Qatar
Thermodynamic Analysis of Hydrogen Production via Chemical Looping Steam Methane Reforming Coupled with In Situ CO2 Capture
Dec 2014
Publication
A detailed thermodynamic analysis of the sorption enhanced chemical looping reforming of methane (SE-CL-SMR) using CaO and NiO as CO2 sorbent and oxygen transfer material (OTM) respectively was conducted. Conventional reforming (SMR) and sorption enhanced reforming (SE-SMR) were also investigated for comparison reasons. The results of the thermodynamic analysis show that there are significant advantages of both sorption enhanced processes compared to conventional reforming. The presence of CaO leads to higher methane conversion and hydrogen purity at low temperatures. Addition of the OTM in the SECL-SMR process concept minimizes the thermal requirements and results in superior performance compared to SE-SMR and SMR in a two-reactor concept with use of pure oxygen as oxidant/sweep gas.
Performance Analysis of Hydrogen Fuel Cell with Two-stage Turbo Compressor for Automotive Applications
May 2021
Publication
This paper discusses the numerical modeling of an automobile fuel cell system using a two-stage turbo-compressor for air supply. The numerical model incorporates essential input parameters for air and hydrogen flow. The model also performed mass and energy balances across different components such as pump fan heat-exchanger air compressor and keeps in consideration the pressure losses across flow pipes and various mechanical parts. The compressor design process initiates with numerical analysis of the preliminary design of a highly efficient two-stage turbo compressor with an expander as a single-stage compressor has several limitations in terms of efficiency and pressure ratio. The compressor’s design parameters were carefully studied and analyzed with respect to the highly efficient fuel cell stack (FCS) used in modern hydrogen vehicles. The model is solved to evaluate the overall performance of PEM FCS. The final compressor has a total pressure and temperature of 4.2 bar and 149.3°C whereas the required power is 20.08kW with 3.18kW power losses and having a combined efficiency of 70.8%. According to the FC model with and without expander the net-power outputs are 98.15kW and 88.27kW respectively and the maximum efficiencies are 65.1% and 59.1% respectively. Therefore it can be concluded that a two-stage turbo compressor with a turbo-expander can have significant effects on overall system power and efficiency. The model can be used to predict and optimize system performance for PEM FCS at different operating conditions.
Comparative Cost Assessment of Sustainable Energy Carriers Produced from Natural Gas Accounting for Boil-off Gas and Social Cost of Carbon
Jun 2020
Publication
As a result of particular locations of large-scale energy producers and increases in energy demand transporting energy has become one of the key challenges of energy supply. For a long-distance ocean transportation transfer of energy carriers via ocean tankers is considered as a decent solution compared to pipelines. Due to cryogenic temperatures of energy carriers heat leaks into storage tanks of these carriers causes a problem called boil-off gas (BOG). BOG losses reduce the quantity of energy carriers which affects their economic value. Therefore this study proposes to examine the effects of BOG economically in production and transportation phases of potential energy carriers produced from natural gas namely; liquefied natural gas (LNG) dimethyl-ether (DME) methanol liquid ammonia (NH3) and liquid hydrogen (H2). Mathematical approach is used to calculate production and transportation costs of these energy carriers and to account for BOG as a unit cost within the total cost. The results of this study show that transportation costs of LNG liquid ammonia methanol DME and liquid hydrogen from natural gas accounting for BOG are 0.74 $/GJ 1.09 $/GJ 0.68 $/GJ 0.53 $/GJ and 3.24 $/GJ respectively. DME and methanol can be more economic compared to LNG to transport the energy of natural gas for the same ship capacity. Including social cost of carbon (SCC) within the total cost of transporting the energy of natural gas the transportation cost of liquid ammonia is 1.11 $/GJ whereas LNG transportation cost rises significantly to 1.68 $/GJ at SCC of 137 $/t CO2 eq. Consequently liquid ammonia becomes economically favored compared to LNG. Transportation cost of methanol (0.70 $/GJ) and DME (0.55 $/GJ) are also lower than LNG however liquid hydrogen transportation cost (3.24 $/GJ) is still the highest even though the increment of the cost is about 0.1% as SCC included within the transportation cost.
Comparative Life Cycle Assessment of Sustainable Energy Carriers Including Production, Storage, Overseas Transport and Utilization
Aug 2020
Publication
Countries are under increasing pressure to reduce greenhouse gas emissions as an act upon the Paris Agreement. The essential emission reductions can be achieved by environmentally friendly solutions in particular the introduction of low carbon or carbon-free fuels. This study presents a comparative life cycle assessment of various energy carriers namely; liquefied natural gas methanol dimethyl ether liquid hydrogen and liquid ammonia that are produced from natural gas or renewables to investigate greenhouse gas emissions generated from the complete life cycle of energy carriers accounting for the leaks as well as boil-off gas occurring during storage and transportation. The entire fuel life cycle is considered consisting of production storage transportation via an ocean tanker to different distances and finally utilization in an internal combustion engine of a road vehicle. The results show that using natural gas as a feedstock total greenhouse gas emissions during production ocean transportation (over 20000 nmi) by a heavy fuel oil-fueled ocean tanker and utilization in an internal combustion engine are 73.96 95.73 93.76 50.83 and 100.54 g CO2 eq. MJ1 for liquified natural gas methanol dimethyl ether liquid hydrogen and liquid ammonia respectively. Liquid hydrogen produced from solar electrolysis is the cleanest energy carrier (42.50 g CO2 eq. MJ1 fuel). Moreover when liquid ammonia is produced via photovoltaic-based electrolysis (60.76 g CO2 eq. MJ1 fuel) it becomes cleaner than liquified natural gas. Although producing methanol and dimethyl ether from biomass results in a large reduction in total greenhouse gas emissions compared to conventional methanol and dimethyl ether production with a value of 73.96 g CO2 eq. per MJ liquified natural gas still represents a cleaner option than methanol and dimethyl ether considering the full life cycle.
Artificial Neural Networks for Predicting Hydrogen Production in Catalytic Dry Reforming: A Systematic Review
May 2021
Publication
Dry reforming of hydrocarbons alcohols and biological compounds is one of the most promising and effective avenues to increase hydrogen (H2 ) production. Catalytic dry reforming is used to facilitate the reforming process. The most popular catalysts for dry reforming are Ni-based catalysts. Due to their inactivation at high temperatures these catalysts need to use metal supports which have received special attention from researchers in recent years. Due to the existence of a wide range of metal supports and the need for accurate detection of higher H2 production in this study a systematic review and meta-analysis using ANNs were conducted to assess the hydrogen production by various catalysts in the dry reforming process. The Scopus Embase and Web of Science databases were investigated to retrieve the related articles from 1 January 2000 until 20 January 2021. Forty-seven articles containing 100 studies were included. To determine optimal models for three target factors (hydrocarbon conversion hydrogen yield and stability test time) artificial neural networks (ANNs) combined with differential evolution (DE) were applied. The best models obtained had an average relative error for the testing data of 0.52% for conversion 3.36% for stability and 0.03% for yield. These small differences between experimental results and predictions indicate a good generalization capability.
Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review
Nov 2020
Publication
Hydrogen (H2) has attained significant benefits as an energy carrier due to its gross calorific value (GCV) and inherently clean operation. Thus hydrogen as a fuel can lead to global sustainability. Conventional H2 production is predominantly through fossil fuels and electrolysis is now identified to be most promising for H2 generation. This review describes the recent state of the art and challenges on ultra-pure H2 production through methanol electrolysis that incorporate polymer electrolyte membrane (PEM). It also discusses about the methanol electrochemical reforming catalysts as well as the impact of this process via PEM. The efficiency of H2 production depends on the different components of the PEM fuel cells which are bipolar plates current collector and membrane electrode assembly. The efficiency also changes with the nature and type of the fuel fuel/oxygen ratio pressure temperature humidity cell potential and interfacial electronic level interaction between the redox levels of electrolyte and band gap edges of the semiconductor membranes. Diverse operating conditions such as concentration of methanol cell temperature catalyst loading membrane thickness and cell voltage that affect the performance are critically addressed. Comparison of various methanol electrolyzer systems are performed to validate the significance of methanol economy to match the future sustainable energy demands.
Role of Grain Boundaries in Hydrogen Embrittlement of Alloy 725: Single and Bi-crystal Microcantilever Bending Study
Jan 2022
Publication
In situ electrochemical microcantilever bending tests were conducted in this study to investigate the role of grain boundaries (GBs) in hydrogen embrittlement (HE) of Alloy 725. Specimens were prepared under three different heat treatment conditions and denoted as solution-annealed (SA) aged (AG) and over-aged (OA) samples. For single-crystal beams in an H-containing environment all three heat-treated samples exhibited crack formation and propagation; however crack propagation was more severe in the OA sample. The anodic extraction of H presented similar results as those under the H-free condition indicating the reversibility of the H effect under the tested conditions. Bi-crystal micro-cantilevers bent under H-free and H-charged conditions revealed the significant role of the GB in the HE of the beams. The results indicated that the GB in the SA sample facilitated dislocation dissipation whereas for the OA sample it caused the retardation of crack propagation. For the AG sample testing in an H-containing environment led to the formation of a sharp severe crack along the GB path.
