Korea, Republic of
Effect of Hydrogen and Strain-Induced Martensite on Mechanical Properties of AISI 304 Stainless Steel
Jul 2016
Publication
Plastic deformation and strain-induced martensite (SIM α′) transformation in metastable austenitic AISI 304 stainless steel were investigated through room temperature tensile tests at strain rates ranging from 2 × 10−6 to 2 × 10−2/s. The amount of SIM was measured on the fractured tensile specimens using a feritscope and magnetic force microscope. Elongation to fracture tensile strength hardness and the amount of SIM increased with decreasing the strain rate. The strain-rate dependence of RT tensile properties was observed to be related to the amount of SIM. Specifically SIM formed during tensile tests was beneficial in increasing the elongation to fracture hardness and tensile strength. Hydrogen suppressed the SIM formation leading to hydrogen softening and localized brittle fracture.
Analysis of Hydrogen Filling of 175 Liter Tank for Large-Sized Hydrogen Vehicle
May 2022
Publication
Due to the low density of hydrogen gas under ambient temperature and atmospheric pressure conditions the high-pressure gaseous hydrogen storage method is widely employed. With high-pressure characteristics of hydrogen storage rigorous safety precautions are required such as filling of compressed gas in a hydrogen tank to achieve reliable operational solutions. Especially for the large-sized tanks (above 150 L) safety operation of hydrogen storage should be considered. In the present study the compressed hydrogen gas behavior in a large hydrogen tank of 175 L is investigated for its filling. To validate the numerical approach used in this study numerical models for the adaptation of the gas and turbulence models are examined. Numerical parametric studies on hydrogen filling for the large hydrogen tank of 175 L are conducted to estimate the hydrogen gas behavior in the hydrogen tank under various conditions of state of charge of pressure and ambient temperature. From the parametric studies the relationship between the initial SOC pressure condition and the maximum temperature rise of hydrogen gas was shown. That is the maximum temperature rise increases as the ambient temperature decreases and the rise increases as the SOC decreases.
Recent Progress in Hydrogen Flammability Prediction for the Safe Energy Systems
Nov 2020
Publication
Many countries consider hydrogen as a promising energy source to resolve the energy challenges over the global climate change. However the potential of hydrogen explosions remains a technical issue to embrace hydrogen as an alternate solution since the Hindenburg disaster occurred in 1937. To ascertain safe hydrogen energy systems including production storage and transportation securing the knowledge concerning hydrogen flammability is essential. In this paper we addressed a comprehensive review of the studies related to predicting hydrogen flammability by dividing them into three types: experimental numerical and analytical. While the earlier experimental studies had focused only on measuring limit concentration recent studies clarified the extinction mechanism of a hydrogen flame. In numerical studies the continued advances in computer performance enabled even multi-dimensional stretched flame analysis following one-dimensional planar flame analysis. The different extinction mechanisms depending on the Lewis number of each fuel type could be observed by these advanced simulations. Finally historical attempts to predict the limit concentration by analytical modelling of flammability characteristics were discussed. Developing an accurate model to predict the flammability limit of various hydrogen mixtures is our remaining issue.
Recent Progress Using Solid-State Materials for Hydrogen Storage: A Short Review
Feb 2022
Publication
With the rapid growth in demand for effective and renewable energy the hydrogen era has begun. To meet commercial requirements efficient hydrogen storage techniques are required. So far four techniques have been suggested for hydrogen storage: compressed storage hydrogen liquefaction chemical absorption and physical adsorption. Currently high-pressure compressed tanks are used in the industry; however certain limitations such as high costs safety concerns undesirable amounts of occupied space and low storage capacities are still challenges. Physical hydrogen adsorption is one of the most promising techniques; it uses porous adsorbents which have material benefits such as low costs high storage densities and fast charging–discharging kinetics. During adsorption on material surfaces hydrogen molecules weakly adsorb at the surface of adsorbents via long-range dispersion forces. The largest challenge in the hydrogen era is the development of progressive materials for efficient hydrogen storage. In designing efficient adsorbents understanding interfacial interactions between hydrogen molecules and porous material surfaces is important. In this review we briefly summarize a hydrogen storage technique based on US DOE classifications and examine hydrogen storage targets for feasible commercialization. We also address recent trends in the development of hydrogen storage materials. Lastly we propose spillover mechanisms for efficient hydrogen storage using solid-state adsorbents.
