CO2-free hydrogen. The supply chain consists of the hydrogen production system the hydrogen transport/storage system and the hydrogen use system. Related to their designs we have to consider their hazards polluted scenarios and safety measures via a safety assessment process that is compliant with international risk assessment standards. To verify safety designs related experiments and analyses will be conducted. This paper describes the approach to safety design for especially the related liquid hydrogen facilities.
Numerical investigation of hydrogen leakage from a high pressure tank and pipeline
Sep 2017
Publication
We numerically investigated high-pressure hydrogen leakage from facilities in storage and transportation phases. In storage phase assuming a tank placed in a hydrogen station we examined unsteady diffusion distance up to 100 ms after leakage. A series of simulations led us to develop an equation of unsteady hydrogen diffusion distance as a function of mass flow rate leakage opening diameter and tank pressure. These results helped us develop a safety standard for unsteady hydrogen diffusion. In transportation phase we simulated (in three dimensions) the dominant factor of steady mass flow rate from a square opening of a rectangular pipeline and the pressure distribution in the pipeline after leakage. The mass flow rate was smaller than the maximum mass flow rate and the pressure distribution converged to a steady state that was 16% higher than the pressure after the passage of expansion waves in a shock tube model. We introduced a theoretical model by dividing the flow with the leakage opening into two phases of the unsteady expansion waves’ propagation and acceleration. The simulation results showed good agreement with the modeling equation when the shrink coefficient was set to 0.8. When the leakage opening was rectangular the simulation results again showed good agreement with the modelling equation suggesting that our simulated results are independent of the leakage opening shape.
In Situ X-ray Absorption Spectroscopy Study on Water Formation Reaction of Palladium Metal Nanoparticle Catalysts
Oct 2015
Publication
Proper management of hydrogen gas is very important for safety security of nuclear power plants. Hydrogen removal by water formation reaction on a catalyst is one of the candidates for creating hydrogen free system. We observed in situ and time-resolved structure change of palladium metal nanoparticle catalyst during the water formation reaction by using X-ray absorption spectroscopy technique. A poisoning effect by carbon monoxide on catalytic activity was also studied. We have found that the creation of oxidized surface layer on palladium metal nanoparticles plays an important role for the water formation reaction process.
Simple Hydrogen Gas Production Method Using Waste Silicon
Jan 2022
Publication
We investigated a simple and safe method for producing hydrogen using Si powder which is discarded in the semiconductor industry. Using the reaction of generating hydrogen from Si powder and an aqueous NaOH solution a simple hydrogen generator that imitated Kipp’s apparatus was produced. Then by combining this apparatus with a polymer electrolyte fuel cell an automatic hydrogen generation system based on the amount of electric power required was proposed. Furthermore it was found that hydrogen can also be generated using non-poisonous and deleterious substances Ca(OH)2 and Na2CO3 instead of the deleterious substance NaOH and adding water to the mixture with Si powder. The by-products Na2SiO3 and CaCO3 can be used as raw materials for glass. The simple hydrogen generator produced in this study can be used as a fuel supply source for small-scale power generation systems as an auxiliary power source.
The Strategic Road Map for Hydrogen and Fuel Cells: Industry-academia-government Action Plan to Realize a “Hydrogen Society”
Mar 2019
Publication
The fourth Strategic Energy Plan adopted in April 2014 stated ""a road map toward realization of a “hydrogen society” will be formulated and a council which comprises representatives of industry academia and government and which is responsible for its implementation will steadily implement necessary measures while progress is checked". Then the Council for a Strategy for Hydrogen and Fuel Cells which was held in June in the same year as a conference of experts from industry academia and government compiled a Strategic Roadmap for Hydrogen and Fuel Cells (hereinafter referred to as ""the Roadmap"") presenting efforts to be undertaken by concerned parties from the public/private sector aimed at building a hydrogen-based society.<br/>The Roadmap was revised in March 2016 in response to the progress of the efforts to include the schedule and quantitative targets to make the fuel cells for household use (Ene-Farm) fuel cell vehicles (FCVs) and hydrogen stations self-reliant. In April 2017 the first Ministerial Council on Renewable Energy Hydrogen and Related Issues was held. The Council decided to establish--by the end of the year--a basic strategy that would allow the government to press on with the measures in an integrated manner to realize a hydrogen-based society for the first time in the world. The second Ministerial Council on Renewable Energy Hydrogen and Related Issues was then held in December of that year to establish the Basic Hydrogen Strategy. The Strategy was positioned as a policy through which the whole government would promote relevant measures and proposed that hydrogen be another new carbon-free energy option. By setting a target to be achieved by around 2030 the Strategy provides the general direction and vision that the public and private sectors should share with an eye on 2050.<br/>Furthermore the fifth Strategic Energy Plan was adopted in July 2018. In order for hydrogen to be available as another new energy option in addition to renewable energy the Plan showed the correct direction of hydrogen energy in the energy policy specifically reducing the hydrogen procurement/supply cost to a level favorably comparable with that of existing energies while taking the calculated environmental value into account.