Thermodynamic Assessment of a Hybrid Methane Cracking System for Liquified Hydrogen Production and Enhanced Oil Recovery Using CO2
Oct 2022
Publication
Hydrogen fuel production from methane cracking is a cleaner process compared to steam methane reforming due to zero greenhouse gas emissions. Carbon black that is co-produced is valuable and can be marketed to other industries. As this is a high-temperature process using solar energy can further improve its sustainability. In this study an integrated solar methane cracking system is proposed and the efficient utilization of the hydrogen and carbon products is explored. The carbon by-product is used in a direct carbon fuel cell and oxy- combustion. These processes eliminate the need for carbon capture technologies as they produce pure CO2 exhaust streams. The CO2 produced from the systems is used for enhanced oil recovery to produce crude oil. The produced turquoise hydrogen is liquified to make it suitable for exportation. The process is simulated on Aspen Plus® and its energy and exergy efficiencies are evaluated by carrying out a detailed thermodynamic analysis. A reservoir simulation is used to study the amount of oil that can be produced using the captured CO2. The overall system is studied for oil production over 20 years and energy and exergy of efficiencies 42.18% and 40.18% respectively were found. Enhanced oil recovery improves the recovery rate from 24.8% to 64.3%.
Blue Hydrogen Production from Natural Gas Reservoirs: A Review of Application and Feasibility
Feb 2023
Publication
Recently interest in developing H2 strategies with carbon capture and storage (CCS) technologies has surged. Considering that this paper reviews recent literature on blue H2 a potential low-carbon short-term solution during the H2 transition period. Three key aspects were the focus of this paper. First it presents the processes used for blue H2 production. Second it presents a detailed comparison between blue H2 and natural gas as fuels and energy carriers. The third aspect focuses on CO2 sequestration in depleted natural gas reservoirs an essential step for implementing blue H2. Globally ~ 75% of H2 is produced using steam methane reforming which requires CCS to obtain blue H2. Currently blue H2 needs to compete with other advancing technologies such as green H2 solar power battery storage etc. Compared to natural gas and liquefied natural gas blue H2 gas results in lower CO2 emissions since CCS is applied. However transporting liquefied and compressed blue H2 entails higher energy economic and environmental costs. CCS must be appropriately implemented to produce blue H2 successfully. Due to their established capacity to trap hydrocarbons over geologic time scales depleted natural gas reservoirs are regarded as a viable option for CCS. Such a conclusion is supported by several simulation studies and field projects in many countries. Additionally there is much field experience and knowledge on the injection and production performance of natural gas reservoirs. Therefore using the existing site infrastructure converting these formations into storage reservoirs is undemanding.
Hydrogen Export Competitiveness Index for a Sustainable Hydrogen Economy
May 2023
Publication
The transition to cleaner energy sources including renewables introduces the need for versatile and transportable energy carriers such as hydrogen. This paper aims to quantify the hydrogen export competitiveness of all countries using a newly developed comprehensive index. The developed competitiveness index includes 21 indicators under four main categories: resource availability and potential economic and financial potential political and regulatory status and industrial knowledge. Expert interviews and surveys are conducted to properly identify choose and modify the categories and indicators and to calculate the appropriate weight for each. Top-ranking countries include the United States Australia Canada United Kingdom China Norway India Russia Netherlands and Germany and they are poised to be significant players in the hydrogen market. Policy recommendations for growing the hydrogen production and export sector are given based on each category.
Review on COx-free Hydrogen from Methane Cracking: Catalysts, Solar Energy Integration and Applications
Oct 2021
Publication
Hydrogen fuel production from methane cracking is a sustainable process compared to the ones currently in practice due to minimal greenhouse gas emissions. Carbon black that is co-produced is a valuable product and can be marketed to other industries. As this is a high-temperature process using concentrated solar energy can further improve its sustainability. In this study a detailed review is conducted to study the advancements in methane cracking for hydrogen production using different catalysts. Various solar reactors developed for methane cracking are discussed. The application of hydrogen to produce other valuable chemicals are outlined. Hydrogen carriers such as methanol dimethyl ether ammonia and urea can efficiently store hydrogen energy and enable easier transportation. Further research in the field of methane cracking is required for reactor scale-up improved economics and to reduce the problems arising from carbon deposition leading to reactor clogging and catalyst deactivation.
Exploring Machine Learning Approaches for Biohydrogen Production through Dark Fermentation in Wastewater
Jul 2025
Publication
The global dependence on fossil fuels continues to contribute to greenhouse gas emissions driving the search for cleaner energy alternatives like biohydrogen. Dark fermentation has emerged as a promising method for sustainable hydrogen production while simultaneously treating wastewater. However optimizing biohydrogen yields remains challenging due to the complexity of biological interactions and environmental factors. Machine learning (ML) offers a data-driven approach to predict and enhance hydrogen production efficiency. In this review recent studies employing ML techniques are systematically analyzed to evaluate their role in modeling and optimizing biohydrogen generation through dark fermentation. This review examines various ML models including artificial neural networks support vector machines decision trees and gradient boosting techniques for their effectiveness in optimizing fermentation conditions. Unlike traditional models like Monod kinetics the anaerobic digestion model no.1 (ADM1) and response surface methodology (RSM) which are limited by fixed input ranges results indicate that ML models outperform traditional statistical methods with CatBoost achieving an R2 of 0.98 and SVM reaching 0.988. Key influencing factors include chemical oxygen demand nickel concentration and butyrate levels. Furthermore the review also highlights methodological gaps prioritization of lifecycle assessments and cost-benefit analyses and also provides insights into the future integration of ML with experimental workflows. While ML-driven optimization has significantly improved hydrogen yields further research is required to refine models expand datasets and improve scalability for industrial applications.
Thermodynamic Performance Comparison of Various Energy Storage Systems from Source-to-electricity for Renewable Energy Resources
Dec 2020
Publication
This study discusses and thermodynamically analyzes several energy storage systems namely; pumped hydro compressed air hot water storage molten salt thermal storage hydrogen ammonia lithium-ion battery Zn-air battery redox flow battery reversible fuel cells supercapacitors and superconducting magnetic storage through the first and second law of thermodynamics. By fixing an electrical output of 100 kW for all systems the energy efficiencies obtained for the considered energy storage methods vary between 10.9% and 74.6% whereas the exergy efficiencies range between 23.1% and 71.9%. The exergy destruction rates are also calculated for each system ranging from 1.640 kW to 356 kW. The highest destruction rate is obtained for the solar-driven molten salt thermal energy storage system since it includes thermal energy conversion via the heliostat field. Furthermore the roundtrip efficiencies for the electrochemical and electromagnetic storage systems are compared with the analyzed systems ranging from 58% to 94%. Renewable sources (solar wind ocean current biomass and geothermal) energy conversion efficiencies are also considered for the final round-trip performances. The molten salt and hot water systems are applicable to solar geothermal and biomass. The highest source-to-electricity efficiency is obtained for the super magnetic storage with 37.6% when using wind ocean current and biomass sources.
A Review of the Integrated Renewable Energy Systems for Sustainable Urban Mobility
Aug 2022
Publication
Several challenges have emerged due to the increasing deterioration of urban mobility and its severe impacts on the environment and human health. Primary dependence on internal combustion engines that use petrol or diesel has led to poor air quality time losses noise traffic jams and further environmental pollution. Hence the transitions to using rail and or seaway-based public transportation cleaner fuels and electric vehicles are some of the ultimate goals of urban and national decision-makers. However battery natural gas hybrid and fuel cell vehicles require charging stations to be readily available with a sustainable energy supply within urban regions in different residential and business neighborhoods. This study aims to provide an updated and critical review of the concept and recent examples of urban mobility and transportation modes. It also highlights the adverse impacts of several air pollutants emitted from internal combustion engine vehicles. It also aims to shed light on several possible systems that integrate the electric vehicle stations with renewable energy sources. It was found that using certain components within the integrated system and connecting the charging stations with a grid can possibly provide an uninterrupted power supply to electric vehicles leading to less pollution which would encourage users to use more clean vehicles. In addition the environmental impact assessments as well as several implementation challenges are discussed. To this end the main implementation issues related to consumer incentives infrastructure and recommendations are also reported.
Analysis of Hydrogen Production Costs in Steam-Methane Reforming Considering Integration with Electrolysis and CO2 Capture
Aug 2022
Publication
Global hydrogen production is dominated by the Steam-Methane Reforming (SMR) route which is associated with significant CO2 emissions and excess process heat. Two paths to lower specific CO2 emissions in SMR hydrogen production are investigated: (1) the integration of CO2 capture and compression for subsequent sequestration or utilization and (2) the integration of electrolysis for increased hydrogen production. In both cases the excess process heat is utilized to drive the emissions reduction options. Four different design regimes for integration of carbon capture and compression with the SMR process are identified. Techno-economic analyses are performed to study the effect of CO2 mitigation on hydrogen production costs compared to grey hydrogen production without emissions mitigation options. Integration with electrolysis is shown to be less attractive compared to the proposed heat and power integration schemes for the SMR process with CO2 capture and compression for subsequent sequestration or utilization which can reduce emissions by 90% with hydrogen production costs increasing only moderately by 13%. This blue hydrogen production is compared in terms of costs and emissions against the emerging alternative production by electrolysis in the context of renewable and fossil electricity generation and electricity mixes while considering life-cycle emissions.