Minimum Fire Size for Hydrogen Storage Tank Fire Test Protocol for Hydrogen-powered Electric City Bus Determine Via Risk-based Approach
Sep 2021
Publication
As part of the United Nations Global Technical Regulation No. 13 (UN GTR #13 [1]) vehicle fire safety is validated using a localized and engulfing fire test methodology and currently updates are being considered in the on-going Phase 2 development stage. The GTR#13 fire test is designed to verify the performance of a hydrogen storage system of preventing rupture when exposed to service-terminating condition of fire situation. The test is conducted in two stages – localized flame exposure at a location most challenging for thermally-activated pressure relief device(s) (TPRDs) to respond for 10 min. followed by engulfing fire exposure until the system vents and the pressure falls to less than 1 MPa or until “time out” (30min. for light-duty vehicle containers and 60 min. for heavy-duty vehicle containers). The rationale behind this two-stage fire test is to ensure that even when fire sizes are small and TPRDs are not responding the containers have fire resistance to withstand or fire sensitivity to respond to a localized fire to avoid system rupture. In this study appropriate fire sizes for localized and engulfing fire tests in GTR#13 are evaluated by considering actual fire conditions in a hydrogen-powered electric city bus. Quantitative risk analysis is conducted to develop various fire accident scenarios including regular bus fire battery fire and hydrogen leak fire. Frequency and severity analyses are performed to determine the minimum fire size required in GTR#13 fire test to ensure hydrogen storage tank safety in hydrogen-powered electric city buses.
Recent Application of Nanomaterials to Overcome Technological Challenges of Microbial Electrolysis Cells
Apr 2022
Publication
Microbial electrolysis cells (MECs) have attracted significant interest as sustainable green hydrogen production devices because they utilize the environmentally friendly biocatalytic oxidation of organic wastes and electrochemical proton reduction with the support of relatively lower external power compared to that used by water electrolysis. However the commercialization of MEC technology has stagnated owing to several critical technological challenges. Recently many attempts have been made to utilize nanomaterials in MECs owing to the unique physicochemical properties of nanomaterials originating from their extremely small size (at least <100 nm in one dimension). The extraordinary properties of nanomaterials have provided great clues to overcome the technological hurdles in MECs. Nanomaterials are believed to play a crucial role in the commercialization of MECs. Thus understanding the technological challenges of MECs the characteristics of nanomaterials and the employment of nanomaterials in MECs could be helpful in realizing commercial MEC technologies. Herein the critical challenges that need to be addressed for MECs are highlighted and then previous studies that used nanomaterials to overcome the technological difficulties of MECs are reviewed.
Investigation on the Changes of Pressure and Temperature in High Pressure Filling of Hydrogen Storage Tank
May 2022
Publication
Hydrogen as fuel has been considered as a feasible energy carry and which offers a clean and efficient alternative for transportation. During the high pressure filling the temperature in the hydrogen storage tank (HST) may rise rapidly due to the hydrogen compression. The high temperature may lead to safety problem. Thus for fast and safely refueling the hydrogen several key factors need to be considered. In the present study by the thermodynamics theories a mathematical model is established to simulate and analyze the high pressure filling process of the storage tank for the hydrogen station. In the analysis the physical parameters of normal hydrogen are introduced to make the simulation close to the actual process. By the numerical simulation for 50 MPa compressed hydrogen tank the temperature and pressure trends during filling are obtained. The simulation results for non-adiabatic filling were compared with the theoretically calculated ones for adiabatic conditions and the simulation results for non-adiabatic filling were compared with the simulation ones for adiabatic conditions. Then the influence of working pressure initial temperature mass flow rate initial pressure and inlet temperature on the temperature rise were analyzed. This study provides a theoretical research basis for high pressure hydrogen energy storage and hydrogenation technology.
UV Assisted on Titanium Doped Electrode for Hydrogen Evolution from Artificial Wastewater
Jul 2018
Publication
Formaldehyde (H2CO) is the harmful chemical that used in variety of industries. However there are many difficulties to treat discharged H2CO in the wastewater. Hydrogen energy is arising as a one of the renewable energy that can replace fossil fuel. Many researches have been conducted on hydrogen production from electrolysis using expensive metal electrodes and catalysts such as platinum (Pt) and palladium (Pd). However they are expensive and have obstacles to directly use from the production. We used copper (Cu) as an electrode substrate because it has a good current density. To avoid corrosion issue of Cu substrate we used commercially available carbon (C) coated Cu substrate and synthesized titanium (Ti) on C/Cu substrate. We found that Ti was well synthesized and stayed on substrate after hydrogen evolution reaction (HER) in artificial wastewater. Moreover we quantified hydrogen production from the wastewater and compared it to pure water. Hydrogen production was enhanced in wastewater and H2CO was decomposed after reaction. We expected to use Ti-C/Cu electrode for hydrogen production of wastewater by electrolysis.
