Norway
Energy Transition Outlook 2021: Technology Progress Report
Jun 2021
Publication
This report is part of DNV’s suite of Energy Transition Outlook publications for 2021. It focuses on how key energy transition technologies will develop compete and interact in the coming five years.
Debate and uncertainty about the energy transition tend to focus on what technology can and can’t do. All too often such discussions involve wishful thinking advocacy of a favoured technology or reference to outdated information. Through this report we bring insights derived from our daily work with the world’s leading energy players including producers transporters and end users. Each of the ten chapters that follow are written by our experts in the field – or in the case of maritime technologies on the ocean.
Because the pace of the transition is intensifying describing any given technology is like painting a fast-moving train. We have attempted to strike a balance between technical details and issues of safety efficiency cost and competitiveness. Transition technologies are deeply interlinked and in some cases interdependent; any discussion on green hydrogen for example must account for developments in renewable electricity hydrogen storage and transport systems and end-use technologies such as fuels cells.
Our selection of ten technologies is not exhaustive but each of these technologies is of particular interest for the pace and direction of the energy transition. They range from relatively mature technologies like solar PV to technologies like nuclear fusion which are some distance from commercialization but which have current R&D and prototyping worth watching. Together they cover most but not all key sectors. We describe expected developments for the coming five years which to a large extent will determine how the energy transition unfolds through to mid-century. As such this Technology Progress report is an essential supplement to our main Energy Transition Outlook forecast.
Our aim is to make an objective and realistic assessment of the status of these technologies and evaluate how they contribute to the energy transition ahead. Attention to progress in these technologies will be critical for anyone concerned with energy.
Debate and uncertainty about the energy transition tend to focus on what technology can and can’t do. All too often such discussions involve wishful thinking advocacy of a favoured technology or reference to outdated information. Through this report we bring insights derived from our daily work with the world’s leading energy players including producers transporters and end users. Each of the ten chapters that follow are written by our experts in the field – or in the case of maritime technologies on the ocean.
Because the pace of the transition is intensifying describing any given technology is like painting a fast-moving train. We have attempted to strike a balance between technical details and issues of safety efficiency cost and competitiveness. Transition technologies are deeply interlinked and in some cases interdependent; any discussion on green hydrogen for example must account for developments in renewable electricity hydrogen storage and transport systems and end-use technologies such as fuels cells.
Our selection of ten technologies is not exhaustive but each of these technologies is of particular interest for the pace and direction of the energy transition. They range from relatively mature technologies like solar PV to technologies like nuclear fusion which are some distance from commercialization but which have current R&D and prototyping worth watching. Together they cover most but not all key sectors. We describe expected developments for the coming five years which to a large extent will determine how the energy transition unfolds through to mid-century. As such this Technology Progress report is an essential supplement to our main Energy Transition Outlook forecast.
Our aim is to make an objective and realistic assessment of the status of these technologies and evaluate how they contribute to the energy transition ahead. Attention to progress in these technologies will be critical for anyone concerned with energy.
The Potential of Gas Switching Partial Oxidation Using Advanced Oxygen Carriers for Efficient H2 Production with Inherent CO2 Capture
May 2021
Publication
The hydrogen economy has received resurging interest in recent years as more countries commit to net-zero CO2 emissions around the mid-century. “Blue” hydrogen from natural gas with CO2 capture and storage (CCS) is one promising sustainable hydrogen supply option. Although conventional CO2 capture imposes a large energy penalty advanced process concepts using the chemical looping principle can produce blue hydrogen at efficiencies even exceeding the conventional steam methane reforming (SMR) process without CCS. One such configuration is gas switching reforming (GSR) which uses a Ni-based oxygen carrier material to catalyze the SMR reaction and efficiently supply the required process heat by combusting an off-gas fuel with integrated CO2 capture. The present study investigates the potential of advanced La-Fe-based oxygen carrier materials to further increase this advantage using a gas switching partial oxidation (GSPOX) process. These materials can overcome the equilibrium limitations facing conventional catalytic SMR and achieve direct hydrogen production using a water-splitting reaction. Results showed that the GSPOX process can achieve mild efficiency improvements relative to GSR in the range of 0.6–4.1%-points with the upper bound only achievable by large power and H2 co-production plants employing a highly efficient power cycle. These performance gains and the avoidance of toxicity challenges posed by Ni-based oxygen carriers create a solid case for the further development of these advanced materials. If successful results from this work indicate that GSPOX blue hydrogen plants can outperform an SMR benchmark with conventional CO2 capture by more than 10%-points both in terms of efficiency and CO2 avoidance.