A Review of Recent Advances in Water-gas Shift Catalysis for Hydrogen Production
Aug 2020
Publication
The water-gas shift reaction (WGSR) is an intermediate reaction in hydrocarbon reforming processes considered one of the most important reactions for hydrogen production. Here water and carbon monoxide molecules react to generate hydrogen and carbon dioxide. From the thermodynamics aspect pressure does not have an impact whereas low-temperature conditions are suitable for high hydrogen selectivity because of the exothermic nature of the WGSR reaction. The performance of this reaction can be greatly enhanced in the presence of suitable catalysts. The WGSR has been widely studied due do the industrial significance resulting in a good volume of open literature on reactor design and catalyst development. A number of review articles are also available on the fundamental aspects of the reaction including thermodynamic analysis reaction condition optimization catalyst design and deactivation studies. Over the past few decades there has been an exceptional development of the catalyst characterization techniques such as near-ambient x-ray photoelectron spectroscopy (NA-XPS) and in situ transmission electron microscopy (in situ TEM) providing atomic level information in presence of gases at elevated temperatures. These tools have been crucial in providing nanoscale structural details and the dynamic changes during reaction conditions which were not available before. The present review is an attempt to gather the recent progress particularly in the past decade on the catalysts for low-temperature WGSR and their structural properties leading to new insights that can be used in the future for effective catalyst design. For the ease of reading the article is divided into subsections based on metals (noble and transition metal) oxide supports and carbon-based supports. It also aims at providing a brief overview of the reaction conditions by including a table of catalysts with synthesis methods reaction conditions and key observations for a quick reference. Based on our study of literature on noble metal catalysts atomic Pt substituted Mn3O4 shows almost full CO conversion at 260 °C itself with zero methane formation. In the case of transition metals group the inclusion of Cu in catalytic system seems to influence the CO conversion significantly and in some cases with CO conversion improvement by 65% at 280 °C. Moreover mesoporous ceria as a catalyst support shows great potential with reports of full CO conversion at a low temperature of 175 °C.
Improved Engine Performance and Significantly Reduced Greenhouse Gas Emissions by Fumigating Hydrogen in a Diesel Engine
Oct 2022
Publication
A thermodynamic model was developed for combustion performance and emissions with a reference diesel fuel a 10 vol% methanol blend with 90 vol% diesel a 10 vol% ethanol with 90 vol% diesel and a 4% hydrogen fumigating in the inlet port along with diesel direct injection. The diesel and two alcohol blends (10% methanol–90% diesel and 10% ethanol–90% diesel) was directly injected into the cylinder while hydrogen was fumigated at the inlet port. The model was developed by commercial GT-Suite software. Besides engine performance exergy and energy rates were estimated for the four fuels. Among the four fuels/fuel blends hydrogen fuel (4% fumigated hydrogen) shows the best performance in terms of exergy energy rates specific fuel consumption power and greenhouse gas emissions. Regarding greenhouse gases carbon dioxide was only considered in this investigation as it contributes to a significant detrimental effect on environmental pollution.
Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials
Aug 2015
Publication
Overview of advances in the technology of solid state hydrogen storage methods applying different kinds of novel materials is provided. Metallic and intermetallic hydrides complex chemical hydride nanostructured carbon materials metal-doped carbon nanotubes metal-organic frameworks (MOFs) metal-doped metal organic frameworks covalent organic frameworks (COFs) and clathrates solid state hydrogen storage techniques are discussed. The studies on their hydrogen storage properties are in progress towards positive direction. Nevertheless it is believed that these novel materials will offer far-reaching solutions to the onboard hydrogen storage problems in near future. The review begins with the deficiencies of current energy economy and discusses the various aspects of implementation of hydrogen energy based economy.
A Review of Cleaner Alternative Fuels for Maritime Transportation
Apr 2021
Publication
Environmental regulations have always been an essential component in the natural gas supply chain with recent and greater emphasis on shipping operations. Recently more stringent regulations have been imposed by the International Maritime Organization on global maritime shipping operations. This review explores the challenges and opportunities associated with substituting heavy fuel oils used for maritime transportation with relatively cleaner fuels. First the review considers the feasibility and environmental dimensions of different bunker fuels including liquefied natural gas hydrogen and ammonia. Also the operational viability and optimal conditions for these fuels are examined. Secondly the review considers the entire supply chain with an emphasis on how liquefied natural gas exporters can establish synergies across the supply chain to also deliver the end-product required by customers instead of delivering only liquefied natural gas. Finally measures that can support ship operators to comply with environmental regulations are suggested. The outcomes of this review supports the notion that the demand for alternative fuels will continue to increase as the transportation sector moves towards integrating cleaner fuels to comply with increasing environmental regulations.
Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle
Apr 2016
Publication
The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based) step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar) step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH) is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle) and solar-to-fuel energy conversion efficiency (ηsolar´to´fuel) attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar´to´fuel both increase with decreasing TH due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance in the case where TH = 2280 K ηcycle = 24.4% and ηsolar´to´fuel = 29.5% (without heat recuperation) while ηcycle = 31.3% and ηsolar´to´fuel = 37.8% (with 40% heat recuperation).
Exergetic Sustainability Comparison of Turquoise Hydrogen Conversion to Low-carbon Fuels
Nov 2022
Publication
Turquoise hydrogen is produced from methane cracking a cleaner alternative to steam methane reforming. This study looks at two proposed systems based on solar methane cracking for low-carbon fuel production. The systems utilize different pathways to convert the hydrogen into a suitable form for transportation and utilize the carbon solid by-product. A direct carbon fuel cell is integrated to utilize the carbon and capture the CO2 emissions. The CO2 generated is utilized for fuel production using CO2 hydrogenation or co-electrolysis. An advanced exergetic analysis is conducted on these systems using Aspen plus simulations of the process. The exergetic efficiency waste exergy ratio exergy destruction ratio exergy recoverability ratio environmental effect factor and the exergetic sustainability index were determined for each system and the subsystems. Solar methane cracking was found to have an environmental effect factor of 0.08 and an exergetic sustainability index of 12.27.
Prospects and Challenges of Green Hydrogen Economy via Multi-Sector Global Symbiosis in Qatar
Jan 2021
Publication
Low carbon hydrogen can be an excellent source of clean energy which can combat global climate change and poor air quality. Hydrogen based economy can be a great opportunity for a country like Qatar to decarbonize its multiple sectors including transportation shipping global energy markets and industrial sectors. However there are still some barriers to the realization of a hydrogen-based economy which includes large scale hydrogen production cost infrastructure investments bulk storage transport & distribution safety consideration and matching supply-demand uncertainties. This paper highlights how the aforementioned challenges can be handled strategically through a multi-sector industrial-urban symbiosis for the hydrogen supply chain implementation. Such symbiosis can enhance the mutual relationship between diverse industries and urban planning by exploring varied scopes of multi-purpose hydrogen usage (i.e. clean energy source as a safer carrier industrial feedstock and intermittent products vehicle and shipping fuel and international energy trading etc.) both in local and international markets. It enables individual entities and businesses to participate in the physical exchange of materials by-products energy and water with strategic advantages for all participants. Besides waste/by-product exchanges several different kinds of synergies are also possible such as the sharing of resources and shared facilities. The diversified economic base regional proximity and the facilitation of rules strategies and policies may be the key drivers that support the creation of a multi-sector hydrogen supply chain in Qatar.
Strategic Optimization and Design of Cost-effective and Sustainable Hydrogen Supply Chain Networks - Qatar Case Study
Jan 2025
Publication
This study introduces a multi-period integrated optimization model for designing a strategic hydrogen supply chain (HSC) network concentrating on the post-production stages of conditioning storage transportation and post-conditioning. Qatar serves as the case study for evaluating three HSC pathways—ammonia (as a hydrogen carrier) liquefied hydrogen and compressed hydrogen—across pre-conditioning storage shipping and postconditioning stages. The optimization framework spans a 20-year plan supporting strategic long-term hydrogen export infrastructure planning. Economic and environmental factors are incorporated to analyze HSC performance under various scenarios accounting for realistic constraints such as investment limits and emission caps. Key findings reveal trade-offs between pathways and design strategies that must account for balancing costs with environmental impacts. Results indicate that the ammonia pathway is preferred in scenarios without emission penalties but becomes less favorable with increased penalties shifting preference toward the liquified hydrogen pathway. With stringent emission limits short- and mid-range markets are prioritized underscoring the importance of emissions-conscious strategies. This study demonstrates the utility of optimi zation tools in balancing economic and environmental objectives offering policymakers and industry stake holders a robust framework for developing sustainable and efficient HSC networks.
Thermodynamic Evaluation of Solar Energy-based Methanol and Hydrogen Production and Power Generation Pathways: A Comparative Study
Sep 2024
Publication
This work presents a comparative novel evaluation of two distinct fuels methanol and hydrogen production and power generation routes via fuel cells. The first route includes the methanol production from direct partial oxidation of methane to methanol where the methanol is condensed stored and sent to a direct methanol fuel cell. The second route is hydrogen production from solar methane cracking (named as turquoise hydrogen) where heat is supplied from concentrated solar power and hydrogen is stored and directed to a hydrogen fuel cell. This study aims to provide insights into these fuel's production conditions storage methods energy and exergy efficiencies. The proposed system is simulated using the Engineering Equation Solver software and a thermodynamic analysis of the entire system including all the equipment and process streams is performed. The methanol and hydrogen route's overall energy and exergy efficiencies are 39.75% 38.35% 35.84% and 34.58% respectively. The highest exergy destruction rate of 1605 kW is observed for the partial oxidation of methane to methanol. The methanol and hydrogen routes generate 32.087 MWh and 11.582 MWh of electricity for 16-hour of fuel cell operation respectively. Sensitivity analysis has been performed to observe the effects of different parameters such as operating temperature and mass flow rate of fuels on the electricity production and energy efficiencies of the systems.