South Korea’s Big Move to Hydrogen Society
Nov 2020
Publication
Extensive energy consumption has become a major concern due to increase of greenhouse gas emissions and global warming. Hence hydrogen has attracted attention as a green fuel with zero carbon emission for green transportation through production of electric vehicles with hydrogen fuel cells. South Korea has launched a hydrogen society policy with the objective of expanding production of hydrogen from renewable energy sources. The hydrogen economy will play a critical role in reducing atmospheric pollution and global arming. However new development of infrastructure for hydrogen refuelling and increasing awareness of the hydrogen economy is required together with reduced prices of hydrogen-driven vehicles that are promising options for a sustainable green hydrogen economy.
An Analysis on the Compressed Hydrogen Storage System for the Fast-Filling Process of Hydrogen Gas at the Pressure of 82 MPa
May 2021
Publication
During the fast-filling of a high-pressure hydrogen tank the temperature of hydrogen would rise significantly and may lead to failure of the tank. In addition the temperature rise also reduces hydrogen density in the tank which causes mass decrement into the tank. Therefore it is of practical significance to study the temperature rise and the amount of charging of hydrogen for hydrogen safety. In this paper the change of hydrogen temperature in the tank according to the pressure rise during the process of charging the high-pressure tank in the process of a 82-MPa hydrogen filling system the final temperature the amount of filling of hydrogen gas and the change of pressure of hydrogen through the pressure reducing valve and the performance of heat exchanger for cooling high-temperature hydrogen were analyzed by theoretical and numerical methods. When high-pressure filling began in the initial vacuum state the condition was called the “First cycle”. When the high-pressure charging process began in the remaining condition the process was called the “Second cycle”. As a result of the theoretical analysis the final temperatures of hydrogen gas were calculated to be 436.09 K for the first cycle of the high-pressure tank and 403.55 for the second cycle analysis. The internal temperature of the buffer tank increased by 345.69 K and 32.54 K in the first cycle and second cycles after high-pressure filling. In addition the final masses were calculated to be 11.58 kg and 12.26 kg for the first cycle and second cycle of the high-pressure tank respectively. The works of the paper can provide suggestions for the temperature rise of 82 MPa compressed hydrogen storage system and offer necessary theory and numerical methods for guiding safe operation and construction of a hydrogen filling system.
Life Cycle Assessment of Alternative Ship Fuels for Coastal Ferry Operating in Republic of Korea
Aug 2020
Publication
In this study the environmental impacts of various alternative ship fuels for a coastal ferry were assessed by the life cycle assessment (LCA) analysis. The comparative study was performed with marine gas oil (MGO) natural gas and hydrogen with various energy sources for a 12000 gross tonne (GT) coastal ferry operating in the Republic of Korea (ROK). Considering the energy imports of ROK i.e. MGO from Saudi Arabia and natural gas from Qatar these countries were chosen to provide the MGO and the natural gas for the LCA. The hydrogen is considered to be produced by steam methane reforming (SMR) from natural gas with hard coal nuclear energy renewable energy and electricity in the ROK model. The lifecycles of the fuels were analyzed in classifications of Well-toTank Tank-to-Wake and Well-to-Wake phases. The environmental impacts were provided in terms of global warming potential (GWP) acidification potential (AP) photochemical potential (POCP) eutrophication potential (EP) and particulate matter (PM). The results showed that MGO and natural gas cannot be used for ships to meet the International Maritime Organization’s (IMO) 2050 GHG regulation. Moreover it was pointed out that the energy sources in SMR are important contributing factors to emission levels. The paper concludes with suggestions for a hydrogen application plan for ships from small nearshore ships in order to truly achieve a ship with zero emissions based on the results of this study.
Potential Global Warming Impact of 1 kW Polymer Electrolyte Membrane Fuel Cell System for Residential Buildings on Operation Phase
Mar 2023
Publication
This study established global warming potential(GWP) emission factors through a life cycle assessment on the operation phases of two different 1 kW polymer electrolyte membrane fuel cell (PEMFC) systems for residential buildings (NG-PEMFC fed with hydrogen from natural gas reforming; WE-PEMFC fed with hydrogen from photovoltaics-powered water electrolyzer). Their effectiveness was also compared with conventional power grid systems in Korea specifically in the area of greenhouse gas emissions. The operation phases of the NG-PEMFC and the WE-PEMFC were divided into burner reformer and stack and into water electrolysis and stack respectively. The functional unit of each fuel cell system was defined as 1 kWh of electricity production. In the case of NG-PEMFC the GWP was 3.72E-01 kg-CO2eq/kWh the embodied carbon emissions due to using city gas during the life cycle process was about 20.87 % the carbon emission ratio according to the reformer's combustion burner was 6.07 % and the direct carbon emission ratio of the air emissions from the reformer was 73.06 % indicating that the carbon emission from the reformer contributed over 80 % of the total GWP. As for the WE-PEMFC the GWP was 1.76E-01 kg-CO2eq/kWh and the embodied carbon emissions from photovoltaic power generation during the life cycle process contributed over 99 % of the total GWP.