The Role of Hydrogen in the Transition from a Petroleum Economy to a Low-carbon Society
Jun 2021
Publication
A radical decarbonization pathway for the Norwegian society towards 2050 is presented. The paper focuses on the role of hydrogen in the transition when present Norwegian petroleum export is gradually phased out. The study is in line with EU initiatives to secure cooperation opportunities with neighbouring countries to establish an international hydrogen market. Three analytical perspectives are combined. The first uses energy models to investigate the role of hydrogen in an energy and power market perspective without considering hydrogen export. The second uses an economic equilibrium model to examine the potential role of hydrogen export in value creation. The third analysis is a socio-technical case study on the drivers and barriers for hydrogen production in Norway. Main conclusions are that access to renewable power and hydrogen are prerequisites for decarbonization of transport and industrial sectors in Norway and that hydrogen is a key to maintain a high level of economic activity. Structural changes in the economy impacts of new technologies and key enablers and barriers in this transition are discussed.
The Use of Metal Hydrides in Fuel Cell Applications
Feb 2017
Publication
This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.
Techno-economic Assessment of Hydrogen Production from Seawater
Nov 2022
Publication
Population growth and the expansion of industries have increased energy demand and the use of fossil fuels as an energy source resulting in release of greenhouse gases (GHG) and increased air pollution. Countries are therefore looking for alternatives to fossil fuels for energy generation. Using hydrogen as an energy carrier is one of the most promising alternatives to replace fossil fuels in electricity generation. It is therefore essential to know how hydrogen is produced. Hydrogen can be produced by splitting the water molecules in an electrolyser using the abondand water resources which are covering around ⅔ of the Earth's surface. Electrolysers however require high-quality water with conductivity in the range of 0.1–1 μS/cm. In January 2018 there were 184 offshore oil and gas rigs in the North Sea which may be excellent sites for hydrogen production from seawater. The hydrogen production process reported in this paper is based on a proton exchange membrane (PEM) electrolyser with an input flow rate of 300 L/h. A financially optimal system for producing demineralized water from seawater with conductivity in the range of 0.1–1 μS/cm as the input for electrolyser by WAVE (Water Application Value Engine) design software was studied. The costs of producing hydrogen using the optimised system was calculated to be US$3.51/kg H2. The best option for low-cost power generation using renewable resources such as photovoltaic (PV) devices wind turbines as well as electricity from the grid was assessed considering the location of the case considered. All calculations were based on assumption of existing cable from the grid to the offshore meaning that the cost of cables and distribution infrastructure were not considered. Models were created using HOMER Pro (Hybrid Optimisation of Multiple Energy Resources) software to optimise the microgrids and the distributed energy resources under the assumption of a nominal discount rate inflation rate project lifetime and CO2 tax in Norway. Eight different scenarios were examined using HOMER Pro and the main findings being as follows:<br/>The cost of producing water with quality required by the electrolyser is low compared with the cost of electricity for operation of the electrolyser and therefore has little effect on the total cost of hydrogen production (less than 1%).<br/>The optimal solution was shown to be electricity from the grid which has the lowest levelised cost of energy (LCOE) of the options considered. The hydrogen production cost using electricity from the grid was about US$ 5/kg H2.<br/>Grid based electricity resulted in the lowest hydrogen production cost even when costs for CO2 emissions in Norway that will start to apply in 2025 was considered being approximately US$7.7/kg H2.<br/>From economical point of view wind energy was found to be a more economical than solar.
Decarbonizing China’s Energy System – Modeling the Transformation of the Electricity, Transportation, Heat, and Industrial Sectors
Nov 2019
Publication
Growing prosperity among its population and an inherent increasing demand for energy complicate China’s target of combating climate change while maintaining its economic growth. This paper therefore describes three potential decarbonization pathways to analyze different effects for the electricity transport heating and industrial sectors until 2050. Using an enhanced version of the multi-sectoral open-source Global Energy System Model enables us to assess the impact of different CO2 budgets on the upcoming energy system transformation. A detailed provincial resolution allows for the implementation of regional characteristics and disparities within China. Conclusively we complement the model-based analysis with a quantitative assessment of current barriers for the needed transformation. Results indicate that overall energy system CO2 emissions and in particular coal usage have to be reduced drastically to meet (inter-) national climate targets. Specifically coal consumption has to decrease by around 60% in 2050 compared to 2015. The current Nationally Determined Contributions proposed by the Chinese government of peaking emissions in 2030 are therefore not sufficient to comply with a global CO2 budget in line with the Paris Agreement. Renewable energies in particular photovoltaics and onshore wind profit from decreasing costs and can provide a more sustainable and cheaper energy source. Furthermore increased stakeholder interactions and incentives are needed to mitigate the resistance of local actors against a low-carbon transformation.
