Sweden
An Inter-laboratory Comparison between 13 International Laboratories for Eight Components Relevant for Hydrogen Fuel Quality Assessment
Mar 2024
Publication
The quality of the hydrogen delivered by refuelling stations is critical for end-users and society. The purity of the hydrogen dispensed at hydrogen refuelling points should comply with the technical specifications included in the ISO 14687:2019 and EN 17124:2022 standards. Once laboratories have set up methods they need to verify their performances for example through participation in interlaboratory comparisons. Due to the challenge associated with the production of stable reference materials and transport of these which are produced in hydrogen at high pressure (>10 bar) interlaboratory comparisons have been organized in different steps with increasing extent. This study describes an inter-laboratory comparison exercise for hydrogen fuel involving a large number of participants (13 laboratories) completed in less than a year and included eight key contaminants of hydrogen fuel at level close to the ISO14687 threshold. These compounds were selected based on their high probability of occurrence or because they have been found in hydrogen fuel samples. For the results of the intercomparison it appeared that fully complying with ISO 21087:2019 is still challenging for many participants and highlighted the importance of organising these types of exercises. Many laboratories performed corrective actions based on their results which in turn significantly improved their performances.
Renewable Marine Fuel Production for Decarbonised Maritime Shipping: Pathways, Policy Measures and Transition Dynamics
Jun 2023
Publication
This article investigates the potential of renewable and low-carbon fuel production for the maritime shipping sector using Sweden as a case in focus. Techno-economic modelling and socio-technical transition studies are combined to explore the conditions opportunities and barriers to decarbonising the maritime shipping industry. A set of scenarios have been developed considering demand assumptions and potential instruments such as carbon price energy tax and blending mandate. The study finds that there are opportunities for decarbonising the maritime shipping industry by using renewable marine fuels such as advanced biofuels (e.g. biomethanol) electrofuels (e.g. e-methanol) and hydrogen. Sweden has tremendous resource potential for bio-based and hydrogen-based renewable liquid fuel production. In the evaluated system boundary biomethanol presents the cheapest technology option while e-ammonia is the most expensive one. Green electricity plays an important role in the decarbonisation of the maritime sector. The results of the supply chain optimisation identify the location sites and technology in Sweden as well as the trade flows to bring the fuels to where the bunker facilities are potentially located. Biomethanol and hydrogen-based marine fuels are cost-effective at a carbon price beyond 100 €/tCO2 and 200 €/tCO2 respectively. Linking back to the socio-technical transition pathways the study finds that some shipping companies are in the process of transitioning towards using renewable marine fuels thereby enabling niche innovations to break through the carbon lock-in and eventually alter the socio-technical regime while other shipping companies are more resistant. Overall there is increasing pressure from (inter)national energy and climate policy-making to decarbonise the maritime shipping industry.
Double Compression-Expansion Engine (DCEE) Fueled with Hydrogen: Preliminary Computational Assessment
Jan 2022
Publication
Hydrogen (H2 ) is currently a highly attractive fuel for internal combustion engines (ICEs) owing to the prospects of potentially near-zero emissions. However the production emissions and cost of H2 fuel necessitate substantial improvements in ICE thermal efficiency. This work aims to investigate a potential implementation of H2 combustion in a highly efficient double compression-expansion engine (DCEE). DICI nonpremixed H2 combustion mode is used for its superior characteristics as concluded in previous studies. The analysis is performed using a 1D GT-Power software package where different variants of the DICI H2 and diesel combustion cycles obtained experimentally and numerically (3D CFD) are imposed in the combustion cylinder of the DCEE. The results show that the low jet momentum free jet mixing dominated variants of the DICI H2 combustion concept are preferred owing to the lower heat transfer losses and relaxed requirements on the fuel injection system. Insulation of the expander and removal of the intercooling improve the engine efficiency by 1.3 and 0.5 %-points respectively but the latter leads to elevated temperatures in the high-pressure tank which makes the selection of its materials harder but allows the use of cheaper oxidation catalysts. The results also show that the DCEE performance is insensitive to combustion cylinder temperatures making it potentially suitable for other high-octane fuels such as methane methanol ammonia etc. Finally a brake thermal efficiency of 56 % is achieved with H2 combustion around 1 %-point higher than with diesel. Further efficiency improvements are also possible with a fully optimized H2 combustion system.