A Systematic Review: The Role of Emerging Carbon Capture and Conversion Rechnologies for Energy Transition to Clean Hydrogen
Feb 2024
Publication
The exploitation of fossil fuels in various sectors such as power and heat generation and the transportation sector has been the primary source of greenhouse gas (GHG) emissions which are the main contributors to global warming. Qatar's oil and gas sector notably contributes to CO2 emissions accounting for half of the total emissions. Globally it is essential to transition into cleaner fossil fuel production to achieve carbon neutrality on a global scale. In this paper we focus on clean hydrogen considering carbon capture to make hydrogen a viable low carbon energy alternative for the transition to clean energy. This paper systematically reviews emerging technologies in carbon capture and conversion (CCC). First the road map stated by the Intergovernmental Panel on Climate Change (IPCC) to reach carbon neutrality is discussed along with pathways to decarbonize the energy sector in Qatar. Next emerging CO2 removal technologies including physical absorption using ionic liquids chemical looping and cryogenics are explored and analyzed regarding their advancement and limitations CO2 purity scalability and prospects. The advantages limitations and efficiency of the CO2 conversion technology to value-added products are grouped into chemical (plasma catalysis electrochemical and photochemical) and biological (photosynthetic and non-photosynthetic). The paper concludes by analyzing pathways to decarbonize the energy sector in Qatar via coupling CCC technologies for low-carbon hydrogen highlighting the challenges and research gaps.
A Comprehensive Review of the State-of-the-art of Proton Exchange Membrane Water Electrolysis
Jul 2024
Publication
Hydrogen has attracted growing research interest due to its exceptionally high energy per mass content and being a clean energy carrier unlike the widely used hydrocarbon fuels. With the possibility of long-term energy storage and re-electrification hydrogen promises to promote the effective utilization of renewable and sustainable energy resources. Clean hydrogen can be produced through a renewable-powered water electrolysis process. Although alkaline water electrolysis is currently the mature and commercially available electrolysis technology for hydrogen production it has several shortcomings that hinder its integration with intermittent and fluctuating renewable energy sources. The proton exchange membrane water electrolysis (PEMWE) technology has been developed to offer high voltage efficiencies at high current densities. Besides PEMWE cells are characterized by a fast system response to fluctuating renewable power enabling operations at broader partial power load ranges while consistently delivering high-purity hydrogen with low ohmic losses. Recently much effort has been devoted to improving the efficiency performance durability and economy of PEMWE cells. The research activities in this context include investigations of different cell component materials protective coatings and material characterizations as well as the synthesis and analysis of new electrocatalysts for enhanced electrochemical activity and stability with minimized use of noble metals. Further many modeling studies have been reported to analyze cell performance considering cell electrochemistry overvoltage and thermodynamics. Thus it is imperative to review and compile recent research studies covering multiple aspects of PEMWE cells in one literature to present advancements and limitations of this field. This article offers a comprehensive review of the state-of-the-art of PEMWE cells. It compiles recent research on each PEMWE cell component and discusses how the characteristics of these components affect the overall cell performance. In addition the electrochemical activity and stability of various catalyst materials are reviewed. Further the thermodynamics and electrochemistry of electrolytic water splitting are described and inherent cell overvoltage are elucidated. The available literature on PEMWE cell modeling aimed at analyzing the performance of PEMWE cells is compiled. Overall this article provides the advancements in cell components materials electrocatalysts and modeling research for PEMWE to promote the effective utilization of renewable but intermittent and fluctuating energy in the pursuit of a seamless transition to clean energy.
Hydrogen Underground Storage in Silica-Clay Shales: Experimental and Density Functional Theory Investigation
Nov 2023
Publication
In the context of reducing the global emissions of greenhouse gaseshydrogen (H2) has become an attractive alternative to substitute the current fossil fuels.However its properties seasonal fluctuations and the lack of extended energy stabilitymade it extremely difficult to be economically and safely stored for a long term in recentyears. Therefore this paper investigated the potential of shale gas reservoirs (rich andlow clay−rich silica minerals) to store hydrogen upon demand. Density functional theorymolecular simulation was employed to explore hydrogen adsorption on the silica−kaolinite interface and the physisorption of hydrogen on the shale surface is revealed.This is supported by low adsorption energies on different adsorption configurations(0.01 to −0.21 eV) and the lack of charge transfer showed by Bader charge analysis.Moreover the experimental investigation was employed to consider the temperature(50−100 °C) and pressure (up to 20 bar) impact on hydrogen uptake on Midra shalespecifically palygorskite (100%) which is rich in silicate clay minerals (58.83% SiO2).The results showed that these formations do not chemically or physically maintainhydrogen; hence hydrogen can be reversibly stored. The results highlight the potential of shale gas reservoirs to store hydrogen asno hydrogen is adsorbed on the shale surface so there will be no hydrogen loss and no adverse effect on the shale’s structuralintegrity and it can be safely stored in shale reservoirs and recovered upon demand.
Efficient Solar-powered PEM Electrolysis for Sustainable Hydrogen Production: An Integrated Approach
Apr 2024
Publication
The coupling of photovoltaics (PVs) and PEM water electrolyzers (PEMWE) is a promising method for generating hydrogen from a renewable energy source. While direct coupling is feasible the variability of solar radiation presents challenges in efcient sizing. This study proposes an innovative energy management strategy that ensures a stable hydrogen production rate even with fuctuating solar irradiation. By integrating battery-assisted hydrogen production this approach allows for decentralized grid-independent renewable energy systems mitigating instability from PV intermittency. The system utilizes electrochemical storage to absorb excess energy during periods of low or very high irradiation which falls outside the electrolyzer’s optimal power input range. This stored energy then supports the PV system ensuring the electrolyzer operates near its nominal capacity and optimizing its lifetime. The system achieves an efciency of 7.78 to 8.81% at low current density region and 6.6% at high current density in converting solar energy into hydrogen.
Outlook and Challenges for Hydrogen Storage in Nanoporous Materials
Feb 2016
Publication
Darren P. Broom,
Colin Webb,
Katherine Hurst,
P. A. Parilla,
Thomas Gennett,
C. M. Brown,
Renju Zacharia,
E. Tylianakis,
E. Klontzas,
George E. Froudakis,
Th. A. Steriotis,
Pantelis N. Trikalitis,
Donald L. Anton,
B. Hardy,
David A. Tamburello,
Claudio Corgnale,
B. A. van Hassel,
D. Cossement,
Richard Chahine and
Michael Hirscher
Considerable progress has been made recently in the use of nanoporous materials for hydrogen storage. In this article the current status of the field and future challenges are discussed ranging from important open fundamental questions such as the density and volume of the adsorbed phase and its relationship to overall storage capacity to the development of new functional materials and complete storage system design. With regard to fundamentals the use of neutron scattering to study adsorbed H2 suitable adsorption isotherm equations and the accurate computational modelling and simulation of H2 adsorption are discussed. The new materials covered include flexible metal–organic frameworks core–shell materials and porous organic cage compounds. The article concludes with a discussion of the experimental investigation of real adsorptive hydrogen storage tanks the improvement in the thermal conductivity of storage beds and new storage system concepts and designs.
Harnessing Enhanced Solar Efficiency for Green Hydrogen Production: A Comparative Analysis of PV and PV-T Systems
Dec 2024
Publication
Green hydrogen a critical element in the shift towards sustainable energy is traditionally produced by electrolysis powered by solar photovoltaic (PV) systems. This research explores the potential of underexploited photovoltaic thermal (PV-T) systems for efficient green hydrogen generation. This paper compares this advanced technology performance and economic viability against conventional PV setups. This paper uses TRNSYS simulation software to analyze two distinct solar-based hydrogen production configurations – PV and PV-T – across diverse climatic conditions in Doha Tunis and Stuttgart. The paper’s findings indicate that PV-T significantly outperforms PV in hydrogen generation across diverse climates (Doha Tunis Stuttgart). For instance in Doha PV-T systems increase hydrogen output by 78% in Tunis by 59% and in Stuttgart by 25%. An economic assessment reveals PV panels as the most cost-effective option with hydrogen production costs ranging from $4.92/kg to $9.66/kg across the studied locations. For PV-T collectors the hydrogen cost range from $6.66/kg to $16.80/kg across the studied locations. Nevertheless this research highlights the potential of PV-T technology to enhance the efficiency and economic viability of green hydrogen production. These findings offer valuable insights for policymakers investors and researchers pursuing more efficient solutions for sustainable energy.