Liquid Hydrogen as Prospective Energy Carrier: A Brief Review and Discussion of Underlying Assumptions Applied in Value Chain Analysis
Nov 2021
Publication
In the literature different energy carriers are proposed in future long-distance hydrogen value chains. Hydrogen can be stored and transported in different forms e.g. as compressed dense-phase hydrogen liquefied hydrogen and in chemically bound forms as different chemical hydrides. Recently different high-level value chain studies have made extrapolative investigations and compared such options with respect to energy efficiency and cost. Three recent journal papers overlap as the liquid hydrogen option has been considered in all three studies. The studies are not fully aligned in terms of underlying assumptions and battery limits. A comparison reveals partly vast differences in results for chain energy efficiency for long-distance liquid hydrogen transport which are attributable to distinct differences in the set of assumptions. Our comparison pinpoints the boiloff ratio i.e. evaporation losses due to heat ingress in liquid hydrogen storage tanks as the main cause of the differences and this assumption is further discussed. A review of spherical tank size and attributed boiloff ratios is presented for existing tanks of different vintage as well as for recently proposed designs. Furthermore the prospect for further extension of tanks size and reduction of boiloff ratio is discussed with a complementary discussion about the use of economic assumptions in extrapolative and predictive studies. Finally we discuss the impact of battery limits in hydrogen value chain studies and pinpoint knowledge needs and the need for a detailed bottom-up approach as a prerequisite for improving the understanding for pros and cons of the different hydrogen energy carriers.
Role of Grain Boundaries in Hydrogen Embrittlement of Alloy 725: Single and Bi-crystal Microcantilever Bending Study
Jan 2022
Publication
In situ electrochemical microcantilever bending tests were conducted in this study to investigate the role of grain boundaries (GBs) in hydrogen embrittlement (HE) of Alloy 725. Specimens were prepared under three different heat treatment conditions and denoted as solution-annealed (SA) aged (AG) and over-aged (OA) samples. For single-crystal beams in an H-containing environment all three heat-treated samples exhibited crack formation and propagation; however crack propagation was more severe in the OA sample. The anodic extraction of H presented similar results as those under the H-free condition indicating the reversibility of the H effect under the tested conditions. Bi-crystal micro-cantilevers bent under H-free and H-charged conditions revealed the significant role of the GB in the HE of the beams. The results indicated that the GB in the SA sample facilitated dislocation dissipation whereas for the OA sample it caused the retardation of crack propagation. For the AG sample testing in an H-containing environment led to the formation of a sharp severe crack along the GB path.
Quantitative Risk Analysis of Scaled-up Hydrogen Facilities
Sep 2021
Publication
Development of hydrogen facilities such as hydrogen refuelling stations (HRS) at scale is a fine balance between economy and safety where an optimal solution would both prevent showstoppers due to cost of increased safety measures and prevent showstoppers due to hydrogen accidents. A detailed Quantitative Risk Analysis (QRA) methodology is presented where the aim is to establish the total risk of the facility and use it to find the right level of safety features such as blast walls and layout. With upscaled hydrogen facilities comes larger area footprints and more potential leak points. These effects will cause increased possible consequence in terms of vapour cloud explosions and increased leak frequencies. Both effects contributing negative to the total risk of the hydrogen facility. At the same time as the number of such facilities is increasing rapidly the frequency of incidents can also increase. A risk-based approach is employed where inherently safe solutions is investigated and cost efficient and acceptable solutions can be established. The present QRA uses well established tools such as SAFETI FLACS and Express which are fitted for hydrogen risks. By using the established Explosion Risk Analysis tool Express the explosion risk inside the station can be found. By using CFD tools actively one can point at physical risk drivers such as equipment layout that can minimize gas cloud build-up on the station. The explosion simulations are further used to find the effects of e.g. blast wall on the pressures affecting on people on the other side of the wall. This is used together with the results from the SAFETI analysis to develop risk contours around the facility. Current standardized safety distances are discussed by considering the effects of scaling and risk drivers on the safety distances. The methodology can be used to develop certain requirement for how hydrogen facilities should be built inherently safe and in cost-efficient ways.
