United States
Prospects of Fuel Cell Combined Heat and Power Systems
Aug 2020
Publication
Combined heat and power (CHP) in a single and integrated device is concurrent or synchronized production of many sources of usable power typically electric as well as thermal. Integrating combined heat and power systems in today’s energy market will address energy scarcity global warming as well as energy-saving problems. This review highlights the system design for fuel cell CHP technologies. Key among the components discussed was the type of fuel cell stack capable of generating the maximum performance of the entire system. The type of fuel processor used was also noted to influence the systemic performance coupled with its longevity. Other components equally discussed was the power electronics. The thermal and water management was also noted to have an effect on the overall efficiency of the system. Carbon dioxide emission reduction reduction of electricity cost and grid independence were some notable advantages associated with fueling cell combined heat and power systems. Despite these merits the high initial capital cost is a key factor impeding its commercialization. It is therefore imperative that future research activities are geared towards the development of novel and cheap materials for the development of the fuel cell which will transcend into a total reduction of the entire system. Similarly robust systemic designs should equally be an active research direction. Other types of fuel aside hydrogen should equally be explored. Proper risk assessment strategies and documentation will similarly expand and accelerate the commercialization of this novel technology. Finally public sensitization of the technology will also make its acceptance and possible competition with existing forms of energy generation feasible. The work in summary showed that proton exchange membrane fuel cell (PEM fuel cell) operated at a lower temperature-oriented cogeneration has good efficiency and is very reliable. The critical issue pertaining to these systems has to do with the complication associated with water treatment. This implies that the balance of the plant would be significantly affected; likewise the purity of the gas is crucial in the performance of the system. An alternative to these systems is the PEM fuel cell systems operated at higher temperatures.
Opportunities for Flexible Electricity Loads such as Hydrogen Production from Curtailed Generation
Jun 2021
Publication
Variable low-cost low-carbon electricity that would otherwise be curtailed may provide a substantial economic opportunity for entities that can flexibly adapt their electricity consumption. We used historical hourly weather data over the contiguous U.S. to model the characteristics of least-cost electricity systems dominated by variable renewable generation that powered firm and flexible electricity demands (loads). Scenarios evaluated included variable wind and solar power battery storage and dispatchable natural gas with carbon capture and storage with electrolytic hydrogen representing a prototypical flexible load. When flexible loads were small excess generation capacity was available during most hours allowing flexible loads to operate at high capacity factors. Expanding the flexible loads allowed the least-cost systems to more fully utilize the generation capacity built to supply firm loads and thus reduced the average cost of delivered electricity. The macro-scale energy model indicated that variable renewable electricity systems optimized to supply firm loads at current costs could supply 25% or more additional flexible load with minimal capacity expansion while resulting in reduced average electricity costs (10% or less capacity expansion and 10% to 20% reduction in costs in our modeled scenarios). These results indicate that adding flexible loads to electricity systems will likely allow more full utilization of generation assets across a wide range of system architectures thus providing new energy services with infrastructure that is already needed to supply firm electricity loads.
Influences on Hydrogen Production at a Wind Farm
Dec 2022
Publication
If an affordable infrastructure for low-carbon-intensity hydrogen can be developed then hydrogen is expected to become a key factor in decarbonizing the atmosphere. This research focuses on factors an existing wind farm operator would consider when weighing participating in the electricity market the hydrogen market or both. The solutions depend on the state of technology which is changing rapidly the local market structures the local natural resources and the local pre-existing infrastructure. Consequently this investigation used an assessment approach that examined the variation of net present value. The investigation identified profitability conditions under three different scenarios: 1) Make and sell what makes economic sense at the time of production 2) Use electrolyzer and fuel cell to consume power from the grid at times of low net demand and to produce electricity at times of high net demand 3) Same as #2 but also market hydrogen directly when profitable.
Photocatalytic Hydrogen Evolution from Biomass Conversion
Feb 2021
Publication
Biomass has incredible potential as an alternative to fossil fuels for energy production that is sustainable for the future of humanity. Hydrogen evolution from photocatalytic biomass conversion not only produces valuable carbon-free energy in the form of molecular hydrogen but also provides an avenue of production for industrially relevant biomass products. This photocatalytic conversion can be realized with efficient sustainable reaction materials (biomass) and inexhaustible sunlight as the only energy inputs. Reported herein is a general strategy and mechanism for photocatalytic hydrogen evolution from biomass and biomass-derived substrates (including ethanol glycerol formic acid glucose and polysaccharides). Recent advancements in the synthesis and fundamental physical/mechanistic studies of novel photocatalysts for hydrogen evolution from biomass conversion are summarized. Also summarized are recent advancements in hydrogen evolution efciency regarding biomass and biomass-derived substrates. Special emphasis is given to methods that utilize unprocessed biomass as a substrate or synthetic photocatalyst material as the development of such will incur greater benefts towards a sustainable route for the evolution of hydrogen and production of chemical feedstocks.
Experimental and Numerical Analysis of Low-density Gas Dispersion Characteristics in Semi-confined Environments
Oct 2023
Publication
Hydrogen as a clean fuel offers a practical pathway to achieve net-zero targets. However due to its physical and chemical characteristics there are some safety concerns for large-scale hydrogen utilisation particularly in process safety management. Leakage of gaseous hydrogen especially in semi-confined spaces such as tunnels can lead to catastrophic outcomes including uncontrolled fire and explosion. The current paper describes the outcome of an experimental and numerical study that aims to understand the dispersion of leaked light gas in a semi-confined space to support the adoption of hydrogen. A dispersion chamber with dimensions of 4m × 0.3m × 0.3m was constructed to investigate a baseline gas leakage scenario. To reduce the risk of the experiment in the laboratory helium is utilised as a surrogate for hydrogen. Computational fluid dynamics simulations are con ducted using FLACS-CFD to model the dispersion of leaked gas in different scenarios focusing on the impact of the ventilation velocity leakage rate and slope. The results from comprehensive numerical simulations show that ventilation is a critical safety management measure that can significantly reduce the growth of flammable clouds and mitigate the fire and explosion risk. Even with the lowest ventilation velocity of 0.25 m/s an improvement in the gas concentration level of 29.34% can be achieved in the downstream chamber. The current results will help to further enhance the understanding of hydrogen safety aspects.