Effects of Alloying Elements Addition on Delayed Fracture Properties of Ultra High-Strength TRIP-Aided Martensitic Steels
Dec 2019
Publication
To develop ultra high-strength cold stamping steels for automobile frame parts the effects of alloying elements on hydrogen embrittlement properties of ultra high-strength low alloy transformation induced plasticity (TRIP)-aided steels with a martensite matrix (TM steels) were investigated using the four-point bending test and conventional strain rate tensile test (CSRT). Hydrogen embrittlement properties of the TM steels were improved by the alloying addition. Particularly 1.0 mass% chromium added TM steel indicated excellent hydrogen embrittlement resistance. This effect was attributed to (1) the decrease in the diffusible hydrogen concentration at the uniform and fine prior austenite grain and packet block and lath boundaries; (2) the suppression of hydrogen trapping at martensite matrix/cementite interfaces owing to the suppression of precipitation of cementite at the coarse martensite lath matrix; and (3) the suppression of the hydrogen diffusion to the crack initiation sites owing to the high stability of retained austenite because of the existence of retained austenite in a large amount of the martensite–austenite constituent (M–A) phase in the TM steels containing 1.0 mass% chromium
Characteristics of Hydrogen Leakage Sound from a Fuel-cell Vehicle by Hearing
Oct 2015
Publication
Fuel-cell vehicle run on hydrogen is known that it has better energy efficiency than existing gasoline cars. The vehicles are designed so that hydrogen leaks from the tank are stopped automatically upon detection of hydrogen leakage or detection of impact in a collision. However we investigated the characteristics of hydrogen leakage sound from a hydrogen-leaking vehicle and the threshold of discrimination of hydrogen leakage from noise at a crossing with much traffic to examine a method to rescue people safely depending on the sense of hearing in the event of a continuous hydrogen leak. Here in the discrimination threshold test we conducted the test by using helium which is alternative gas of hydrogen leakage sound. We clarified that hydrogen leakage sound from vehicles has directivity height dependence and distance dependence. Furthermore we confirmed the threshold flow rate for distinguishing hydrogen gas when hydrogen leakage is heard at a distance of 5–10 m from the center of the hydrogen leaking vehicle in a 74 dB traffic noise environment.
Combined Dehydrogenation and Hydrogen-based Power Generation
Jan 2018
Publication
An energy production from the combination of dehydrogenation and combined cycle power generation is proposed. The delivered system is established from three main modules: dehydrogenation combustion and combined cycle. The heat in the system is circulated thoroughly to enhance the energy efficiency due to optimum energy recovery. The Pt/Al2O3 catalyst is applied in the dehydrogenation module due to superior activity to accelerate the dehydrogenation of MCH. The toluene emitted from the MCH is recirculated to the hydrogenation plant while the hydrogen is further utilized as the fuel in the combustion. Although the high-temperature condition is necessary to perform high yield dehydrogenation the proposed system is capable of carrying out self-heating mechanism with no external heat. With the optimum configuration the delivered system can produce 100.0 MW of electricity from 100 t/h of MCH with 50.19% of energy efficiency.
An Experimental Study on Mechanism of Self-ignition of High-pressure Hydrogen
Oct 2015
Publication
In the present study the self-ignition of high-pressure hydrogen released in atmospheric air through a diaphragm is visualized under various test conditions. The experimental results indicate that the hydrogen that jets through the rupturing diaphragm is mixed with the heated air near the tube wall. The self-ignition event originated from this mixing. The self-ignition was strongly dependent on the strength of an incident shock wave generated at the diaphragm rupture. As a result a cylindrical flame that formed after the self-ignition shows a tendency to become longer as it propagates in the downstream direction. The head velocities of the hydrogen-air mixture and the cylindrical flame are consistent with that of a contact surface calculated from the measured shock speed. A modified self-ignition mechanism is proposed based on the experimental observations.