Energy Transition Strategies in the Gulf Cooperation Council Countries
Sep 2024
Publication
During the last two decades Gulf Cooperation Council (GCC) countries have seen their population economies and energy production growing steeply with a substantial increase in Gross Domestic Product. As a result of this growth GCC consumption-based carbon dioxide (CO2) emissions increased from 540.79 Metric tons of CO2 equivalent (MtCO2) in 2003 to 1090.93 MtCO2 in 2020. The assumptions and strategies that have driven energy production in the past are now being recast to achieve a more sustainable economic development. The aim of this study is to review and analyze ongoing energy transition strategies that characterize this change to identify challenges and opportunities for bolstering the effectiveness of current strategic orientations. The ensuing analysis shows that since COP26 GCC countries have been pursuing a transition away from carbon-based energy policies largely characterized by the adoption of solar PV with other emerging technologies including energy storage carbon capture and hydrogen generation and storage. While as of 2022 renewable energy adoption in the GCC only represented 0.15 % of global installed capacity GCC countries are making strong efforts to achieve their declared 2030 energy targets that average about 26 % with peaks of 50 % in Saudi Arabia and 30 % in the UAE and Oman. With reference to solar energy plans are afoot to add 42.1 GW of solar photovoltaics and concentrated solar power which will increase 8-fold the current installed renewable capacity (5.1 GW). At the same time oil and gas production rates remain stable and fossil fuel subsidies have grown in the last few years. Also there is a marked preference for the deployment of CCUS and utility-scale solar energy technology vs. distributed solar energy energy efficiency and nature-based solutions. The pursuit of energy transition in the GCC will require increased efforts in the latter and other overlooked strategic endeavors to achieve a more balanced portfolio of sustainable energy solutions with stronger emphasis on energy efficiency (as long as rebound effects are mitigated) and nature-based solutions. Increased efforts are also needed in promoting governance practices aimed to institutionalize regulatory frameworks incentives and cooperation activities that promote the reduction of fossil fuel subsidies and the transition away from fossil fuels.
Simulation and Environmental Sustainability Assessment of an Integrated LNG-Power Cycle-Electrolyzer-Methanol Process for Clean Energy Generation
May 2025
Publication
The growing demand for clean energy and sustainable industrial processes has driven interest in integrated energy systems that optimize resource utilization while minimizing environmental impacts. This study presents the simulation and environmental sustainability assessment of an integrated process combining liquefied natural gas (LNG) Allam–Fetvedt cycle solid oxide electrolysis’ system and methanol synthesis to produce clean energy. The proposed system enhances overall efficiency and sustainability by utilizing the Allam–Fetvedt cycle to generate power while capturing CO2 which is then used in the manufacture of syngas and hydrogen by the electrolysis of water and CO2. Syngas is subsequently transformed into methanol a viable alternative fuel characterized by lowcarbon emissions. A comprehensive process simulation is conducted to evaluate energy efficiency material flows and system performance. The sustainability assessment focuses on environmental impact indicators including carbon footprint reduction energy efficiency improvements and resource optimization. The results demonstrate that the integrated system significantly reduces CO2 emissions while maximizing energy recovery making it a promising approach for decarbonized energy production. In this study the integrated process including the ASU power cycle electrolyzers methanol production units and LNG unit results in carbon emissions of 0.29 kg CO2 per kg of LNG produced which is very close to the literature-reported lower limit even though it also has methanol production. On the other hand when the identical process is assessed solely for methanol production (without the LNG unit) it attains net-zero carbon emissions. Despite the incorporation of high-energy electrolyzer systems the overall energy demand of the proposed integrated process remains comparable to that of existing conventional technologies with high emission outputs.
Design and Simulation of an Integrated Process for the Co-Production of Power, Hydrogen, and DME by Using an Electrolyzer’s System
May 2025
Publication
The increasing global demand for clean energy and sustainable industrial processes necessitates innovative approaches to energy production and chemical synthesis. This study proposed and simulated an innovative integrated system for the co-production of power hydrogen and dimethyl ether (DME) combining the high-efficiency Allam– Fetvedt cycle with co-electrolysis and indirect DME synthesis. The Allam–Fetvedt cycle generated electricity while capturing CO2 which along with water was used in solid oxide electrolyzers (SOEs) to produce syngas via co-electrolysis. The resulting syngas was converted to methanol and subsequently to DME. Aspen HYSYS was used to model and simulate the process and heat/mass integration strategies were implemented to reduce energy demand and optimize resource utilization. The proposed integrated process enabled an annual production of 980021 metric tons of DME 189435 metric tons of hydrogen and 7698.27 metric tons of methanol. The energy efficiency of the Allam–Fetvedt cycle reached 55% and heat integration reduced the system’s net energy demand by 14.22%. Despite the high energy needs of the electrolyzer system (81.28% of net energy) the overall energy requirement remained competitive with conventional methods. Carbon emissions per kilogram of DME were reduced from 1.16 to 0.77 kg CO2 through heat integration and can be further minimized to 0.0308 kg CO2/kg DME (near zero) with renewable electrification. Results demonstrated that 96% of CO2 was recycled within the Allam–Fetvedt cycle and the rest (the 4% of CO2) was captured and converted to syngas achieving net-zero carbon emissions. This work presents a scalable and sustainable pathway for integrated clean energy and chemical production advancing toward industrial net-zero targets.
Thermo-economic Analysis of a Novel P2X Polygeneration System for Hydrogen, Ammonia, and Methanol Production with Near-zero Emissions
Jun 2025
Publication
This paper presents a comprehensive thermo-economic analysis of a novel Power-to-X (P2X) polygeneration system designed for the production of hydrogen ammonia and methanol with near-zero CO2 emissions. The system integrates an air separation unit (ASU) a direct oxy-combustor (DOC) powered by natural gas combined with a supercritical carbon dioxide (sCO2) power cycle water electrolyzer (WE) a Haber-Bosch process (HBP) and a methanol production unit (MPU). The system is investigated in four configurations: ASU + DOC-sCO2 (S1) ASU + DOC-sCO2 + WE (S2) ASU + DOC-sCO2 + WE + HBP (S3) and ASU + DOC-sCO2 + WE + HBP + MPU (S4) each contributing to improve energy efficiency and reduced emissions. Simulation results show that the overall system efficiency reaches 56 % improving from 45 % to 56 % across different configurations. The system’s levelized cost of hydrogen (LCOH) decreases significantly from $1.70/kg to $0.80/kg and the levelized cost of electricity (LCOE) decreases from 4.30 ¢/kWh to 3.30 ¢/kWh. CO2 emissions are reduced from 200 gCO2/ MWe to 145 gCO2/MWe with the CO2 reduction rate improving from 89 % to 94 %. These results demonstrate the economic viability and environmental sustainability of the proposed P2X system paving the way for industrial decarbonization and large-scale deployment in future energy infrastructures.
Sustainable-green Hydrogen Production through Integrating Electrolysis, Water Treatment and Solar Energy
Jul 2025
Publication
The growing interest in hydrogen as an alternative fuel has stimulated research into methods that enable the global shift to sustainable green energy. One promising pathway is the production of green hydrogen via electrolysis particularly when coupled with renewable energy sources like solar power. Integrating a proton exchange membrane (PEM) electrolyzer with solar energy can aid this transition. Using treated sewage effluent instead of deionized water can make the process more economical and sustainable. Thus the objective of this research is to demonstrate that an integrated electrolysis-water treatmentsolar energy system can be a viable candidate for producing green hydrogen in a sustainable manner. This study assesses different combinations of water pretreatment (RO and UF) and solar energy input (PV ST and PTC) evaluating their techno-economic feasibility efficiencies environmental impact and sustainability. The study shows that CSP scenarios have the highest CAPEX roughly fourfold that of PV cases and sevenfold that of national grid cases. Using solar energy sources like PV ST and PTC results in high material efficiency (94.87%) and environmental efficiency (98.34%) while also reducing CO2 emissions by approximately 88% compared to the national grid. The process’s economic sustainability averages 57% but it could reach 90% if hydrogen production costs fall to $2.08-$2.27 per kg. The outcome of this study is to provide a green hydrogen production pathway that is technically feasible environmentally sustainable and economically viable.
Thermo-economic Analysis of Blending Hydrogen into Natural Gas Pipeline with Gaseous Inhibitors for Sustainable Hydrogen Transportation
Apr 2025
Publication
Hydrogen transportation through a new pipeline poses significant economic barriers and blending hydrogen into existing natural gas pipelines offers promising alternative. However hydrogen’s low energy density and potential material compatibility challenges necessitate modifications to existing infrastructure. This study conducts a comprehensive thermo-economic analysis of natural gas and hydrogen mixtures with and without gaseous inhibitors evaluating the impact on thermophysical properties (Wobbe index density viscosity energy density higher and lower heating values) compression power economic feasibility and storage volume requirement. A pipeline transmission model was developed in Aspen HYSYS to assess these properties considering major and minor infrastructure modifications. The findings suggest that the addition of 5% carbon monoxide and 2% ethylene as gaseous inhibitors in maintaining desired properties ensuring compatibility with existing infrastructure and operational processes. The findings also indicate that blending 30% hydrogen increases storage volume by 30–55% while reducing higher and lower heating values by 20–25%. However the addition of 5% carbon monoxide and 2% ethylene improves the pipeline performance and reduces the carbon emissions by 23–26% supporting the transition to low-carbon energy systems. The results suggest that hydrogen blending is viable under specific infrastructure modifications providing critical insights for optimizing pipeline repurposing for sustainable hydrogen transportation.