Reforming Processes for Syngas Production: A Mini-review on the Current Status, Challenges, and Prospects for Biomass Conversion to Fuels
Mar 2022
Publication
Dedicated bioenergy combined with carbon capture and storage are important elements for the mitigation scenarios to limit the global temperature rise within 1.5 °C. Thus the productions of carbon-negative fuels and chemicals from biomass is a key for accelerating global decarbonisation. The conversion of biomass into syngas has a crucial role in the biomass-based decarbonisation routes. Syngas is an intermediate product for a variety of chemical syntheses to produce hydrogen methanol dimethyl ether jet fuels alkenes etc. The use of biomass-derived syngas has also been seen as promising for the productions of carbon negative metal products. This paper reviews several possible technologies for the production of syngas from biomass especially related to the technological options and challenges of reforming processes. The scope of the review includes partial oxidation (POX) autothermal reforming (ATR) catalytic partial oxidation (CPO) catalytic steam reforming (CSR) and membrane reforming (MR). Special attention is given to the progress of CSR for biomass-derived vapours as it has gained significant interest in recent years. Heat demand and efficiency together with properties of the reformer catalyst were reviewed more deeply in order to understand and propose solutions to the problems that arise by the reforming of biomass-derived vapours and that need to be addressed in order to implement the technology on a big scale.
Hydrogen Production in the Swedish Power Sector: Considering Operational Volatilities and Long-term Uncertainties
Nov 2020
Publication
With more renewables on the Swedish electricity market while decommissioning nuclear power plants electricity supply increasingly fluctuates and electricity prices are more volatile. There is hence a need for securing the electricity supply before energy storage solutions become widespread. Electricity price fluctuations moreover affect operating income of nuclear power plants due to their inherent operational inflexibility. Since the anticipated new applications of hydrogen in fuel cell vehicles and steel production producing hydrogen has become a potential source of income particularly when there is a surplus supply of electricity at low prices. The feasibility of investing in hydrogen production was investigated in a nuclear power plant applying Swedish energy policy as background. The analysis applies a system dynamics approach incorporating the stochastic feature of electricity supply and prices. The study revealed that hydrogen production brings alternative opportunities for large-scale electricity production facilities in Sweden. Factors such as hydrogen price will be influential and require in-depth investigation. This study provides guidelines for power sector policymakers and managers who plan to engage in hydrogen production for industrial applications. Although this study was focused upon nuclear power sources it can be extended to hydrogen production from renewable energy sources such as wind and solar.
The Potential Role of Ammonia as Marine Fuel—Based on Energy Systems Modeling and Multi-Criteria Decision Analysis
Apr 2020
Publication
To reduce the climate impact of shipping the introduction of alternative fuels is required. There is a range of different marine fuel options but ammonia a potential zero carbon fuel has recently received a lot of attention. The purpose of this paper is to assess the prospects for ammonia as a future fuel for the shipping sector in relation to other marine fuels. The assessment is based on a synthesis of knowledge in combination with: (i) energy systems modeling including the cost-effectiveness of ammonia as marine fuel in relation to other fuels for reaching global climate targets; and (ii) a multi-criteria decision analysis (MCDA) approach ranking marine fuel options while considering estimated fuel performance and the importance of criteria based on maritime stakeholder preferences. In the long-term and to reach global GHG reduction the energy systems modeled indicate that the use of hydrogen represents a more cost-effective marine fuel option than ammonia. However in the MCDA covering more aspects we find that ammonia may be almost as interesting for shipping related stakeholders as hydrogen and various biomass-based fuels. Ammonia may to some extent be an interesting future marine fuel option but many issues remain to be solved before large-scale introduction.