Development of a Hydrophobic Coating for the Porous Gas Diffusion Layer in a PEM-based Electrochemical Hydrogen Pump to Mitigate Anode Flooding
Jan 2019
Publication
Anode flooding is one of the critical issues in developing a proton exchange membrane (PEM)-based electrochemical hydrogen pump. Improving the hydrophobicity of the gas diffusion layer (GDL) has been studied as an approach to mitigating anode flooding in electrochemical pumps. A mixture of Nafion™ and oxidized carbon nanotubes (O-CNT) has been applied to the porous gas diffusion medium in the hydrogen pump cell. The coating renders the GDL hydrophobic with an effective contact angle of 130°. Electrochemical pump testing has shown that with the help of the coating the flood-recovery performance of the hydrogen pump was greatly improved. A hydrogen pump cell with an uncoated GDL was not able to recover from a flooded state while a hydrogen pump cell with a coated GDL was able to recover its performance in about 100 s.
Everything About Hydrogen Podcast: Nuclear-enabled Hydrogen at Port of Belledune
Jul 2024
Publication
The team sits down with Rishi Jain to discuss Cross River’s marquee wind hydro nuclear hydrogen ammonia project in the revitalized heavy industrial Port of Belledune New Brunswick Canada.
The podcast can be found on their website.
The podcast can be found on their website.
Multi-functional Hybrid Energy System for Zero-energy Residential Buildings: Integrating Hydrogen Production and Renewable Energy Solutions
Jan 2025
Publication
The increasing global residential energy demand causes carbon emissions and ecological impacts necessitating cleaner efficient solutions. This study presents an innovative hybrid energy system integrating wind power and gas turbines for a four-story 16-unit residential building. The system generates electricity heating cooling and hydrogen using a Proton Exchange Membrane electrolyzer and a compression chiller. Integrating the electrolyzer enables hydrogen production and demonstrates hydrogen’s potential as a versatile clean energy carrier for systems contributing to advancements in hydrogen utilization. Simulations with Engineering Equation Solver software coupled with neural network-based multi-objective optimization fine-tuned parameters such as gas turbine efficiency wind turbine count and gas turbine inlet temperature to enhance exergy efficiency and reduce operational costs. The optimized system achieves an energy efficiency of 33.69% and an exergy efficiency of 36.95% and operates at $446.04 per hour demonstrating economic viability. It produces 51061 MWh annually exceeding the building’s energy demands and allowing surplus energy use elsewhere. BEopt simulations confirm the system meets residential needs by providing 2.52 GWh of electricity 3.36 GWh of heating and 5.11 GWh of cooling annually. This system also generates 10 kg of hydrogen per hour and achieves a CO₂ reduction of 10416 tons/year. The wind farm (25 turbines) provides most of the energy at 396.7 dollars per hour while the gas turbine operates at 80% efficiency. By addressing the challenges of intermittent renewable energy in residential Zero-Energy Buildings this research offers a scalable and environmentally friendly solution contributing to sustainable urban living and advancing hydrogen energy applications.
Modelling and Simulation of an Integrated Coupled Reactor for Hydrogen Production and Carbon Dioxide Utilisation in an Integrated Fuel Cell Power System
Dec 2024
Publication
In today’s world the need for sustainable energy solutions is paramount to address the ongoing crisis of increasing greenhouse gas emissions and global warming. Industries heavily reliant on fossil fuels must explore alternative energy sources. Hydrogen with its high heating value and zero direct emissions has emerged as a promising fuel for the future. Electrolytic hydrogen production has gained significance as it enables demand-side response grid stabilization using excess energy and the mitigation of curtailment from intermittent renewable energy sources (RES) such as solar and wind. Advanced combined heat and power (CHP) systems comprise of Solid oxide fuel cell (SOFC) module and a coupled reforming reactor to capture energy contained in the SOFC exhaust gases from SOFC. In present work 3D CFD model of an experimental coupled reactor used for onsite hydrogen production is developed and implemented into ANSYS Fluent® software. The study is aimed at opti mizing the reactor performance by identifying appropriate kinetic models for reforming and combustion re actions. SOFC anode off-gas (AOG) comprising mainly of unconverted hydrogen is combined with methane combustion to enhance thermal efficiency of the reactor and hence the CHP system. Kinetic models for catalytic reforming and combustion are implemented into ANSYS Fluent® through custom-built user defined functions (UDFs) written in C programming language. Simulation results are validated with experimental data and found in good agreement. AOG assisted combustion of methane shows a substantial improvement in thermal efficiency of the system. Improvement in thermal efficiency and reduction in carbon-based fuel demand AOG utilization contributes to sustainable hydrogen production and curtailment of greenhouse gas emissions.
Hydrogen as an Alternative Fuel: A Comprehensive Review of Challenges and Opportunities in Production, Storage, and Transportation
Jan 2025
Publication
The rapid growth of the global population and industrial activities has significantly increased greenhouse gases (GHGs) emissions with projections indicating a temperature rise of 3–6 ◦C by 2050. Urgent action is needed to limit global warming to 1.5 ◦C above pre-industrial levels. Hydrogen with its high energy density and compatibility with renewable energy systems presents a promising clean energy solution to mitigate GHGs emissions. Yet its widespread adoption faces challenges such as high production costs limited infrastructure and an underdeveloped value chain. At present approximately 96% of global hydrogen production relies on fossil fuels contributing to substantial emissions while only 4% comes from water electrolysis. Green hydrogen produced via electrolysis with 55–80% efficiency remains expensive at $2.28–7.39/kg compared to grey hydrogen at $0.67–1.31/kg which generates 8.5 kg CO₂ per kg of hydrogen production. Hydrogen’s low density poses challenges for storage while transportation risks and insufficient infrastructure create further obstacles. The lack of global standards and investment uncertainties further impede the development of a comprehensive hydrogen economy. This review evaluates hydrogen’s potential as a sustainable energy carrier providing in sights into advancements and ongoing challenges in production storage and transportation. Key findings highlight the necessity of coordinated efforts to enhance storage technologies lower production costs and establish supportive policies highlighting hydrogen’s critical role in achieving a sustainable energy transition.