Hydrogen Informed Gurson Model for Hydrogen Embrittlement Simulation
Jul 2019
Publication
Hydrogen-microvoid interactions were studied via unit cell analyses with different hydrogen concentrations. The absolute failure strain decreases with hydrogen concentration but the failure loci were found to follow the same trend dependent only on stress triaxiality in other words the effects of geometric constraint and hydrogen on failure are decoupled. Guided by the decoupling principle a hydrogen informed Gurson model is proposed. This model is the first practical hydrogen embrittlement simulation tool based on the hydrogen enhanced localized plasticity (HELP) mechanism. It introduces only one additional hydrogen related parameter into the Gurson model and is able to capture hydrogen enhanced internal necking failure of microvoids with accuracy; its parameter calibration procedure is straightforward and cost efficient for engineering purpose
Comparison of Alternative Marine Fuels
Sep 2019
Publication
The overall ambition of the study has been to assess the commercial and operational viability of alternative marine fuels based on review existing academic and industry literature. The approach assesses how well six alternative fuels perform compared to LNG fuel on a set of 11 key parameters. Conventional fuels are not covered in this study however 2020 compliant fuels (HFO+scrubber and low sulphur fuels are included in the conclusion for comparative purposes.
A Hybrid Perspective on Energy Transition Pathways: Is Hydrogen the Key for Norway?
Jun 2021
Publication
Hydrogen may play a significant part in sustainable energy transition. This paper discusses the sociotechnical interactions that are driving and hindering development of hydrogen value chains in Norway. The study is based on a combination of qualitative and quantitative methods. A multi-level perspective (MLP) is deployed to discuss how exogenous trends and uncertainties interact with processes and strategies in the national energy system and how this influences the transition potential associated with Norwegian hydrogen production. We explore different transition pathways towards a low-emission society in 2050 and find that Norwegian hydrogen production and its deployment for decarbonization of maritime and heavy-duty transport decarbonisation of industry and flexibility services may play a crucial role. Currently the development is at a branching point where national coordination is crucial to unlock the potential. The hybrid approach provides new knowledge on underlying system dynamics and contributes to the discourse on pathways in transition studies.
Blue, Green, and Turquoise Pathways for Minimizing Hydrogen Production Costs from Steam Methane Reforming with CO2 Capture
Nov 2022
Publication
Rising climate change ambitions require large-scale clean hydrogen production in the near term. “Blue” hydrogen from conventional steam methane reforming (SMR) with pre-combustion CO2 capture can fulfil this role. This study therefore presents techno-economic assessments of a range of SMR process configurations to minimize hydrogen production costs. Results showed that pre-combustion capture can avoid up to 80% of CO2 emissions cheaply at 35 €/ton but the final 20% of CO2 capture is much more expensive at a marginal CO2 avoidance cost around 150 €/ton. Thus post-combustion CO2 capture should be a better solution for avoiding the final 20% of CO2. Furthermore an advanced heat integration scheme that recovers most of the steam condensation enthalpy before the CO2 capture unit can reduce hydrogen production costs by about 6%. Two hybrid hydrogen production options were also assessed. First a “blue-green” hydrogen plant that uses clean electricity to heat the reformer achieved similar hydrogen production costs to the pure blue configuration. Second a “blue turquoise” configuration that replaces the pre-reformer with molten salt pyrolysis for converting higher hydrocarbons to a pure carbon product can significantly reduce costs if carbon has a similar value to hydrogen. In conclusion conventional pre-combustion CO2 capture from SMR is confirmed as a good solution for kickstarting the hydrogen economy and it can be tailored to various market conditions with respect to CO2 electricity and pure carbon prices.