Transient Numerical Modeling and Model Predictive Control of an Industrial-scale Steam Methane Reforming Reactor
Mar 2021
Publication
A steam methane reforming reactor is a key equipment in hydrogen production and numerical analysis and process control can provide a critical insight into its reforming mechanisms and flexible operation in real engineering applications. The present paper firstly studies the transport phenomena in an industrial-scale steam methane reforming reactor by transient numerical simulations. Wall effect and local non thermal equilibrium is considered in the simulations. A temperature profile of the tube outer wall is given by user defined functions integrated into the ANSYS FLUENT software. Dynamic simulations show that the species distribution is closely related to the temperature distribution which makes the temperature of the reactor tube wall an important factor for the hydrogen production of the reformer and the thermal conductivity of the catalyst network is crucial in the heat transfer in the reactor. Besides there exists a delay of the reformer's hydrogen production when the temperature profile of the tube wall changes. Among inlet temperature inlet mass flow rate and inlet steam-to-carbon (S/C) ratio the mass flow rate is the most influencing factor for the hydrogen production. The dynamic matrix control (DMC) scheme is subsequently designed to manipulate the mole fraction of hydrogen of the outlet to the target value by setting the temperature profile trajectory of the reforming tube with time. The proportional-integral control strategy is also studied for comparison. The closed-loop simulation results show that the proposed DMC control strategy can reduce the overshoot and have a small change of the input variable. In addition the disturbances of feed disturbance can also be well rejected to assure the tracking performance indicating the superiority of the DMC controller. All the results give insight to the theoretical analysis and controller design of a steam methane reformer and demonstrate the potential of the CFD modeling in study the transport mechanism and the idea of combining CFD modelling with controller design for the real application.
Potential Transitions in the Iron and Steel Industry in Sweden: Towards a Hydrogen-based Future?
May 2018
Publication
The iron and steel industry accounts for one third of global industrial CO2 emissions putting pressure on the industry to shift towards more sustainable modes of production. However for an industry characterised by path dependency and technological lock-ins sustainability transitions are not straightforward. In this study we aim to explore the potential pathways for sustainability transitions in the iron and steel industry. To do so we have conducted a case study in Sweden where there are policy and industry commitments towards fossil-free steel production. Our theoretical points of departure are the technological innovation system (TIS) approach and the multi-level perspective (MLP) and our paper presents the dynamics behind an emerging case of transition towards a hydrogen-based future. The paper has two major contributions to the literature on sustainability transitions. First it attempts to borrow some concepts from the MLP and integrate them with the TIS approach. Second it empirically presents an in-depth case study of the iron and steel industry e an understudied context in the field of sustainability transitions. By doing so it sheds some light on the dynamics between an emerging TIS and potential transition pathways of a regime.
Strategies for the Sampling of Hydrogen at Refuelling Stations for Purity Assessment
Aug 2021
Publication
Hydrogen delivered at hydrogen refuelling station must be compliant with requirements stated in different standards which require specialized sampling device and personnel to operate it. Currently different strategies are implemented in different parts of the world and these strategies have already been used to perform 100s of hydrogen fuel sampling in USA EU and Japan. However these strategies have never been compared on a large systematic study. The purpose of this paper is to describe and compare the different strategies for sampling hydrogen at the nozzle and summarize the key aspects of all the existing hydrogen fuel sampling including discussion on material compatibility with the impurities that must be assessed. This review highlights the fact it is currently difficult to evaluate the impact or the difference these strategies would have on the hydrogen fuel quality assessment. Therefore comparative sampling studies are required to evaluate the equivalence between the different sampling strategies. This is the first step to support the standardization of hydrogen fuel sampling and to identify future research and development area for hydrogen fuel sampling.
The Value of Flexible Fuel Mixing in Hydrogen-fueled Gas Turbines - A Techno-economic Study
Jul 2022
Publication
In electricity systems mainly supplied with variable renewable electricity (VRE) the variable generation must be balanced. Hydrogen as an energy carrier combined with storage has the ability to shift electricity generation in time and thereby support the electricity system. The aim of this work is to analyze the competitiveness of hydrogen-fueled gas turbines including both open and combined cycles with flexible fuel mixing of hydrogen and biomethane in zero-carbon emissions electricity systems. The work applies a techno-economic optimization model to future European electricity systems with high shares of VRE.<br/>The results show that the most competitive gas turbine option is a combined cycle configuration that is capable of handling up to 100% hydrogen fed with various mixtures of hydrogen and biomethane. The results also indicate that the endogenously calculated hydrogen cost rarely exceeds 5 €/kgH2 when used in gas turbines and that a hydrogen cost of 3–4 €/kgH2 is for most of the scenarios investigated competitive. Furthermore the results show that hydrogen gas turbines are more competitive in wind-based energy systems as compared to solar-based systems in that the fluctuations of the electricity generation in the former are fewer more irregular and of longer duration. Thus it is the characteristics of an energy system and not necessarily the cost of hydrogen that determine the competitiveness of hydrogen gas turbines.