A Novel Hydrogen Supply Chain Optimization Model - Case Study of Texas and Louisiana
Jun 2024
Publication
The increasing political momentum advocating for decarbonization efforts has led many governments around the world to unveil national hydrogen strategies. Hydrogen is viewed as a potential enabler of deep decarbonization notably in hard-to-abate sectors such as the industry. A multi-modal hourly resolved linear programming model was developed to assess the infrastructure requirements of a low-carbon supply chain over a large region. It optimizes the deployment of infrastructure from 2025 up to 2050 by assessing four years: 2025 2030 2040 and 2050 and is location agnostic. The considered infrastructure encompasses several technologies for production transmission and storage. Model results illustrate supply chain requirements in Texas and Louisiana. Edge cases considering 100% electrolytic production were analyzed. Results show that by 2050 with an assumed industrial demand of 276 TWh/year Texas and Louisiana would require 62 GW of electrolyzers 102 GW of onshore wind and 32 GW of solar panels. The resulting levelized cost of hydrogen totaled $5.6–6.3/kgH2 in 2025 decreasing to $3.2–3.5/ kgH2 in 2050. Most of the electricity production occurs in Northwest Texas thanks to high capacity factors for both renewable technologies. Hydrogen is produced locally and transmitted through pipelines to demand centers around the Gulf Coast instead of electricity being transmitted for electrolytic production co-located with demand. Large-scale hydrogen storage is highly beneficial in the system to provide buffer between varying electrolytic hydrogen production and constant industrial demand requirements. In a system without low-cost storage liquid and compressed tanks are deployed and there is a significant renewable capacity overbuild to ensure greater electrolyzer capacity factors resulting in higher electricity curtailment. A system under carbon constraint sees the deployment of natural gas-derived hydrogen production. Lax carbon constraint target result in an important reliance on this production method due to its low cost while stricter targets enforce a great share of electrolytic production.
A Systematic Review: The Role of Emerging Carbon Capture and Conversion Rechnologies for Energy Transition to Clean Hydrogen
Feb 2024
Publication
The exploitation of fossil fuels in various sectors such as power and heat generation and the transportation sector has been the primary source of greenhouse gas (GHG) emissions which are the main contributors to global warming. Qatar's oil and gas sector notably contributes to CO2 emissions accounting for half of the total emissions. Globally it is essential to transition into cleaner fossil fuel production to achieve carbon neutrality on a global scale. In this paper we focus on clean hydrogen considering carbon capture to make hydrogen a viable low carbon energy alternative for the transition to clean energy. This paper systematically reviews emerging technologies in carbon capture and conversion (CCC). First the road map stated by the Intergovernmental Panel on Climate Change (IPCC) to reach carbon neutrality is discussed along with pathways to decarbonize the energy sector in Qatar. Next emerging CO2 removal technologies including physical absorption using ionic liquids chemical looping and cryogenics are explored and analyzed regarding their advancement and limitations CO2 purity scalability and prospects. The advantages limitations and efficiency of the CO2 conversion technology to value-added products are grouped into chemical (plasma catalysis electrochemical and photochemical) and biological (photosynthetic and non-photosynthetic). The paper concludes by analyzing pathways to decarbonize the energy sector in Qatar via coupling CCC technologies for low-carbon hydrogen highlighting the challenges and research gaps.
Hydrogen Impact on Transmission Pipeline Risk: Probabilistic Analysis of Failure Cases
Jan 2025
Publication
Transmission pipelines are the safest and most economical solution for long-distance hydrogen delivery. However safety and reliability issues such as hydrogen’s impact on material properties including fracture toughness and fatigue crack growth could restrict pipeline development. This impact may also increase the risk of several pipeline failure causes including excavation damage corrosion earth movement material failures and other hydrogen damage mechanisms. While many quantitative risk assessment (QRA) studies exist for natural gas pipelines limited work focuses on hydrogen pipelines; the influence of hydrogen must be considered. This work presents a systematic causal model for hydrogen pipeline failures that incorporates multiple failure causes quantifying hydrogen influence on pipeline failures and analyzing how changes in hydrogen effects or operating conditions impact multiple failure causes. According to the results (1) hydrogen has a relatively minor impact on corrosion-related failure; (2) hydrogen greatly affects crack damage (the failure probability can increase by over 1000 times); (3) excavation damage is nearly independent of hydrogen’s effects; (4) earth movement damage shows increased susceptibility (the failure probability can increase by over 10 times). The hydrogen effects change the relative susceptibility of pipelines to these failure causes therefore to implement tailored safety measures under varying operating conditions.
Total Cost of Ownership Analysis of Fuel Cell Electric Bus with Different Hydrogen Supply Alternatives
Dec 2023
Publication
In the transition to sustainable public transportation with zero-emission buses hydrogen fuel cell electric buses have emerged as a promising alternative to traditional diesel buses. However assessing their economic viability is crucial for widespread adoption. This study carries out a comprehensive examination encompassing both sensitivity and probabilistic analyses to assess the total cost of ownership (TCO) for the bus fleet and its corresponding infrastructure. It considers various hydrogen supply options encompassing on-site electrolysis on-site steam methane reforming and off-site hydrogen procurement with both gaseous and liquid delivery methods. The analysis covers critical cost elements encompassing bus acquisition costs infrastructure capital expenses and operational and maintenance costs for both buses and infrastructure. This paper conducted two distinct case studies: one involving a current small bus fleet of five buses and another focusing on a larger fleet set to launch in 2028. For the current small fleet the off-site gray hydrogen purchase with a gaseous delivery option is the most cost-effective among hydrogen alternatives but it still incurs a 26.97% higher TCO compared to diesel buses. However in the case of the expanded 2028 fleet the steam methane-reforming method without carbon capture emerges as the most likely option to attain the lowest TCO with a high probability of 99.5%. Additionally carbon emission costs were incorporated in response to the growing emphasis on environmental sustainability. The findings indicate that although diesel buses currently represent the most economical option in terms of TCO for the existing small fleet steam methane reforming with carbon capture presents a 69.2% likelihood of being the most cost-effective solution suggesting it is a strong candidate for cost efficiency for the expanded 2028 fleet. Notably substantial investments are required to increase renewable energy integration in the power grid and to enhance electrolyzer efficiency. These improvements are essential to make the electrolyzer a more competitive alternative to steam methane reforming. Overall the findings in this paper underscore the substantial impact of the hydrogen supply chain and carbon emission costs on the TCO of zero-emission buses.