Exploring the Barriers to Hydrogen Fuel Cell Vehicles Adoption in the Gulf-Europe Corridor: A Fuzzy AHP and ISM Analysis
Aug 2025
Publication
The adoption of hydrogen fuel cell vehicles (HFCVs) is essential for achieving sustainable low-carbon transportation but many barriers hinder this transition. Therefore this study aims to identify categorize and prioritize these barriers in the context of the Gulf-Europe corridor also known as the Iraq Development Road Project (DRP). To achieve this we adopt a two-stage methodological framework that integrates the Fuzzy Analytical Hierarchy Process (Fuzzy AHP) to quantify the relative importance of thirty secondary barriers and Interpretive Structural Modeling (ISM) to explore the interdependencies among the top ten. The Fuzzy AHP results highlight technological economic and infrastructure-related barriers as the most critical primary barriers. The ISM analysis further reveals that three barriers lack of hydrogen production hubs limited hydrogen transport options and hydrogen storage and transportation are independent. Six barriers fuel cell efficiency and durability hydrogen production and distribution costs vehicle range and refueling time infrastructure investment refueling station compatibility issues and hydrogen purity requirements are classified as linkage barriers. One barrier high initial vehicle cost is found to be dependent. To accelerate HFCVs adoption we recommend strengthening hydrogen infrastructure fostering technological innovation reducing costs through targeted incentives and enhancing policy coordination among stakeholders and policymakers. This study contributes to literature by offering a comprehensive understanding of the adoption barriers and providing actionable insights to support the development of more effective strategies. Notably it uniquely addresses social logistical and technological barriers alongside geographic barriers that have been largely overlooked in previous studies.
A Systematic Review on Hydrogen Production via Hydrochar-based Gasification
Aug 2025
Publication
Hydrogen (H2) yields from various gasification and hydrothermal processes demonstrate significant variability depending on feedstock catalysts and process parameters. This systematic review explores hydrogen production through hydrochar-based gasification technologies focusing on the unique properties of hydrochar derived from biomass. Known for its ability to enhance syngas production especially hydrogen hydrochar’s porous structure high surface area and active catalytic sites significantly improve syngas quality and hydrogen yield. Studies show that supercritical water gasification (SCWG) of almond shells with hydrochars yielded up to 11.63 mmol/g while catalytic subcritical and SCWG of waste tires reached 19.7 mmol/g. Hydrothermal carbonization (HTC) coupled with gasification yields as high as 76.7 g H2/kg biochar for sewage sludge hydrochar with processes like anaerobic digestion and HTC producing 1278 mL/g from hemp hurd hydrochar. Key aspects such as the catalytic influence of hydrochar the role of additives and co-catalysts and optimization of gasification parameters including temperature pressure and equivalence ratios are explored. The review also delves into hydrochar preparation advancements such as alkali and alkaline earth metals (AAEMs) incorporation and highlights hydrochar’s role in reducing tar formation enhancing H2/CO ratios and stabilizing syngas heating value.
Wind-powered Hydrogen Refueling Station with Energy Recovery for Green Mobility in Sustainable Cities
Jan 2025
Publication
This study presents the conceptual design and evaluation of an HRS for light-duty FCEVs. The proposed system integrates wind turbines a water electrolyzer three-stage hydrogen compressor heat recovery and storage a two-stage Organic Rankine Cycle (TS-ORC) hydrogen storage tanks a Vapor Compression Refrigeration Cycle (VCRC) and a hydrogen dispenser. Waste heat from the hydrogen compression process is harnessed to power the TS-ORC where the first stage drives the VCRC and the second stage generates additional electricity. A comprehensive assessment of the system confirmed the system's compliance with the principles of thermodynamics. The results indicate an overall system efficiency of 25.4% and the wind turbines alone achieve 46.21% efficiency. The overall exergy destruction rate of the system is computed to be 2120 kW and the main exergy destruction occurs in wind turbines and water electrolyzer. The first and second stages of the ORC exhibit efficiencies of 14.45% and 6.05% respectively while the VCRC yields a Coefficient of Performance (COP) of 1.24. The specific energy consumption for electrolytic hydrogen production compression and pre-cooling are calculated as 58.83 1.99 and 0.29 kWh/kg respectively. The hydrogen dispenser fills an onboard hydrogen storage tank with a 4 kg capacity at 700 bar in 5.5 min.
An Integrated–Intensified Adsorptive-Membrane Reactor Process for Simultaneous Carbon Capture and Hydrogen Production: Multi-Scale Modeling and Simulation
Aug 2025
Publication
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology which is highly successful in mitigating carbon emissions has increased. On the other hand hydrogen is an important energy carrier for storing and transporting energy and technologies that rely on hydrogen have become increasingly promising as the world moves toward a more environmentally friendly approach. Nevertheless the integration of CCS technologies into power production processes is a significant challenge requiring the enhancement of the combined power generation–CCS process. In recent years there has been a growing interest in process intensification (PI) which aims to create smaller cleaner and more energy efficient processes. The goal of this research is to demonstrate the process intensification potential and to model and simulate a hybrid integrated–intensified adsorptive-membrane reactor process for simultaneous carbon capture and hydrogen production. A comprehensive multi-scale multi-phase dynamic computational fluid dynamics (CFD)-based process model is constructed which quantifies the various underlying complex physicochemical phenomena occurring at the pellet and reactor levels. Model simulations are then performed to investigate the impact of dimensionless variables on overall system performance and gain a better understanding of this cyclic reaction/separation process. The results indicate that the hybrid system shows a steady-state cyclic behavior to ensure flexible operating time. A sustainability evaluation was conducted to illustrate the sustainability improvement in the proposed process compared to the traditional design. The results indicate that the integrated–intensified adsorptive-membrane reactor technology enhances sustainability by 35% to 138% for the chosen 21 indicators. The average enhancement in sustainability is almost 57% signifying that the sustainability evaluation reveals significant benefits of the integrated–intensified adsorptive-membrane reactor process compared to HTSR + LTSR.
Look-ahead Scheduling of Energy-Water Nexus Integrated with Power2X Conversion Technologies under Multiple Uncertainties
Aug 2023
Publication
Co-optimizing energy and water resources in a microgrid can increase efficiency and improve economic performance. Energy-water storage (EWS) devices are crucial components of a high-efficient energy-water microgrid (EWMG). The state of charge (SoC) at the end of the first day of operation is one of the most significant variables in EWS devices since it is used as a parameter to indicate the starting SoC for the second day which influences the operating cost for the second day. Hence this paper examines the benefits and applicability of a lookahead optimization strategy for an EWMG integrated with multi-type energy conversion technologies and multienergy demand response to supply various energy-water demands related to electric/hydrogen vehicles and commercial/residential buildings with the lowest cost for two consecutive days. In addition a hybrid info-gap/robust optimization technique is applied to cover uncertainties in photovoltaic power and electricity prices as a tri-level optimization framework without generating scenarios and using the probability distribution functions. Duality theory is also used to convert the problem into a single-level MILP so that it can be solved by CPLEX. According to the findings the implemented energy-water storage systems and look-ahead strategy accounted for respectively 4.03% and 0.43% reduction in the total cost.
Developing Hydrogen Strategies for Fossil Fuel Exporting Countries Under Uncertainty: The Case of Qatar
Mar 2025
Publication
The economies of fossil fuel exporters are threatened by global efforts to transition away from using unabated fossil fuels. Producing clean hydrogen for export or domestic use in manufacturing provides a potentially major opportunity to continue exploiting their fossil fuel resources. However the substantial uncertainties affecting the future of clean hydrogen make developing hydrogen strategies complex. This paper characterizes such uncertainties and conducts an initial assessment of possible investment risks and critical decisions associated with different strategies in the case of Qatar a leading exporter of natural gas. We find that strategies mostly focused on using clean hydrogen domestically to produce clean commodities are relatively low risk; inversely becoming a leading exporter of clean hydrogen substantially increases investment risks. Also irrespective of the strategy higher investment is required in the early years suggesting that once a strategy is chosen changing path may prove difficult.
Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models
Nov 2023
Publication
Natural gas is the most growing fossil fuel due to its environmental advantages. For the economical transportation of natural gas to distant markets physical (i.e. liquefaction and compression) or chemical (i.e. direct and indirect) monetisation options must be considered to reduce volume and meet the demand of different markets. Planning natural gas supply chains is a complex problem in today’s turbulent markets especially considering the uncertainties associated with final market demand and competition with emerging renewable and hydrogen energies. This review study evaluates the latest research on mathematical programming (i.e. MILP and MINLP) as a decisionmaking tool for designing and planning natural gas supply chains under different planning horizons. The first part of this study assesses the status of existing natural gas infrastructures by addressing readily available natural monetisation options quantitative tools for selecting monetisation options and single-state and multistate natural gas supply chain optimisation models. The second part investigates hydrogen as a potential energy carrier for integration with natural gas supply chains carbon capture utilisation and storage technologies. This integration is foreseen to decarbonise systems diversify the product portfolio and fill the gap between current supply chains and the future market need of cleaner energy commodities. Since natural gas markets are turbulent and hydrogen energy has the potential to replace fossil fuels in the future addressing stochastic conditions and demand uncertainty is vital to hedge against risks through designing a responsive supply chain in the project’s early design stages. Hence hydrogen supply chain optimisation studies and the latest works on hydrogen–natural gas supply chain optimisation were reviewed under deterministic and stochastic conditions. Only quantitative mathematical models for supply chain optimisation including linear and nonlinear programming models were considered in this study to evaluate the effectiveness of each proposed approach.