Does Time Matter? A Multi-level Assessment of Delayed Energy Transitions and Hydrogen Pathways in Norway
Mar 2023
Publication
The Russian invasion of Ukraine has undeniably disrupted the EU's energy system and created a window of opportunity for an acceleration of the low-carbon energy transition in Europe. As the trading bloc's biggest gas supplier Norway faces the imminent threat of fast-depleting gas reserves and declining value for its exports. Norway is trying to beat the clock by aggressively exploring more petroleum therefore delaying its energy transition. In anticipation of the future drop in gas prices Norway is counting on blue hydrogen to valorise its gas resources before gradually shifting to green hydrogen export. Against this background this article seeks to understand how changes in the EU's energy landscape have affected the energy export sector and low-carbon hydrogen export developments in Norway from a multi-level perspective. Using the exploratory scenario approach the article assesses the implications of the different petroleum exploration outcomes on the development of the low-carbon hydrogen export market in Norway. The findings show that despite gas discoveries there is an urgent need for a phase-out plan for the Norwegian petroleum sector. For low-carbon hydrogen to play an important role in Norway's energy transition time is of the essence and action needs to be taken during this window of opportunity. An industrial sector and its value chain could take 25 years to transform which means that actions and policies for a full transformation pathway need to take place in Norway by 2025 to be ready for a climate-neutral Europe in 2050.
Renewable-power-assisted Production of Hydrogen and Liquid Hydrocarbons from Natural Gas: Techno-economic Analysis
Jun 2022
Publication
The declining cost of renewable power has engendered growing interest in leveraging this power for the production of chemicals and synthetic fuels. Here renewable power is added to the gas-to-liquid (GTL) process through Fischer–Tropsch (FT) synthesis in order to increase process efficiency and reduce CO2 emissions. Accordingly two realistic configurations are considered which differ primarily in the syngas preparation step. In the first configuration solid oxide steam electrolysis cells (SOEC) in combination with an autothermal reformer (ATR) are used to produce synthesis gas with the right composition while in the second configuration an electrically-heated steam methane reformer (E-SMR) is utilized for syngas production. The results support the idea of adding power to the GTL process mainly by increased process efficiencies and reduced process emissions. Assuming renewable power is available the process emissions would be 200 and 400 gCO2 L1 syncrude for the first and second configurations respectively. Configuration 1 and 2 show 8 and 4 times less emission per liter syncrude produced respectively compared to a GTL plant without H2 addition with a process emission of 1570 gCO2 L1 syncrude. By studying the two designs based on FT production carbon efficiency and FT catalyst volume a better alternative is to add renewable power to the SOEC (configuration 1) rather than using it in an E-SMR (configuration 2). Given an electricity price of $100/MW h and natural gas price of 5 $ per GJ FT syncrude and H2 can be produced at a cost between $15/MW h and $16/MW h. These designs are considered to better utilize the available carbon resources and thus expedite the transition to a low-carbon economy
Development and Testing of a 100 kW Fuel-flexible Micro Gas Turbine Running on 100% Hydrogen
Jun 2023
Publication
Hydrogen as a carbon-free energy carrier has emerged as a crucial component in the decarbonization of the energy system serving as both an energy storage option and fuel for dispatchable power generation to mitigate the intermittent nature of renewable energy sources. However the unique physical and combustion characteristics of hydrogen which differ from conventional gaseous fuels such as biogas and natural gas present new challenges that must be addressed. To fully integrate hydrogen as an energy carrier in the energy system the development of low-emission and highly reliable technologies capable of handling hydrogen combustion is imperative. This study presents a ground-breaking achievement - the first successful test of a micro gas turbine running on 100% hydrogen with NOx emissions below the standard limits. Furthermore the combustor of the micro gas turbine demonstrates exceptional fuel flexibility allowing for the use of various blends of hydrogen biogas and natural gas covering a wide range of heating values. In addition to a comprehensive presentation of the test rig and its instrumentation this paper illuminates the challenges of hydrogen combustion and offers real-world operational data from engine operation with 100% hydrogen and its blends with methane.