Mitigating Emissions in the Global Steel Industry: Representing CCS and Hydrogen Technologies in Integrated Assessment Modelling
Dec 2023
Publication
We conduct a techno-economic assessment of two low-emissions steel production technologies and evaluate their deployment in emissions mitigation scenarios utilizing the MIT Economic Projection and Policy Analysis (EPPA) model. Specifically we assess direct reduced iron-electric arc furnace with carbon capture and storage (DRI-EAF with CCS) and H2-based direct reduced iron-electric arc furnace (H2 DRI-EAF) which utilizes low carbon hydrogen to reduce CO2 emissions. Our techno-economic analysis based on the current state of technologies found that DRI-EAF with CCS increased costs ~7% relative to the conventional steel technology. H2 DRI-EAF increased costs by ~18% when utilizing Blue hydrogen and ~79% when using Green hydrogen. The exact pathways for hydrogen production in different world regions including the extent of CCS and hydrogen deployment in steelmaking are highly speculative at this point. In illustrative scenarios using EPPA we find that using base cost assumptions switching from BF-BOF to DRI-EAF or scrap EAF can provide significant emissions mitigation within steelmaking. With further reductions in the cost of advanced steelmaking we find a greater role for DRI-EAF with CCS whereas reductions in both the cost of advanced steelmaking and hydrogen production lead to a greater role for H2 DRI-EAF. Our findings can be used to help decision-makers assess various decarbonization options and design economically efficient pathways to reduce emissions in the steel industry. Our cost evaluation can also be used to inform other energy-economic and integrated assessment models designed to provide insights about future decarbonization pathways.
The NREL Sensor Laboratory: Hydrogen Leak Detection for Large Scale Deployments
Sep 2023
Publication
The NREL Hydrogen Sensor Laboratory was commissioned in 2010 as a resource for sensor developers end-users and regulatory agencies within the national and international hydrogen community. The Laboratory continues to provide as its core capability the unbiased verification of hydrogen sensor performance to assure sensor availability and their proper use. However the mission and strategy of the NREL Sensor Laboratory has evolved to meet the needs of the growing hydrogen market. The Sensor Laboratory program has expanded to support research in conventional and alternative detection methods as hydrogen use expands to large-scale markets as envisioned by the DOE National Clean Hydrogen Strategy and Roadmap. Current research encompasses advanced methods of hydrogen leak detection including stand-off and wide area monitoring approaches for large scale and distributed applications. In addition to safety applications low-level detection strategies to support the potential environmental impacts of hydrogen and hydrogen product losses along the value chain are being explored. Many of these applications utilize detection strategies that supplement and may supplant the use of traditional point sensors. The latest results of the hydrogen detection strategy research at NREL will be presented.
Prospects of Low and Zero-carbon Renewable Fuels in 1.5-degree Net Zero Emission Actualisation by 2050: A Critical Review
Sep 2022
Publication
The Paris Climate Agreement seeks to keep global temperature increases under 2° Celsius ideally 1.5° Celsius. This goal necessitates significant emission reductions. By 2030 emissions are expected to range between 52 and 58 GtCO2e from their 2016 level of approximately 52 GtCO2e. This review paper explores a number of low and zero-carbon renewable fuels such as hydrogen green ammonia green methanol biomethane natural gas and synthetic methane (with natural gas and synthetic methane subject to CCUS both at processing and at final use) as alternative solutions for providing a way to rebalance transition paths in order to achieve the goals of the Paris Agreement while also reaping the benefits of other sustainability targets. The results show renewables will need to account for approximately 90% of total electricity generation by 2050 and approximately 25% of non-electric energy usage in buildings and industry. However low and zero-carbon renewable fuels currently only contributes about 15% to the global energy shares and it will take about 10% more capacity to reach the 2050 goal. The transportation industry will need to take important steps toward energy efficiency and fuel switching in order to achieve the 20% emission reduction. Therefore significant new commitments to efficient low-carbon alternatives will be necessary to make this enormous change. According to this paper investing in energy efficiency and lowcarbon alternative energy must rise by a factor of about five by 2050 in comparison to 2015 levels if the 1.5 °C target is to be realised.
The Case of Renewable Methane by and with Green Hydrogen as the Storage and Transport Medium for Intermittent Wind and Solar PV Energy
May 2024
Publication
Long-duration energy storage is the key challenge facing renewable energy transition in the future of well over 50% and up to 75% of primary energy supply with intermittent solar and wind electricity while up to 25% would come from biomass which requires traditional type storage. To this end chemical energy storage at grid scale in the form of fuel appears to be the ideal option for wind and solar power. Renewable hydrogen is a much-considered fuel along with ammonia. However these fuels are not only difficult to transport over long distances but they would also require totally new and prohibitively expensive infrastructure. On the other hand the existing natural gas pipeline infrastructure in developed economies can not only transmit a mixture of methane with up to 20% hydrogen without modification but it also has more than adequate long-duration storage capacity. This is confirmed by analyzing the energy economies of the USA and Germany both possessing well-developed natural gas transmission and storage systems. It is envisioned that renewable methane will be produced via well-established biological and/or chemical processes reacting green hydrogen with carbon dioxide the latter to be separated ideally from biogas generated via the biological conversion of biomass to biomethane. At the point of utilization of the methane to generate power and a variety of chemicals the released carbon dioxide would be also sequestered. An essentially net zero carbon energy system would be then become operational. The current conversion efficiency of power to hydrogen/methane to power on the order of 40% would limit the penetration of wind and solar power. Conversion efficiencies of over 75% can be attained with the on-going commercialization of solid oxide electrolysis and fuel cells for up to 75% penetration of intermittent renewable power. The proposed hydrogen/methane system would then be widely adopted because it is practical affordable and sustainable.
Water Requirements for Hydrogen Production: Assessing Future Demand and Impacts on Texas Water Resources
Jan 2025
Publication
Hydrogen is emerging as a critical component in the global energy transition providing a low-carbon alternative for sectors such as industry and transportation. This paper aims to comprehensively address water usage in hydrogen production by exploring the water demands of different production methods and their implications for water management particularly in Texas. Key variables influencing water consumption are identified and potential water demands under different hydrogen market scenarios are estimated. Using spatial analysis regions where hydrogen production may stress local water resources are identified alongside policy recommendations for sustainable water use.
Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future
Aug 2024
Publication
In recent years global efforts towards a future with sustainable energy have intensified the development of renewable energy sources (RESs) such as offshore wind solar photovoltaics (PVs) hydro and geothermal. Concurrently green hydrogen produced via water electrolysis using these RESs has been recognized as a promising solution to decarbonizing traditionally hard-to-abate sectors. Furthermore hydrogen storage provides a long-duration energy storage approach to managing the intermittency of RESs which ensures a reliable and stable electricity supply and supports electric grid operations with ancillary services like frequency and voltage regulation. Despite significant progress the hydrogen economy remains nascent with ongoing developments and persistent uncertainties in economic technological and regulatory aspects. This paper provides a comprehensive review of the green hydrogen value chain encompassing production transportation logistics storage methodologies and end-use applications while identifying key research gaps. Particular emphasis is placed on the integration of green hydrogen into both grid-connected and islanded systems with a focus on operational strategies to enhance grid resilience and efficiency over both the long and short terms. Moreover this paper draws on global case studies from pioneering green hydrogen projects to inform strategies that can accelerate the adoption and large-scale deployment of green hydrogen technologies across diverse sectors and geographies.