The Evolution and Structure of Ignited High-pressure Cryogenic Hydrogen Jets
Jun 2022
Publication
The anticipated upscaling of hydrogen energy applications will involve the storage and transport of hydrogen at cryogenic conditions. Understanding the potential hazard arising from leaks in high-pressure cryogenic storage is needed to improve hydrogen safety. The manuscript reports a series of numerical simulations with detailed chemistry for the transient evolution of ignited high-pressure cryogenic hydrogen jets. The study aims to gain insight of the ignition processes flame structures and dynamics associated with the transient flame evolution. Numerical simulations were firstly conducted for an unignited jet released under the same cryogenic temperature of 80 K and pressure of 200 bar as the considered ignited jets. The predicted hydrogen concentrations were found to be in good agreement with the experimental measurements. The results informed the subsequent simulations of the ignited jets involving four different ignition locations. The predicted time series snapshots of temperature hydrogen mass fraction and the flame index are analyzed to study the transient evolution and structure of the flame. The results show that a diffusion combustion layer is developed along the outer boundary of the jet and a side diffusion flame is formed for the near-field ignition. For the far-field ignition an envelope flame is observed. The flame structure contains a diffusion flame on the outer edge and a premixed flame inside the jet. Due to the complex interactions between turbulence fuel-air mixing at cryogenic temperature and chemical reactions localized spontaneous ignition and transient flame extinguishment are observed. The predictions also captured the experimentally observed deflagration waves in the far-field ignited jets.
Renewable Hydrogen Supply Chains: A Planning Matrix and an Agenda for Future Research
Oct 2022
Publication
Worldwide energy systems are experiencing a transition to more sustainable systems. According to the Hydrogen Roadmap Europe (FCH EU 2019) hydrogen will play an important role in future energy systems due to its ability to support sustainability goals and will account for approximately 13% of the total energy mix in the coming future. Correct hydrogen supply chain (HSC) planning is therefore vital to enable a sustainable transition. However due to the operational characteristics of the HSC its planning is complicated. Renewable hydrogen supply can be diverse: Hydrogen can be produced de-centrally with renewables such as wind and solar energy or centrally by using electricity generated from a hydro power plant with a large volume. Similarly demand for hydrogen can also be diverse with many new applications such as fuels for fuel cell electrical vehicles and electricity generation feedstocks in industrial processes and heating for buildings. The HSC consists of various stages (production storage distribution and applications) in different forms with strong interdependencies which further increase HSC complexity. Finally planning of an HSC depends on the status of hydrogen adoption and market development and on how mature technologies are and both factors are characterised by high uncertainties. Directly adapting the traditional approaches of supply chain planning for HSCs is insufficient. Therefore in this study we develop a planning matrix with related planning tasks leveraging a systematic literature review to cope with the characteristics of HSCs. We focus only on renewable hydrogen due to its relevance to the future low-carbon economy. Furthermore we outline an agenda for future research from the supply chain management perspective in order to support HSC development considering the different phases of HSCs adoption and market development.
A Comparison of Two Hydrogen Storages in a Fossil Free Direct Reduced Iron Process
Jul 2021
Publication
Hydrogen direct reduction has been proposed as a means to decarbonize primary steelmaking. Preferably the hydrogen necessary for this process is produced via water electrolysis. A downside to electrolysis is the large electricity demand. The electricity cost of water electrolysis may be reduced by using a hydrogen storage to exploit variations in electricity price i.e. producing more hydrogen when the electricity price is low and vice versa. In this paper we compare two kinds of hydrogen storages in the context of a hydrogen direct reduction process via simulations based on historic Swedish electricity prices: the storage of gaseous hydrogen in an underground lined rock cavern and the storage of hydrogen chemically bound in methanol. We find the methanol-based storages to be economically advantageous to lined rock caverns in several scenarios. The main advantages of methanol-based storage are the low investment cost of storage capacity and the possibility to decouple storage capacity from rate capacity. Nevertheless no storage option is found to be profitable for historic Swedish electricity prices. For the storages to be profitable electricity prices must be volatile with relatively frequent high peaks which has happened rarely in Sweden in recent years. However such scenarios may become more common with the expected increase of intermittent renewable power in the Swedish electricity system.