Annealing Effects on SnO2 Thin Film for H2 Gas Sensing
Sep 2022
Publication
Hydrogen (H2 ) is attracting attention as a renewable energy source in various fields. However H2 has a potential danger that it can easily cause a backfire or explosion owing to minor external factors. Therefore H2 gas monitoring is significant particularly near the lower explosive limit. Herein tin dioxide (SnO2 ) thin films were annealed at different times. The as-obtained thin films were used as sensing materials for H2 gas. Here the performance of the SnO2 thin film sensor was studied to understand the effect of annealing and operating temperature conditions of gas sensors to further improve their performance. The gas sensing properties exhibited by the 3-h annealed SnO2 thin film showed the highest response compared to the unannealed SnO2 thin film by approximately 1.5 times. The as-deposited SnO2 thin film showed a high response and fast response time to 5% H2 gas at 300 ◦C of 257.34% and 3 s respectively.
Estimation of Liquid Hydrogen Fuels in Aviation
Sep 2022
Publication
As the demand for alternative fuels to solve environmental problems increases worldwide due to the greenhouse gas problem this study predicted the demand for liquid hydrogen fuel in aviation to achieve ‘zero‐emission flight’. The liquid hydrogen fuel models of an aircraft and all aviation sectors were produced based on the prediction of aviation fleet growth through the classification of currently operated aircraft. Using these models the required amount of liquid hydrogen fuel and the total cost of liquid hydrogen were also calculated when various environmental regulations were satisfied. As a result it was found to be necessary to convert approximately 66% to 100% of all aircraft from existing aircraft to liquid hydrogen aircraft in 2050 according to regulations. The annual liquid hydrogen cost was 4.7–5.2 times higher in the beginning due to the high production cost but after 2030 it will be maintained at almost the same price and it was found that the cost was rather low compared to jet fuel.
Hydrogen Embrittlement of a Boiler Water Wall Tube in a District Heating System
Jul 2022
Publication
A district heating system is an eco-friendly power generation facility with high energy efficiency. The boiler water wall tube used in the district heating system is exposed to extremely harsh conditions and unexpected fractures often occur during operation. In this study a corrosion failure analysis of the boiler water wall tube was performed to elucidate the failure mechanisms. The study revealed that overheating by flames was the cause of the failure of the boiler water wall tube. With an increase in temperature in a localized region the microstructure not only changed from ferrite/pearlite to martensite/bainite which made it more susceptible to brittleness but it also developed tensile residual stresses in the water-facing side by generating cavities or microcracks along the grain boundaries inside the tube. High-temperature hydrogen embrittlement combined with stress corrosion cracking initiated many microcracks inside the tube and created an intergranular fracture.
Safe Ventilation Methods against Leaks in Hydrogen Fuel Cell Rooms in Homes
Jul 2022
Publication
Hydrogen which has a high energy density and does not emit pollutants is considered an alternative energy source to replace fossil fuels. Herein we report an experimental study on hydrogen leaks and ventilation methods for preventing damage caused by leaks from hydrogen fuel cell rooms in homes among various uses of hydrogen. This experiment was conducted in a temporary space with a volume of 11.484 m3 . The supplied pressure leak-hole size and leakage amount were adjusted as the experimental conditions. The resulting hydrogen concentrations which changed according to the operation of the ventilation openings ventilation fan and supplied shutoff valve were measured. The experimental results showed that the reductions in the hydrogen concentration due to the shutoff valve were the most significant. The maximum hydrogen concentration could be reduced by 80% or more if it is 100 times that of the leakage volume or higher. The shutoff valve ventilation fan and ventilation openings were required to reduce the concentrations of the fuel cell room hydrogen in a spatially uniform manner. Although the hydrogen concentration in a small hydrogen fuel cell room for home use can rapidly increase a rapid reduction in the concentration of hydrogen with an appropriate ventilation system has been experimentally proven.