Digital Real-Time Simulation and Power Quality Analysis of a Hydrogen-Generating Nuclear-Renewable Integrated Energy System
Feb 2025
Publication
This paper investigates the challenges and solutions associated with integrating a hydrogen-generating nuclear-renewable integrated energy system (NR-IES) under a transactive energy framework. The proposed system directs excess nuclear power to hydrogen production during periods of low grid demand while utilizing renewables to maintain grid stability. Using digital real-time simulation (DRTS) in the Typhoon HIL 404 model the dynamic interactions between nuclear power plants electrolyzers and power grids are analyzed to mitigate issues such as harmonic distortion power quality degradation and low power factor caused by large non-linear loads. A three-phase power conversion system is modeled using the Typhoon HIL 404 model and includes a generator a variable load an electrolyzer and power filters. Active harmonic filters (AHFs) and hybrid active power filters (HAPFs) are implemented to address harmonic mitigation and reactive power compensation. The results reveal that the HAPF topology effectively balances cost efficiency and performance and significantly reduces active filter current requirements compared to AHF-only systems. During maximum electrolyzer operation at 4 MW the grid frequency dropped below 59.3 Hz without filtering; however the implementation of power filters successfully restored the frequency to 59.9 Hz demonstrating its effectiveness in maintaining grid stability. Future work will focus on integrating a deep reinforcement learning (DRL) framework with real-time simulation and optimizing real-time power dispatch thus enabling a scalable efficient NR-IES for sustainable energy markets.
Modeling Critical Enablers of Hydrogen Supply Chains for Decarbonization: Insights from Emerging Economies
Mar 2025
Publication
The current global energy environment is experiencing a substantial shift towards minimizing carbon emissions and enhancing sustainability due to persistent problems. Demand for sustainable end-to-end energy solutions has boosted green hydrogen as the solution to decarbonize the world. The current study has identified and evaluated 7 main criteria of 27 sub-criteria for enabling the hydrogen supply Chains for decarbonization using the Fuzzy DEMATEL technique. The results show that the most prominent enablers criteria under causal factors are: cluster-based approach for developing a green hub Cost and investment decisions Hydrogen trade policy and regulatory actions and Technology. The effect group factors include: Assessment of ecological concerns- Ecology effect Availability of Energy sources and Awareness and public outreach. This study offers insights to understand the dynamics of the hydrogen supply chains and its way ahead towards decarbonization and transition towards a low-carbon economy. This research helps various academic and industrial stakeholders to give pace to green hydrogen uptake as a vital decarbonization tool and act as a base for strategic and collaborative decisions for a resilient and responsible energy landscape.
Solar-driven, Highly Sustained Splitting of Seawater into Hydrogen and Oxygen Fuels
Mar 2019
Publication
Electrolysis of water to generate hydrogen fuel is an attractiverenewable energy storage technology. However grid-scale fresh-water electrolysis would put a heavy strain on vital water re-sources. Developing cheap electrocatalysts and electrodes that cansustain seawater splitting without chloride corrosion could ad-dress the water scarcity issue. Here we present a multilayer anodeconsisting of a nickel–iron hydroxide (NiFe) electrocatalyst layeruniformly coated on a nickel sulfide (NiSx) layer formed on porousNi foam (NiFe/NiSx-Ni) affording superior catalytic activity andcorrosion resistance in solar-driven alkaline seawater electrolysisoperating at industrially required current densities (0.4 to 1 A/cm2)over 1000 h. A continuous highly oxygen evolution reaction-active NiFe electrocatalyst layer drawing anodic currents towardwater oxidation and an in situ-generated polyatomic sulfate andcarbonate-rich passivating layers formed in the anode are respon-sible for chloride repelling and superior corrosion resistance of thesalty-water-splitting anode.
Everything About Hydrogen Podcast: 'Having Hydrogen for Breakfast, Lunch and Dinner'
Apr 2023
Publication
On today’s show Chris Patrick and Alicia speak with Petra Schwager from UNIDO about her work promoting global green hydrogen development with particular emphasis on the Global South.
The podcast can be found on their website.
The podcast can be found on their website.
Everything About Hydrogen Podcast: Easter Eggs
Feb 2023
Publication
On today’s episode of Everything About Hydrogen we speak with Raffi Garabedian CEO and Co-Founder of Electric Hydrogen (EH2) a deep decarbonization company pioneering new technology for low cost high efficiency fossil free hydrogen systems. By using electrolyzers many times larger than the industry standard EH2 aims to help eliminate more than 30% of global GHG emissions from difficult to electrify sectors like steel ammonia and freight.
We are excited to learn more from Raffi about the EH2 technology lessons learned by scaling First Solar and what we might expect to see next.
The podcast can be found on their website.
We are excited to learn more from Raffi about the EH2 technology lessons learned by scaling First Solar and what we might expect to see next.
The podcast can be found on their website.
Everything About Hydrogen Podcast: Reaching for the Stars
Mar 2023
Publication
Today Everything About Hydrogen had a chance to speak with Paul Barrett the CEO of Hysata and dig into what makes this electrolysis company different.
The podcast can be found on their website.
The podcast can be found on their website.
Technological Pathways for Decarbonizing Petroleum Refining
Sep 2021
Publication
This paper discusses the technical specifications of how U.S. petroleum refineries can reduce facility emissions and shift to produce low-carbon fuels for hard to abate sectors by utilizing existing innovative technologies.