Minimum Entropy Generation in a Heat Exchanger in the Cryogenic Part of the Hydrogen Liquefaction Process: On the Validity of Equipartition and Disappearance of the Highway
May 2019
Publication
Liquefaction of hydrogen is a promising technology for transporting large quantities of hydrogen across long distances. A key challenge is the high power consumption. In this work we discuss refrigeration strategies that give minimum entropy production/exergy destruction in a plate-fin heat exchanger that cools the hydrogen from 47.8 K to 29.3 K. Two reference cases are studied; one where the feed stream enters at 20 bar and one where it enters at 80 bar. Catalyst in the hot layers speeds up the conversion of ortho-to para-hydrogen. Optimal control theory is used to formulate a minimization problem where the objective function is the total entropy production the control variable is the temperature of the refrigerant and the constrains are the balance equations for energy mass and momentum in the hot layers. The optimal refrigeration strategies give a reduction of the total entropy production of 8.7% in the 20-bar case and 4.3% in the 80-bar case. The overall heat transfer coefficient and duty is higher in the 20 bar case which compensates for the increase in entropy production due to a thermal mismatch that is avoided in the 80 bar case. This leads the second law efficiency of the 20 bar case (91%) to be similar to the 80 bar case (89%). We demonstrate that equipartition of the entropy production and equipartition of the thermal driving force are both excellent design principles for the process unit considered with total entropy productions deviating only 0.2% and 0.5% from the state of minimum entropy production. Equipartition of the thermal driving force i.e. a constant difference between the inverse temperatures of the hot and cold layers represents a particularly simple guideline that works remarkably well. We find that both heat transfer and the spin-isomer reaction contribute significantly to the entropy production throughout the length of the process unit. Unlike previous examples in the literature the process unit considered in this work is not characterized by a “reaction mode” at the inlet followed by a “heat transfer mode”. Therefore it does not follow a highway in state space i.e. a band that is particularly dense with energy efficient solutions. By artificially increasing the spin-isomer conversion rate the highway appears when the conversion rate becomes sufficiently high.
The New Oil? The Geopolitics and International Governance of Hydrogen
Jun 2020
Publication
While most hydrogen research focuses on the technical and cost hurdles to a full-scale hydrogen economy little consideration has been given to the geopolitical drivers and consequences of hydrogen developments. The technologies and infrastructures underpinning a hydrogen economy can take markedly different forms and the choice over which pathway to take is the object of competition between different stakeholders and countries. Over time cross-border maritime trade in hydrogen has the potential to fundamentally redraw the geography of global energy trade create a new class of energy exporters and reshape geopolitical relations and alliances between countries. International governance and investments to scale up hydrogen value chains could reduce the risk of market fragmentation carbon lock-in and intensified geo-economic rivalry.
Blind-prediction: Estimating the Consequences of Vented Hydrogen Deflagrations for Homogeneous Mixtures in a 20-foot ISO Container
Sep 2017
Publication
Trygve Skjold,
Helene Hisken,
Sunil Lakshmipathy,
Gordon Atanga,
Marco Carcassi,
Martino Schiavetti,
James R. Stewart,
A. Newton,
James R. Hoyes,
Ilias C. Tolias,
Alexandros G. Venetsanos,
Olav Roald Hansen,
J. Geng,
Asmund Huser,
Sjur Helland,
Romain Jambut,
Ke Ren,
Alexei Kotchourko,
Thomas Jordan,
Jérome Daubech,
Guillaume Lecocq,
Arve Grønsund Hanssen,
Chenthil Kumar,
Laurent Krumenacker,
Simon Jallais,
D. Miller and
Carl Regis Bauwens
This paper summarises the results from a blind-prediction study for models developed for estimating the consequences of vented hydrogen deflagrations. The work is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The scenarios selected for the blind-prediction entailed vented explosions with homogeneous hydrogen-air mixtures in a 20-foot ISO container. The test program included two configurations and six experiments i.e. three repeated tests for each scenario. The comparison between experimental results and model predictions reveals reasonable agreement for some of the models and significant discrepancies for others. It is foreseen that the first blind-prediction study in the HySEA project will motivate developers to improve their models and to update guidelines for users of the models.
Implementing Maritime Battery-electric and Hydrogen Solutions: A Technological Innovation Systems Analysis
Sep 2020
Publication
Maritime transport faces increasing pressure to reduce its greenhouse gas emissions to be in accordance with the Paris Agreement. For this to happen low- and zero-carbon energy solutions need to be developed. In this paper we draw on sustainability transition literature and introduce the technological innovation system (TIS) framework to the field of maritime transportation research. The TIS approach analytically distinguishes between different innovation system functions that are important for new technologies to develop and diffuse beyond an early phase of experimentation. This provides a basis for technology-specific policy recommendations. We apply the TIS framework to the case of battery-electric and hydrogen energy solutions for coastal maritime transport in Norway. Whereas both battery-electric and hydrogen solutions have developed rapidly the former is more mature and has a strong momentum. Public procurement and other policy instruments have been crucial for developments to date and will be important for these technologies to become viable options for shipping more generally.
No more items...