Prediction of Pressure Reduction Rate in 30 m3 Liquid Hydrogen Tank Based on Experimental and Numerical Analysis
Sep 2019
Publication
Liquid hydrogen (LH2) compared to compressed gaseous hydrogen offers advantages for large scale transport and storage of hydrogen with higher densities and potentially better safety performance. Although the gas industry has good experience with LH2 only little experience is available for the new applications of LH2 as an energy carrier. Therefore the European FCH JU funded project PRESLHY conducts pre-normative research for the safe use of cryogenic LH2 in non-industrial settings. The work program consists of a preparatory phase where the state of the art before the project has been summarized and where the experimental planning was adjusted to the outcome of a research priorities workshop. The central part of the project consists of 3 phenomena oriented work packages addressing Release Ignition and Combustion with analytical approaches experiments and simulations. The results shall improve the general understanding of the behaviour of LH2 in accidents and thereby enhance the state-of-the-art what will be reflected in appropriate recommendations for development or revision of specific international standards. The paper presents the status of the project at the middle of its terms.
Development of Hydrogen Behavior Simulation Code System
Oct 2015
Publication
In the Fukushima Daiichi Nuclear Power Station (NPS) accident hydrogen generated by oxidation reaction of the cladding and water etc. was leaked into the NPS building and finally led to occurrence of hydrogen explosion in the building. This resulted in serious damage to the environment. To improve the safety performance of the NPS especially on the hydrogen safety under severe accident conditions a simulation code system has been developed to analyze hydrogen behaviour including diffusion combustion explosion and structural integrity evaluation. This developing system consists of CFD and FEM tools in order to support various hydrogen user groups consisting of students researchers and engineers. Preliminary analytical results obtained with above mentioned tools especially with open source codes including buoyancy turbulent model and condensation model agreed well with the existing test data.
Experimental Study on High Pressure Hydrogen Jets Coming Out of Tubes of 0.1–4.2 m in Length
Sep 2011
Publication
Wide use of hydrogen faces significant studies to resolve hydrogen safety issues in industries worldwide. However widely acceptable safety level standards are not achieved in the present situation yet. The present paper deals with hydrogen leaks from a tube to ignite and explode in atmosphere. The experiments using a shock tube are performed to clarify the auto-ignition property of high pressure hydrogen jet spouting from a tube. In order to improve experimental repeatability and reliability the shock tube with a plunger system is applied where the PET diaphragm is ruptured by a needle in order to control a diaphragm burst pressure (hydrogen pressure). As a result it becomes possible to control the diaphragm burst pressure to obtain a local minimum value. The most important result obtained in the preset study is that the minimum diaphragm burst pressure for auto-ignition is found between 1.0 and 1.2 m of tube length using a longer tube than the one used in the previous study. This minimum tube size is not found elsewhere to suggest that the tube length has a limit size for auto-ignition. Furthermore auto-ignition and Mach disk at the tube exit are observed using a high speed camera which is set at the frame speed of 1x105 fps when the ignited hydrogen jet is spouted out the tube.
Fundamental Study on Accidental Explosion Behavior of Hydrogen/Air Mixtures in Open Space
Sep 2011
Publication
In this study the flame propagation behavior and the intensity of blast wave by an accidental explosion of a hydrogen/air mixture in an open space have been measured simultaneously by using soap bubble method. The results show that the flame in lean hydrogen/air mixtures propagated with a wrinkled flame by spontaneous instability. The flame in rich hydrogen/air mixtures propagated smoothly in the early stage and was intensively wrinkled and accelerated in the later stage by different type of instability. The intensity of the blast wave of hydrogen/air mixtures is strongly affected by the acceleration of the flame propagation by these spontaneous flame disturbances.