Energy and Economic Advantages of Using Solar Stills for Renewable Energy-Based Multi-Generation of Power and Hydrogen for Residential Buildings
Apr 2024
Publication
The multi-generation systems with simultaneous production of power by renewable energy in addition to polymer electrolyte membrane electrolyzer and fuel cell (PEMFC-PEMEC) energy storage have become more and more popular over the past few years. The fresh water provision for PEMECs in such systems is taken into account as one of the main challenges for them where conventional desalination technologies such as reverse osmosis (RO) and mechanical vapor compression (MVC) impose high electricity consumption and costs. Taking this point into consideration as a novelty solar still (ST) desalination is applied as an alternative to RO and MVC for better techno-economic justifiability. The comparison made for a residential building complex in Hawaii in the US as the case study demonstrated much higher technical and economic benefits when using ST compared with both MVC and RO. The photovoltaic (PV) installed capacity decreased by 11.6 and 7.3 kW compared with MVC and RO while the size of the electrolyzer declined by 9.44 and 6.13% and the hydrogen storage tank became 522.1 and 319.3 m3 smaller respectively. Thanks to the considerable drop in the purchase price of components the payback period (PBP) dropped by 3.109 years compared with MVC and 2.801 years compared with RO which is significant. Moreover the conducted parametric study implied the high technical and economic viability of the system with ST for a wide range of building loads including high values.
Outlook and Challenges for Hydrogen Storage in Nanoporous Materials
Feb 2016
Publication
Darren P. Broom,
Colin Webb,
Katherine Hurst,
P. A. Parilla,
Thomas Gennett,
C. M. Brown,
Renju Zacharia,
E. Tylianakis,
E. Klontzas,
George E. Froudakis,
Th. A. Steriotis,
Pantelis N. Trikalitis,
Donald L. Anton,
B. Hardy,
David A. Tamburello,
Claudio Corgnale,
B. A. van Hassel,
D. Cossement,
Richard Chahine and
Michael Hirscher
Considerable progress has been made recently in the use of nanoporous materials for hydrogen storage. In this article the current status of the field and future challenges are discussed ranging from important open fundamental questions such as the density and volume of the adsorbed phase and its relationship to overall storage capacity to the development of new functional materials and complete storage system design. With regard to fundamentals the use of neutron scattering to study adsorbed H2 suitable adsorption isotherm equations and the accurate computational modelling and simulation of H2 adsorption are discussed. The new materials covered include flexible metal–organic frameworks core–shell materials and porous organic cage compounds. The article concludes with a discussion of the experimental investigation of real adsorptive hydrogen storage tanks the improvement in the thermal conductivity of storage beds and new storage system concepts and designs.
A Flexible Techno-economic Analysis Tool for Regional Hydrogen Hubs - A Case Study for Ireland
Apr 2023
Publication
The increasing urgency with which climate change must be addressed has led to an unprecedented level of interest in hydrogen as a clean energy carrier. Much of the analysis of hydrogen until this point has focused predominantly on hydrogen production. This paper aims to address this by developing a flexible techno-economic analysis (TEA) tool that can be used to evaluate the potential of future scenarios where hydrogen is produced stored and distributed within a region. The tool takes a full year of hourly data for renewables availability and dispatch down (the sum of curtailment and constraint) wholesale electricity market prices and hydrogen demand as well as other user-defined inputs and sizes electrolyser capacity in order to minimise cost. The model is applied to a number of case studies on the island of Ireland which includes Ireland and Northern Ireland. For the scenarios analysed the overall LCOH ranges from V2.75e3.95/kgH2. Higher costs for scenarios without access to geological storage indicate the importance of cost-effective storage to allow flexible hydrogen production to reduce electricity costs whilst consistently meeting a set demand.
Dispersion, Ignition and Combustion Characteristics of Low-pressure Hydrogen-Methane Blends
Sep 2023
Publication
In this paper we study the dispersion ignition and flame characteristics of blended jets of hydrogen and methane (as a proxy for natural gas) at near-atmospheric pressure for a fixed volumetric flow rate which mimics the scenario of a small-scale unintended leak. A reduction in flame height is observed with increasing hydrogen concentration. A laser is tightly focused to generate a spark with sufficient energy to ignite the fuel. The light-up boundary defined as the delineating location at which a spark ignites into a jet flame or extinguishes is determined as a contour. The light-up boundary increases in both width and length as the hydrogen content increases up to 75% hydrogen at which point the axial ignition boundary decreases slightly for pure hydrogen relative to 75% hydrogen. Ignition probability a key parameter regarding safety is computed at various axial locations and is also shown to be higher near the nozzle as well as non-zero at further downstream locations as the hydrogen content in the blend increases. Planar laser Raman scattering is used in separate experiments to determine the concentration of both fuel species. Mean fuel concentrations well below the lower flammability limit are both within the light-up boundary and have non-zero ignition probabilities.
Impacts of Green Hydrogen for Steel, Ammonia, and Long-distance Transport on the Cost of Meeting Electricity, Heat, Cold, and Hydrogen Demand in 145 Countries Running on 100% Wind-water-solar
May 2023
Publication
As the world moves to clean renewable energy questions arise as to how best to produce and use hydrogen. Here we propose using hydrogen produced only by electrolysis with clean renewable electricity (green hydrogen). We then test the impact of producing such hydrogen intermittently versus continuously for steel and ammonia manufacturing and long-distance transport via fuel cells on the cost of matching electricity heat cold and hydrogen demand with supply and storage on grids worldwide. An estimated 79 32 and 91 Tg-H2/y of green hydrogen are needed in 2050 among 145 countries for steel ammonia and long-distance transport respectively. Producing and compressing such hydrogen for these processes may consume ~12.1% of the energy needed for end-use sectors in these countries after they transition to 100% wind-water-solar (WWS) in all such sectors. This is less than the energy needed for fossil fuels to power the same processes. Due to the variability of WWS electricity producing green hydrogen intermittently rather than continuously thus with electrolyzer use factors significantly below unity (0.2–0.65) may reduce overall energy costs with 100% WWS. This result is subject to model uncertainties but appears robust. In sum grid operators should incorporate intermittent green hydrogen production and use in planning.
Integration of Renewable Energy Sources in Tandem with Electrolysis: A Technology Review for Green Hydrogen Production
Jun 2024
Publication
The global shift toward sustainable energy solutions emphasises the urgent need to harness renewable sources for green hydrogen production presenting a critical opportunity in the transition to a low-carbon economy. Despite its potential integrating renewable energy with electrolysis to produce green hydrogen faces significant technological and economic challenges particularly in achieving high efficiency and cost-effectiveness at scale. This review systematically examines the latest advancements in electrolysis technologies—alkaline proton exchange membrane electrolysis cell (PEMEC) and solid oxide—and explores innovative grid integration and energy storage solutions that enhance the viability of green hydrogen. The study reveals enhanced performance metrics in electrolysis processes and identifies critical factors that influence the operational efficiency and sustainability of green hydrogen production. Key findings demonstrate the potential for substantial reductions in the cost and energy requirements of hydrogen production by optimising electrolyser design and operation. The insights from this research provide a foundational strategy for scaling up green hydrogen as a sustainable energy carrier contributing to global efforts to reduce greenhouse gas emissions and advance toward carbon neutrality. The integration of these technologies could revolutionise energy systems worldwide aligning with policy frameworks and market dynamics to foster broader adoption of green hydrogen.