Effect of Carbon Concentration and Carbon Bonding Type on the Melting Characteristics of Hydrogen-reduced Iron Ore Pellets
Oct 2022
Publication
Decarbonization of the steel industry is one of the pathways towards a fossil-fuel-free environment. The steel industry is one of the top contributors to greenhouse gas emissions. Most of these emissions are directly linked to the use of a fossil-fuelbased reductant. Replacing the fossil-based reductant with green H2 enables the transition towards a fossil-free steel industry. The carbon-free iron produced will cause the refining and steelmaking operations to have a starting point far from today’s operations. In addition to carbon being an alloying element in steel production carbon addition controls the melting characteristics of the reduced iron. In the present study the effect of carbon content and form (cementite/graphite) in hydrogen-reduced iron ore pellets on their melting characteristics was examined by means of a differential thermal analyser and optical dilatometer. Carburized samples with a carbon content < 2 wt % did not show any initial melting at the eutectic temperature. At and above 2 wt % the carburized samples showed an initial melting at the eutectic temperature irrespective of the carbon content. However the absorbed heat varies with varied carbon content. The carbon form does not affect the initial melting temperature but it affects the melting progression. Carburized samples melt homogenously while melting of iron-graphite mixtures occurs locally at the interface between iron and carbon particles and when the time is not long enough melting might not occur to any significant extent. Therefore at any given carbon content > 2 wt % the molten fraction is higher in the case of carburized samples which is indicated by the amount of absorbed melting heat.
Hydrogen Technology for Supply Chain Sustainability: The Mexican Transportation Impacts on Society
Mar 2022
Publication
This study sheds light on the Hydrogen technology in transportation for reaching the sustainability goals of societies illustrated by the case of Mexico. In terms of the affected supply chains the study explores how the packaging and distribution of a fuel-saving tool that allows the adoption of hydrogen as complementary energy for maritime transportation to improve economic and environmental performance in Mexico. This exploratory study performs interviews observations simulations and tests involving producers suppliers and users at 26 ports in Mexico. The study shows that environmental and economic performance are related to key processes in Supply Chain Management (SCM) in which packaging and distribution are critical for achieving logistics and transportation sustainability goals. Reusable packaging and the distribution of a fuel-saving tool can help decrease costs - of transport and downstream/upstream processes in SCM while at the same time increasing the environmental performance.
On the Way to Utilizing Green Hydrogen as an Energy Carrier—A Case of Northern Sweden
Mar 2024
Publication
Low or even zero carbon dioxide emissions will be an essential requirement for energy supplies in the near future. Besides transport and electricity generation industry is another large carbon emitter. Hydrogen produced by renewable energy provides a flexible way of utilizing that energy. Hydrogen as an energy carrier could be stored in a large capacity compared to electricity. In Sweden hydrogen will be used to replace coal for steel production. This paper discusses how the need for electricity to produce hydrogen will affect the electricity supply and power flow in the Swedish power grid and whether it will result in increased emissions in other regions. Data of the Swedish system will be used to study the feasibility of implementing the hydrogen system from the power system viewpoint and discuss the electricity price and emission issues caused by the hydrogen production in different scenarios. This paper concludes that the Swedish power grid is feasible for accommodating the additional electricity capacity requirement of producing green hydrogen for the steel industry. The obtained results could be references for decision makers investors and power system operators.