Alternative Fuels in Sustainable Logistics—Applications, Challenges, and Solutions
Sep 2024
Publication
Logistics is becoming more cost competitive while customers and regulatory bodies pressure businesses to disclose their carbon footprints creating interest in alternative fuels as a decarbonization strategy. This paper provides a thematic review of the role of alternative fuels in sustainable air land and sea logistics their challenges and potential mitigations. Through an extensive literature survey we determined that biofuels synthetic kerosene natural gas ammonia alcohols hydrogen and electricity are the primary alternative fuels of interest in terms of environmental sustainability and techno-economic feasibility. In air logistics synthetic kerosene from hydrogenated esters and fatty acids is the most promising route due to its high technical maturity although it is limited by biomass sourcing. Electrical vehicles are favorable in road logistics due to cheaper green power and efficient vehicle designs although they are constrained by recharging infrastructure deployment. In sea logistics liquified natural gas is advantageous owing to its supply chain maturity but it is limited by methane slip control and storage requirements. Overall our examination indicates that alternative fuels will play a pivotal role in the logistics networks of the future.
Advances in Photothermal Catalysts for Solar-driven Hydrogen Production
Nov 2024
Publication
Hydrogen is increasingly recognized as a pivotal energy storage solution and a transformative alternative to conventional energy sources. This review summarizes the evolving landscape of global H2 production and consumption markets focusing on the crucial role of photothermal catalysts (PTCs) in driving Hydrogen evolution reactions (HER) particularly with regards to oxide selenide and telluride-based PTCs. Within this exploration the mechanisms of PTCs take center stage elucidating the intricacies of light absorption localized heating and catalytic activation. Essential optimization parameters ranging from temperature and irradiance to catalyst composition and pH are detailed for their paramount role in enhancing catalytic efficiency. This work comprehensively explores photothermal catalysts (PTCs) for hydrogen production by assessing their synthesis techniques and highlighting the current research gaps particularly in optimizing catalytic stability light absorption and scalability. The energy-efficient nature of oxide selenide and telluride-based PTCs makes them prime candidates for sustainable H2 production when compared to traditional materials. By analyzing a range of materials we summarize key performance metrics including hydrogen evolution rates ranging from 0.47 mmolh− 1 g− 1 for Ti@TiO2 to 22.50 mmolh− 1 g− 1 for Mn0.2Cd0.8S/NiSe2. The review concludes with a strategic roadmap aimed at enhancing PTC performance to meet the growing demand for renewable hydrogen as well as a critical literature review addressing challenges and prospects in deploying PTCs.
Hydrogen Energy Systems: Technologies, Trends, and Future Prospects
May 2024
Publication
This review critically examines hydrogen energy systems highlighting their capacity to transform the global energy framework and mitigate climate change. Hydrogen showcases a high energy density of 120 MJ/kg providing a robust alternative to fossil fuels. Adoption at scale could decrease global CO2 emissions by up to 830 million tonnes annually. Despite its potential the expansion of hydrogen technology is curtailed by the inefficiency of current electrolysis methods and high production costs. Presently electrolysis efficiencies range between 60 % and 80 % with hydrogen production costs around $5 per kilogram. Strategic advancements are necessary to reduce these costs below $2 per kilogram and push efficiencies above 80 %. Additionally hydrogen storage poses its own challenges requiring conditions of up to 700 bar or temperatures below −253 °C. These storage conditions necessitate the development of advanced materials and infrastructure improvements. The findings of this study emphasize the need for comprehensive strategic planning and interdisciplinary efforts to maximize hydrogen's role as a sustainable energy source. Enhancing the economic viability and market integration of hydrogen will depend critically on overcoming these technological and infrastructural challenges supported by robust regulatory frameworks. This comprehensive approach will ensure that hydrogen energy can significantly contribute to a sustainable and low-carbon future.
Optimizing Post-production Alternate Hydrogen Supply Chain Pathways - An Integrated TEA and LCA Approach
Dec 2024
Publication
This study presents a comprehensive techno-economic assessment (TEA) of alternative hydrogen supply chain (HSC) pathways with a focus on the conditioning transportation and reconditioning stages. The pathways assessed include compressed hydrogen liquefied hydrogen and ammonia as a hydrogen carrier. A distinctive feature of this study is its consideration of a broad range of operational capacities and transportation distances facility economies of scale and multiple vessel capacities. The TEA is complemented by a life cycle assessment (LCA) to incorporate environmental impacts ensuring a holistic analysis of economic and environmental tradeoffs. The results reveal that the compressed hydrogen pathway is optimal for short distances and low-demand scenarios with levelized costs of hydrogen (LCOH) ranging from $1.11/kg to $6.91/kg. Liquefied hydrogen shows economic competitiveness for medium distances with LCOH between $1.43/kg and $3.84/kg. Ammonia emerges as the most cost-effective for longer distances and higher demand levels with LCOH between $1.61/kg and $3.80/kg. However the LCA analysis revealed that the ammonia pathway incurs higher emissions particularly during the ammonia synthesis and cracking processes making it less promising from an integrated perspective. This integration of LCA results into the TEA framework provides a comprehensive view of each pathway accounting for both economic and environmental factors. This study provides a robust framework for guiding decision-makers in the development of an effective hydrogen supply chain integrating both economic and environmental considerations.
Feasibility Study on the Provision of Electricity and Hydrogen for Domestic Purposes in the South of Iran using Grid-connected Renewable Energy Plants
Dec 2018
Publication
This work presents a feasibility study on the provision of electricity and hydrogen with renewable grid connected and off-the-grid systems for Bandar Abbas City in the south of Iran. The software HOMER Pro® has been used to perform the analysis. A techno-enviro-economic study comparing a hybrid system consisting of the grid/wind turbine and solar cell is done. The wind turbine is analyzed using four types of commercially available vertical axis wind turbines (VAWTs). According to the literature review no similar study has been performed so far on the feasibility of using VAWTs and also no work exists on the use of a hybrid system in the studied area. The results indicated that the lowest price of providing the required hydrogen was $0.496 which was achieved using the main grid. Also the lowest price of the electricity generated was $1.55 which was obtained through using EOLO VAWT in the main grid/wind turbine/solar cell scenario. Also the results suggested that the highest rate of preventing CO2 emission which was also the lowest rate of using the national grid with 3484 kg/year was associated with EOLO wind turbines where only 4% of the required electricity was generated by the national grid.
Numerical Investigation of the Potential of Using Hydrogen as an Alternative Fuel in an Industrial Burner
Dec 2024
Publication
This study investigates hydrogen and hydrogen-methane mixtures as alternative fuels for industrial burners focusing on combustion dynamics flame stability and emissions. CFD simulations in ANSYS Fluent utilized the RANS framework with the k-ε turbulence model and the mixture fraction/PDF approach. Supporting Python scripts and Cantera-based kinetic modeling employing the GRI-Mech 3.0 mechanism and Zeldovich pathways analyzed equivalence ratios (Φ) adiabatic flame temperatures (Tad) and NOx formation mechanisms. Results revealed non-linear temperature trends with a 50 % hydrogen blend yielding the lowest peak temperature (1880 K) and a 75 % hydrogen blend achieving optimal performance balancing peak temperatures (~1900 K) reduced NOx emissions (5.39 × 10-6) and near-zero CO2 emissions (0.137) though flame stability was impacted by rich mixtures. Pure hydrogen combustion produced the highest peak temperature (2080 K) and NOx emissions (3.82 × 10-5) highlighting the need for NOx mitigation strategies. Mass flow rate (MFR) adjustments and excess air variation significantly influenced emissions with a 25 % MFR increase reducing NOx to 2.8 × 10-5 while higher excess air (e.g. 30 %) raised NOx under lean conditions. Statistical analysis identified Φ hydrogen content (H2%) and flame stability as key factors with 50 %–75 % hydrogen blends minimizing emissions and optimizing performance emphasizing hydrogen’s potential with controlled MFR and air adjustments.
A Review on Underground Gas Storage Systems: Natural Gas, Hydrogen and Carbon Sequestration
May 2023
Publication
The concept of underground gas storage is based on the natural capacity of geological formations such as aquifers depleted oil and gas reservoirs and salt caverns to store gases. Underground storage systems can be used to inject and store natural gas (NG) or hydrogen which can be withdrawn for transport to end-users or for use in industrial processes. Geological formations can additionally be used to securely contain harmful gases such as carbon dioxide deep underground by means of carbon capture and sequestration technologies. This paper defines and discusses underground gas storage highlighting commercial and pilot projects and the behavior of different gases (i.e. CH4 H2 and CO2) when stored underground as well as associated modeling investigations. For underground NG/H2 storage the maintenance of optimal subsurface conditions for efficient gas storage necessitates the use of a cushion gas. Cushion gas is injected before the injection of the working gas (NG/H2). The behavior of cushion gas varies based on the type of gas injected. Underground NG and H2 storage systems operate similarly. However compared to NG storage several challenges could be faced during H2 storage due to its low molecular mass. Underground NG storage is widely recognized and utilized as a reference for subsurface H2 storage systems. Furthermore this paper defines and briefly discusses carbon capture and sequestration underground. Most reported studies investigated the operating and cushion gas mixture. The mixture of operating and cushion gas was studied to explore how it could affect the recovered gas quality from the reservoir. The cushion gas was shown to influence the H2 capacity. By understanding and studying the different underground system technologies future directions for better management and successful operation of such systems are thereby highlighted.