Numerical Simulation and Experiments of Hydrogen Diffusion Behaviour for Fuel Cell Electric Vehicle
Sep 2011
Publication
Research was conducted on hydrogen diffusion behaviour to construct a simulation method for hydrogen leaks into complexly shaped spaces such as around the hydrogen tank of a fuel cell electric vehicle (FCEV). To accurately calculate the hydrogen concentration distribution in the vehicle underfloor space it is necessary to take into account the effects of hydrogen mixing and diffusion due to turbulence. The turbulence phenomena that occur in the event that hydrogen leaks into the vehicle underfloor space were classified into the three elements of jet flow wake flow and wall turbulence. Experiments were conducted for each turbulence element to visualize the flows and the hydrogen concentration distributions were measured. These experimental values were then compared with calculated values to determine the calculation method for each turbulence phenomenon. Accurate calculations could be performed by using the k-ω Shear Stress Transport (SST) model for the turbulence model in the jet flow calculations and the Reynolds Stress Model (RSM) in the wall turbulence calculations. In addition it was found that the large fluctuations produced by wake flow can be expressed by unsteady state calculations with the steady state calculation solutions as the initial values. Based on the above information simulations of hydrogen spouting were conducted for the space around the hydrogen tank of an FCEV. The hydrogen concentration calculation results matched closely with the experimental values which verified that accurate calculations can be performed even for the complex shapes of an FCEV.
The Spread of Fire from Adjoining Vehicles to a Hydrogen Fuel Cell Vehicle
Sep 2011
Publication
Two vehicle fire tests were conducted to investigate the spread of fire to adjacent vehicles from a hydrogen fuel cell vehicle (HFCV) equipped with a thermal pressure relief device (TPRD) : – 1) an HFCV fire test involving an adjacent gasoline vehicle 2) a fire test involving three adjoining HFCV assuming their transportation in a carrier ship. The test results indicated that the adjacent vehicles were ignited by flames from the interior and exterior materials of the fire origin HFCV but not by the hydrogen flames generated through the activation of TPRD.
Steam Condensation Effect in Hydrogen Venting from a BWR Reactor Building
Oct 2015
Publication
In the accident of Fukushima Daiichi nuclear power plants hydrogen was accumulated in the reactor buildings and exploded. To prevent such explosions hydrogen venting from reactor buildings is considered. When the gas mixture is released to a reactor building through a reactor containment together with the hydrogen some amount of steam might also be released. The steam condenses if the building atmosphere is below the saturation temperature and it affects the hydrogen behaviour. In this study the condensation effect to the hydrogen venting is evaluated using CFD analyses by comparing the case where a hydrogen-nitrogen mixture is released and the case where a hydrogen-steam mixture is released.
Reversible Ammonia-based and Liquid Organic Hydrogen Carriers for High-density Hydrogen Storage: Recent Progress
Feb 2019
Publication
Liquid hydrogen carriers are considered to be attractive hydrogen storage options because of their ease of integration into existing chemical transportation infrastructures when compared with liquid or compressed hydrogen. The development of such carriers forms part of the work of the International Energy Agency Task 32: Hydrogen-Based Energy Storage. Here we report the state-of-the-art for ammonia-based and liquid organic hydrogen carriers with a particular focus on the challenge of ensuring easily regenerable high-density hydrogen storage.
Attained Temperature During Gas Fuelling and Defueling Cycles of Compressed Hydrogen Tanks for FCV
Sep 2011
Publication
In this study we conducted hydrogen gas filling and discharging cycling tests to examine the thermal behaviour in hydrogen storage tanks under actual use conditions. As a result it was confirmed that the gas temperature in the tank varied depending on the initial test conditions such as the ambient temperature of the tank and the filling gas temperature and that the gas temperature tended to stabilize after several gas filling and discharging cycles.
The Possibility of an Accidental Scenario for Marine Transportation of Fuel Cell Vehicle-Hydrogen Releases from TPRD by Radiant Heat From Lower Deck
Oct 2015
Publication
In case fires break out on the lower deck of a car carrier ship or a ferry the fuel cell vehicles (FCVs) parked on the upper deck may be exposed to radiant heat from the lower deck. Assuming that the thermal pressure relief device (TPRD) of an FCV hydrogen cylinder is activated by the radiant heat without the presence of flames hydrogen gas will be released by TPRD to form combustible air-fuel mixtures in the vicinity. To investigate the possibility of this accident scenario the present study investigated the relationship between radiant heat and TPRD activation time and evaluated the possibility of radiant heat causing hydrogen releases by TPRD activation under the condition of deck temperature reaching the spontaneous ignition level of the tires and other automotive parts. It was found: a) the tires as well as polypropylene and other plastic parts underwent spontaneous ignition before TPRD was activated by radiant heat and b) when finally TPRD was activated the hydrogen releases were rapidly burned by the flames of the tires and plastic parts on fire. Consequently it was concluded that the explosion of air-fuel mixtures assumed in the accident scenario does not occur in the real world.
No more items...