Machine Learning-based Energy Optimization for On-site SMR Hydrogen Production
Jun 2021
Publication
The production and application of hydrogen an environmentally friendly energy source have been attracting increasing interest of late. Although steam methane reforming (SMR) method is used to produce hydrogen it is difficult to build a high-fidelity model because the existing equation-oriented theoretical model cannot be used to clearly understand the heat-transfer phenomenon of a complicated reforming reactor. Herein we developed an artificial neural network (ANN)-based data-driven model using 485710 actual operation datasets for optimizing the SMR process. Data preprocessing including outlier removal and noise filtering was performed to improve the data quality. A model with high accuracy (average R2 = 0.9987) was developed which can predict six variables through hyperparameter tuning of a neural network model as follows: syngas flow rate; CO CO2 CH4 and H2 compositions; and steam temperature. During optimization the search spaces for nine operating variables namely the natural gas flow rate for the feed and fuel hydrogen flow rate for desulfurization water flow rate and temperature air flow rate SMR inlet temperature and pressure and low-temperature shift (LTS) inlet temperature were defined and applied to the developed model for predicting the thermal efficiencies for 387420489 cases. Subsequently five constraints were established to consider the feasibility of the process and the decision variables with the highest process thermal efficiency were determined. The process operating conditions showed a thermal efficiency of 85.6%.
On-Board Cold Thermal Energy Storage System for Hydrogen Fueling Process
Feb 2019
Publication
The hydrogen storage pressure in fuel cell vehicles has been increased from 35 MPa to 70 MPa in order to accommodate longer driving range. On the downside such pressure increase results in significant temperature rise inside the hydrogen tank during fast filling at a fueling station which may pose safety issues. Installation of a chiller often mitigates this concern because it cools the hydrogen gas before its deposition into the tank. To address both the energy efficiency improvement and safety concerns this paper proposed an on-board cold thermal energy storage (CTES) system cooled by expanded hydrogen. During the driving cycle the proposed system uses an expander instead of a pressure regulator to generate additional power and cold hydrogen gas. Moreover CTES is equipped with phase change materials (PCM) to recover the cold energy of the expanded hydrogen gas which is later used in the next filling to cool the high-pressure hydrogen gas from the fueling station.
Design and Analysis of Cryogenic Cooling System for Electric Propulsion System Using Liquid Hydrogen
Jan 2023
Publication
As the demand for eco-friendly energy increases hydrogen energy and liquid hydrogen storage technologies are being developed as an alternative. Hydrogen has a lower liquefaction point and higher thermal conductivity than nitrogen or neon used in general cryogenic systems. Therefore the application of hydrogen to cryogenic systems can increase efficiency and stability. This paper describes the design and analysis of a cryogenic cooling system for an electric propulsion system using liquid hydrogen as a refrigerant and energy source. The proposed aviation propulsion system (APS) consists of a hydrogen fuel cell a battery a power distribution system and a motor. For a lab-scale 5 kW superconducting motor using a 2G high-temperature superconducting (HTS) wire the HTS motor and cooling system were analyzed for electromagnetic and thermal characteristics using a finite element method-based analysis program. The liquid hydrogen-based cooling system consists of a pre-cooling system a hydrogen liquefaction system and an HTS coil cooling system. Based on the thermal load analysis results of the HTS coil the target temperature for hydrogen gas pre-cooling the number of buffer layers and the cryo-cooler capacity were selected to minimize the thermal load of the hydrogen liquefaction system. As a result the hydrogen was stably liquefied and the temperature of the HTS coil corresponding to the thermal load of the designed lab-scale HTS motor was maintained at 30 K.
Recent Developments in State-of-the-art Hydrogen Energy Technologies – Review of Hydrogen Storage Materials
Jan 2023
Publication
Hydrogen energy has been assessed as a clean and renewable energy source for future energy demand. For harnessing hydrogen energy to its fullest potential storage is a key parameter. It is well known that important hydrogen storage characteristics are operating pressure-temperature of hydrogen hydrogen storage capacity hydrogen absorption-desorption kinetics and heat transfer in the hydride bed. Each application needs specific properties. Every class of hydrogen storage materials has a different set of hydrogenation characteristics. Hence it is required to understand the properties of all hydrogen storage materials. The present review is focused on the state-of– the–art hydrogen storage materials including metal hydrides magnesium-based materials complex hydride systems carbonaceous materials metal organic frameworks perovskites and materials and processes based on artificial intelligence. In each category of materials‘ discovery hydrogen storage mechanism and reaction crystal structure and recent progress have been discussed in detail. Together with the fundamental synthesis process latest techniques of material tailoring like nanostructuring nanoconfinement catalyzing alloying and functionalization have also been discussed. Hydrogen energy research has a promising potential to replace fossil fuels from energy uses especially from automobile sector. In this context efforts initiated worldwide for clean hydrogen production and its use via fuel cell in vehicles is much awaiting steps towards sustainable energy demand.
No more items...