It Is Not the Same Green: A Comparative LCA Study of Green Hydrogen Supply Network Pathways
Jul 2024
Publication
Green hydrogen (H2 ) a promising clean energy source garnering increasing attention worldwide can be derived through various pathways resulting in differing levels of greenhouse gas emissions. Notably Green H2 production can utilize different methods such as integrating standard photovoltaic panels thermal photovoltaic or concentrated photovoltaic thermal collectors with electrolyzers. Furthermore it can be conditioned to different states or carriers including liquefied H2 compressed H2 ammonia and methanol and stored and transported using various methods. This paper employs the Life Cycle Assessment methodology to compare 18 different green hydrogen pathways and provide recommendations for greening the hydrogen supply chain. The findings indicate that the production pathway utilizing concentrated photovoltaic thermal panels for electricity generation and hydrogen compression in the conditioning and transportation stages exhibits the lowest environmental impact emitting only 2.67 kg of CO2 per kg of H2 .
Comparative Study of LNG, Liquid Hydrogen ,and Liquid Ammonia Post-release Evaporation and Dispersion During Bunkering
Apr 2024
Publication
The use of alternative fuels is a primary means for decarbonising the maritime industry. Liquefied natural gas (LNG) liquid hydrogen (LH2) and liquid ammonia (LNH3) are liquified gases among the alternative fuels. The safety risks associated with these fuels differ from traditional fuels. In addition to their low-temperature hazards the flammability of LNG and LH2 and the high toxicity of LNH3 present challenges in fuel handlings due to their high likelihood of fuel release during bunkering. This study aims at drawing extensive comparisons of the evaporation and vapour dispersion behaviours for the three fuels after release accidents during bunkering and discuss their safety issues. The study involved the release event of the three fuels on the main deck area of a reference bulk carrier with a deadweight of 208000 tonnes. Two release scenarios were considered: Scenario 1 involved a release of 0.3 m3 of fuel and Scenario 2 involved a release of 100 kg of fuel. An empirical equation was used to calculate the fuel evaporation process and the Computational Fluid Dynamic (CFD) code FDS was employed to simulate the dispersion of vapour clouds. The obtained results reveal that LH2 has the highest evaporation rate followed by LNG and LNH3. The vapour clouds of LNG and LNH3 spread along the main deck surface while the LH2 vapour cloud exhibits upward dispersion. The flammable vapour clouds of LNG and LH2 remain within the main deck area whereas the toxic gas cloud of LNH3 disperses towards the shore and spreads near the ground on the shore side. Based on the dispersion behaviours the hazards of LNG and LH2 are com parable while LNH3 poses significantly higher hazards. In terms of hazard mitigations effective water curtain systems can suppress the vapour dispersion.
Techno-economic Analysis of Stand-alone Hybrid PV-Hydrogen-Based Plug-in Electric Vehicle Charging Station
Sep 2024
Publication
The increase in the feasibility of hydrogen-based generation makes it a promising addition to the realm of renewable energies that are being employed to address the issue of electric vehicle charging. This paper presents technical and an economical approach to evaluate a newer off-grid hybrid PV-hydrogen energy-based recharging station in the city of Jamshoro Pakistan to meet the everyday charging needs of plug-in electric vehicles. The concept is designed and simulated by employing HOMER software. Hybrid PV-hydrogen and PV-hydrogenbattery are the two different scenarios that are carried out and compared based on their both technical as well as financial standpoints. The simulation results are evident that the hybrid PV- hydrogen-battery energy system has much more financial and economic benefits as compared with the PV-hydrogen energy system. Moreover it is also seen that costs of energy from earlier from hybrid PV-hydrogen-battery is more appealing i.e. 0.358 $/kWh from 0.412 $/kWh cost of energy from hybrid PV-hydrogen. The power produced by the hybrid PV- hydrogen - battery energy for the daily load demand of 1700 kWh /day consists of two powers produced independently by the PV and fuel cells of 87.4 % and 12.6 % respectively.
A Comprehensive Review of Hydrogen Safety through a Metadata Analysis Framework
Feb 2025
Publication
Hydrogen is widely recognized as a promising clean energy carrier but its highly flammable and explosive nature presents significant safety challenges in its production storage transportation and usage. Addressing these challenges is critical for the successful integration of hydrogen into global energy systems aligning with the United Nations’ sustainable development goals to support the transition to a low-carbon future. This study aims to provide a comprehensive review of hydrogen safety through a metadata analysis framework focusing on risks challenges mitigation strategies and regulations for safe handling. Previous reviews have largely addressed general hydrogen safety concerns but none have systematically evaluated the issue from a data-driven perspective. This review fills that gap by analyzing research trends root causes of hydrogen’s unsafe handling such as its low molecular density broad flammability range and high permeability and exploring solutions such as chemical additives and gaseous inhibitors to improve safety. Utilizing bibliometric techniques and scientific mapping tools this study synthesizes extensive research spanning from 2000 to 2024 visualizing the evolution of hydrogen safety research and identifying critical areas for future inquiry. The findings contribute valuable insights into the safe deployment of hydrogen technologies offering recommendations for future research and regulatory advancements to mitigate risks and ensure hydrogen’s role in a sustainable energy future.
Planning Energy Hubs with Hydrogen and Battery Storage for Flexible Ramping Market Participation
Oct 2025
Publication
The integration of renewable resources with advanced storage technologies is critical for sustainable energy systems. In this paper a planning framework for an energy hub incorporating hydrogen and renewable energy systems is developed with the objective of minimizing operational costs while participating in flexible ramping product (FRP) markets. The energy hub is designed to utilize a hybrid storage system comprising multi-type battery energy storage (BESS) accounting for diverse chemistries and degradation behaviors and hydrogen storage (HS) to meet concurrent electric and hydrogen demands. To address uncertainties in renewable generation and market prices a stochastic optimization model is developed to determine the optimal investment capacities while optimizing operational decisions under uncertainty using scenario-based stochastic programming. Financial risks associated with price and renewable variability are mitigated through the Conditional Value-at-Risk (CVaR) metric. Case studies demonstrate that hybrid storage systems including both BESS and HS can reduce total costs by 23.62% compared to single-storage configurations that rely solely on BESS. Based on the results BESS participates more in providing flexible ramp-up services while HS plays a major role in providing flexible ramp-down services. The results emphasize the critical role of co-optimized hydrogen and multi-type BESS in enhancing grid flexibility and economic viability.
Technoeconomic analysis of Hydrogen Versus Natural Gas Considering Safety Hazards and Energy Efficiency Indicators
Aug 2025
Publication
Hydrogen (H2) is emerging as a key alternative to fossil fuels in the global energy transition. This study presents a comparative techno-economic analysis of H2 and natural gas (NG) focusing on safety hazards energy output CO2 emissions and cost-effectiveness aspects. Our analysis showed that compared to NG and other highly flammable gases like acetylene (C2 H2) and propane (C3 H8) H2 has a higher hazard potential due to factors such as its wide flammability range low ignition energy and high flame speed. In terms of energy output 1 kg of NG produces 48.60 MJ while conversion to liquefied natural gas (LNG) grey H2 and blue H2 reduces energy output to 45.96 MJ 35.45 MJ and 31.21 MJ respectively. Similarly while unconverted NG emits 2.72 kg of CO2 per kg emissions increase to 3.12 kg for LNG and 3.32 kg for grey H2. However blue H2 significantly reduces CO2 emissions to 1.05 kg per kg due to carbon capture and storage. From an economic perspective producing 1 kg of NG yields a profit of $0.011. Converting NG to grey H2 is most profitable yielding a net profit of $0.609 per kg of NG while blue H2 despite higher production costs remains viable with a profit of $0.390 per kg of NG. LNG conversion also shows profitability with $0.061 per kg of NG. This analysis highlights the trade-offs between energy efficiency environmental impact and economic viability providing valuable insights for stakeholders formulating hydrogen and LNG implementation strategies.
Preliminary Feasibility Study of Using Hydrogen as a Fuel for an Aquaculture Vessel in Tasmania, Australia
Oct 2025
Publication
Decarbonising aquaculture support vessels is pivotal to reducing greenhouse gas (GHG) emissions across both the aquaculture and maritime sectors. This study evaluates the technical and economic feasibility of deploying hydrogen as a marine fuel for a 14.95 m net cleaning vessel (NCV) operating in Tasmania Australia. The analysis retains the vessel’s original layout and subdivision to enable a like-for-like comparison between conventional diesel and hydrogen-based systems. Two options are evaluated: (i) replacing both the main propulsion engines and auxiliary generator sets with hydrogen-based systems— either proton exchange membrane fuel cells (PEMFCs) or internal combustion engines (ICEs); and (ii) replacing only the diesel generator sets with hydrogen power systems. The assessment covers system sizing onboard hydrogen storage integration operational constraints lifecycle cost and GHG abatement. Option (i) is constrained by the sizes and weights of PEMFC systems and hydrogen-fuelled ICEs rendering full conversion unfeasible within current spatial and technological limits. Option (ii) is technically feasible: sixteen 700 bar cylinders (131.2 kg H2 total) meet one day of onboard power demand for net-cleaning operations with bunkering via swap-and-go skids at the berth. The annualised total cost of ownership for the PEMFC systems is 1.98 times that of diesel generator sets while enabling annual CO2 reductions of 433 t. The findings provide a practical decarbonisation pathway for small- to medium-sized service vessels in niche maritime sectors such as aquaculture while clarifying near-term trade-offs between cost and emissions.
No more items...