The Transition to a Renewable Energy Electric Grid in the Caribbean Island Nation of Antigua and Barbuda
Aug 2023
Publication
The present study describes the development and application of a model of the national electricity system for the Caribbean dual-island nation of Antigua and Barbuda to investigate the cost optimal mix of solar photovoltaics (PVs) wind and in the most novel contribution concentrating solar power (CSP). These technologies together with battery and hydrogen energy storage can enable the aim of achieving 100% renewable electricity and zero carbon emissions. The motivation for this study was that while most nations in the Caribbean rely largely on diesel fuel or heavy fuel oil for grid electricity generation many countries have renewable resources beyond wind and solar energy. Antigua and Barbuda generates 93% of its electricity from diesel-fueled generators and has set the target of becoming a net-zero nation by 2040 as well as having 86% renewable energy generation in the electricity sector by 2030 but the nation has no hydroelectric or geothermal resources. Thus this study aims to demonstrate that CSP is a renewable energy technology that can help assist Antigua and Barbuda in its transition to a renewable energy electric grid while also decreasing electricity generation costs. The modeled optimal mix of renewable energy technologies presented here was found for Antigua and Barbuda by assessing the levelized cost of electricity (LCOE) for systems comprising various combinations of energy technologies and storage. Other factors were also considered such as land use and job creation. It was found that 100% renewable electricity systems are viable and significantly less costly than current power systems and that there is no single defined pathway towards a 100% renewable energy grid but several options are available.
Populating the Hydrogen Component Reliability Database (HYCRED) with Incident Data from Hydrogen Dispensing
Sep 2023
Publication
Safety risk and reliability issues are vital to ensure the continuous and profitable operation of hydrogen technologies. Quantitative risk assessment (QRA) has been used to enable the safe deployment of engineering systems especially hydrogen fueling stations. However QRA studies require reliability data which are essential to collect to make the studies as realistic and relevant as possible. These data are currently lacking and data from other industries such as oil and gas are used in hydrogen system QRAs. This may lead to inaccurate results since hydrogen fueling stations have differences in physical properties system design and operational parameters when compared to other fueling stations thus necessitating new data sources are necessary to capture the effects of these differences. To address this gap we developed a structure for a hydrogen component reliability database (HyCReD) [1] which could be used to generate reliability data to be used in QRA studies. In this paper we demonstrate populating the HyCReD database with information extracted from new narrative reports on hydrogen fueling station incidents specifically focused on the dispensing processes. We analyze five new events and demonstrate the feasibility of populating the database and types of meaningful insights that can be obtained at this stage.
Modelling Underground Hydrogen Storage: A State-of-the-art Review of Fundamental Approaches and Findings
Dec 2023
Publication
This review presents a state-of-the-art of geochemical geomechanical and hydrodynamic modelling studies in the Underground Hydrogen Storage (UHS) domain. Geochemical modelling assessed the reactivity of hydrogen and res pective fluctuations in hydrogen losses using kinetic reaction rates rock mineralogy brine salinity and the integration of hydrogen redox reactions. Existing geomechanics studies offer an array of coupled hydromechanical models suggesting a decline in rock failure during the withdrawal phase in aquifers compared to injection phase. Hydrodynamic modelling evaluations indicate the critical importance of relative permeability hysteresis in determining the UHS performance. Solubility and diffusion of hydrogen gas appear to have minimal impact on UHS. Injection and production rates cushion gas deployment and reservoir heterogeneity however significantly affect the UHS performance stressing the need for thorough modelling and experimental studies. Most of the current UHS modelling efforts focus on assessing the hydrodynamic aspects which are crucial for understanding the viability and safety of UHS. In contrast the lesser-explored geochemical and geomechanical considerations point to potential research gaps. A variety of modelling software tools such as CMG Eclipse COMSOL and PHREEQC evaluated those UHS underlying effects along with a few recent applications of datadriven-based Machine Learning (ML) techniques for enhanced accuracy. This review identified several unresolved challenges in UHS modelling: pronounced lack of expansive datasets leading to a gap between model predictions and their practical reliability; need robust methodologies capable of capturing natural subsurface heterogeneity while upscaling from precise laboratory data to field-scale conditions; demanding intensive computational resources and novel strategies to enhance simulation efficiency; and a gap in addressing geological uncertainties in subsurface environments suggesting that methodologies from oil reservoir simulations could be adapted for UHS. This comprehensive review offers a critical synthesis of the prevailing approaches challenges and research gaps in the domain of UHS thus providing a valuable reference document for further modelling efforts facilitating the informed advancements in this critical domain towards the realization of sustainable energy solutions.
Dual Fuel-based Multi-Energy System for Australian Renewable Energy Zones at Country Scale
Jul 2025
Publication
This paper aims to optimize dual-fuel facilitated off-/on-grid multi-energy systems (MESs) for different renewable energy zones (REZs) in Australia. The main objective is to develop a novel MES with the main feature of green hydrogen production and blended natural gas utilization for remote households. The proposed optimal system produces green hydrogen of 5343 kg/yr via proton exchange membrane (PEM) electrolyzer and blends it with natural gas. It involves 20 % hydrogen and 80 % natural gas in the overall volume of the blending process. This study contributes by performing optimal sizing of the components economic-energy-environmental and performance analyses to examine the most feasible solution for each REZ. The results indicate that the optimal system in North Queensland REZ has the lowest levelized cost of energy (LCE) of 1.28 A$/kWh and 0.1003 A $/kWh and the net present cost (NPC) of A$0.311 million and A$0.219 million for off-grid and on-grid configurations. The optimal on-grid system has 95.27 % less carbon emissions than the natural gas-fueled combustion energy system.