Improving the Economics of Fossil-free Steelmaking via Co-production of Methanol
Mar 2022
Publication
Steelmaking is responsible for 7% of the global net emissions of carbon dioxide and heavily reducing emissions from currently dominating steelmaking processes is difficult and costly. Recently new steelmaking processes based on the reduction of iron ore with hydrogen (H2) produced via water electrolysis have been suggested. If the electricity input to such processes is fossil-free near-zero carbon dioxide emissions steelmaking is achievable. However the high electricity demand of electrolysis is a significant implementation barrier. A H2 storage may alleviate this via allowing a larger share of H2 to be produced at low electricity prices. However accurately forecasting the dynamics of electricity markets is challenging. This increases the risk of investment in a H2 storage. Here we evaluate a novel methanol-based H2 storage concept for a H2-based steelmaking process that also allows for the coproduction of methanol. During electricity price peaks the methanol can be reformed to produce H2 for the steelmaking process. During prolonged periods of low electricity prices excess methanol can be produced and sold off thus improving the prospects of storage profitability. We use historical electricity prices and a process model to evaluate methanol-fossil-free steel co-production schemes. Methanol coproduction has the potential to improve the economics of H2 supply to a fossil-free steelmaking process by up to an average of 0.40 €/kg H2 across considered scenarios equivalent to a reduction in H2 production electricity costs of 25.0%
Levelized Cost of Hydrogen for Refueling Stations with Solar PV and Wind in Sweden: On-grid or Off-grid?
Dec 2021
Publication
The European Union expects that hydrogen will play a vital role in future energy systems. Fuel cell electric vehicles currently present a key development path for electrification of the transport sector which requires infrastructure investments of hydrogen refueling stations preferably powered by renewables such as solar and wind energy. The economic feasibility of refueling stations depends on geographical locations. This study introduces a model to identify the key cost components of renewable hydrogen for refueling stations and simulates the performance using solar radiation wind speed and electricity price data in a selection of Swedish cities. The study demonstrates the importance of integrating the electricity grid in green hydrogen production. Wind speed is crucial in reducing the cost whereas solar radiation has less influence. In addition a combination of solar and wind brings better performance in an off-grid scenario. The most encouraging finding is the cost of 35e72 SEK/kg (3.5e7.2 V/kg) which is competitive with reported costs in other EUcountries especially since this cost excludes any government support scheme. The study provides a reference for investors and policy makers foreseeing the industrial landscape for hydrogen energy development.
Pathways for Low-Carbon Transition of the Steel Industry—A Swedish Case Study
Jul 2020
Publication
The concept of techno-economic pathways is used to investigate the potential implementation of CO2 abatement measures over time towards zero-emission steelmaking in Sweden. The following mitigation measures are investigated and combined in three pathways: top gas recycling blast furnace (TGRBF); carbon capture and storage (CCS); substitution of pulverized coal injection (PCI) with biomass; hydrogen direct reduction of iron ore (H-DR); and electric arc furnace (EAF) where fossil fuels are replaced with biomass. The results show that CCS in combination with biomass substitution in the blast furnace and a replacement primary steel production plant with EAF with biomass (Pathway 1) yield CO2 emission reductions of 83% in 2045 compared to CO2 emissions with current steel process configurations. Electrification of the primary steel production in terms of H-DR/EAF process (Pathway 2) could result in almost fossil-free steel production and Sweden could achieve a 10% reduction in total CO2 emissions. Finally (Pathway 3) we show that increased production of hot briquetted iron pellets (HBI) could lead to decarbonization of the steel industry outside Sweden assuming that the exported HBI will be converted via EAF and the receiving country has a decarbonized power sector.
Tactical Depressurization of Hydrogen and CNG Tanks Using Rifles and Other Projectiles
Sep 2021
Publication
After a tank has been exposed to crash violence or an external fire it might in some situations be judged dangerous to move the vessel due to the risk of a sudden tank rupture. Therefore Swedish rescue services have a long history of using rifles to penetrate and therefore depressurize the vessels. In this paper some first steps on providing guidance on the selection of ammunition and required stand back distance are presented. The results indicate that a stand back distance on the order of 100 m is required and that the standard 7.62 Ball should only be used for composite CNG-tanks while stronger ammunitions are needed for steel and composite hydrogen tanks. However more research is required to provide a more solid scientific underpinning of the tactic guidance.
No more items...