Economic Assessment of Clean Hydrogen Production from Fossil Fuels in the Intermountain-west Region, USA
Jan 2024
Publication
The transition from fossil fuels to carbon-neutral energy sources is necessary to reduce greenhouse gas (GHG) emissions and combat climate change. Hydrogen (H2) provides a promising path to harness fossil fuels to reduce emissions in sectors such as transportation. However regional economic analyses of various H2 production techniques are still lacking. We selected a well-known fossil fuel-exporting region the USA’s Intermountain-West (I-WEST) to analyze the carbon intensity of H2 production and demonstrate regional tradeoffs. Currently 78 % of global H2 production comes from natural gas and coal. Therefore we considered steam methane reforming (SMR) surface coal gasification (SCG) and underground coal gasification (UCG) as H2 production methods in this work. We developed the cost estimation frameworks of SMR SCG and UCG with and without carbon capture utilization and sequestration (CCUS). In addition we identified optimal sites for H2 hubs by considering the proximity to energy sources energy markets storage sites and CO2 sequestration sites. We included new production tax credits (PTCs) in the cost estimation to quantify the economic benefit of CCUS. Our results suggest that the UCG has the lowest levelized cost of H2 production due to the elimination of coal production cost. H2 production using the SMR process with 99 % carbon capture is profitable when the PTCs are considered. We also analyzed carbon utilization opportunities where CO2 conversion to formic acid is a promising profitable option. This work quantifies the potential of H2 production from fossil fuels in the I-WEST region a key parameter for designing energy transition pathways.
Renewable Hydrogen and Synthetic Fuels Versus Fossil Fuels for Trucking, Shipping and Aviation: A Holistic Cost Model
Aug 2023
Publication
Potential carbon neutrality of the global trucking shipping and aviation sectors by 2050 could be achieved by substituting fossil fuels with renewable hydrogen and synthetic fuels. To investigate the economic impact of fuel substitution over time a holistic cost model is developed and applied to three case studies in Norway an early adopter of carbon-neutral freight transport. The model covers the value chains from local electricity and fuel production (hydrogen ammonia Fischer–Tropsch e-fuel) to fuel consumption for long-haul trucking short-sea shipping and mid-haul aviation. The estimates are internally consistent and allow cross-mode and cross-fuel comparisons that set this work apart from previous studies more narrowly focused on a given transport mode or fuel. The model contains 150 techno-economic parameters to identify which components along the value chains drive levelized costs. This paper finds a cost reduction potential for renewable fuels of 41% to 68% until 2050 but carbon-neutral transport will suffer asymmetric cost disadvantages. Fuel substitution is most expensive in short-sea shipping followed by mid-haul aviation and long-haul trucking. Cost developments of electricity direct air capture of carbon vehicle expenses and fuel-related payload losses are significant drivers.
Dispersion of Under-expanded Hydrogen-methane Blended Jets through a Circular Orifice
Sep 2023
Publication
Blending hydrogen into natural gas and using existing natural gas infrastructure provides energy storage greenhouse gas emission reduction from combustion and other benefits as the world transitions to a hydrogen economy. Though this seems to be a simple and attractive technique there is a dearth of existing safety codes and standards and understanding the safety implications is warranted before implementation. In this paper we present some preliminary findings on the dispersion characteristics of hydrogen-methane blends performed under controlled conditions inside a laboratory. Experiments were performed at two different upstream pressures of 5 and 10 bar as the blends dispersed into air through a 1 mm diameter orifice. Blends of 25 50 and 75 vol-% hydrogen in methane were tested. Spatially resolved Raman signals from hydrogen methane and nitrogen were acquired simultaneously at 10 Hz using separate ICCD cameras from which the individual concentrations and jet boundaries could be determined. Finally a comparison between dispersion characteristics of blended fuel jets with pure hydrogen and pure methane jets was made.
A Cost Comparison of Various Hourly-reliable and Net-zero Hydrogen Production Pathways in the United States
Nov 2023
Publication
Hydrogen (H2) as an energy carrier may play a role in various hard-to-abate subsectors but to maximize emission reductions supplied hydrogen must be reliable low-emission and low-cost. Here we build a model that enables direct comparison of the cost of producing net-zero hourly-reliable hydrogen from various pathways. To reach net-zero targets we assume upstream and residual facility emissions are mitigated using negative emission technologies. For the United States (California Texas and New York) model results indicate nextdecade hybrid electricity-based solutions are lower cost ($2.02-$2.88/kg) than fossil-based pathways with natural gas leakage greater than 4% ($2.73-$5.94/ kg). These results also apply to regions outside of the U.S. with a similar climate and electric grid. However when omitting the net-zero emission constraint and considering the U.S. regulatory environment electricity-based production only achieves cost-competitiveness with fossil-based pathways if embodied emissions of electricity inputs are not counted under U.S. Tax Code Section 45V guidance.
U.S. National Clean Hydrogen Strategy and Roadmap
Jun 2023
Publication
The U.S. National Clean Hydrogen Strategy and Roadmap explores opportunities for clean hydrogen to contribute to national decarbonization goals across multiple sectors of the economy. It provides a snapshot of hydrogen production transport storage and use in the United States today and presents a strategic framework for achieving large-scale production and use of clean hydrogen examining scenarios for 2030 2040 and 2050.
The Strategy and Roadmap also identifies needs for collaboration among federal government agencies industry academia national laboratories state local and Tribal communities environmental and justice communities labor unions and numerous stakeholder groups to accelerate progress and market liftoff. This roadmap establishes concrete targets market-driven metrics and tangible actions to measure success across sectors.
The Strategy and Roadmap responds to legislative language set forth in section 40314 of the Infrastructure Investment and Jobs Act (Public Law 117-58) also known as the Bipartisan Infrastructure Law (BIL). This document was posted for in draft form for public comment in September 2022 and the final version of the report was informed by stakeholder feedback further analysis on market liftoff as well as engagement across several federal agencies and the White House Climate Policy Office. There will also be future opportunities for stakeholder feedback as the report will be updated at least every three years as required by the BIL.
The report can be found on their website.
The Strategy and Roadmap also identifies needs for collaboration among federal government agencies industry academia national laboratories state local and Tribal communities environmental and justice communities labor unions and numerous stakeholder groups to accelerate progress and market liftoff. This roadmap establishes concrete targets market-driven metrics and tangible actions to measure success across sectors.
The Strategy and Roadmap responds to legislative language set forth in section 40314 of the Infrastructure Investment and Jobs Act (Public Law 117-58) also known as the Bipartisan Infrastructure Law (BIL). This document was posted for in draft form for public comment in September 2022 and the final version of the report was informed by stakeholder feedback further analysis on market liftoff as well as engagement across several federal agencies and the White House Climate Policy Office. There will also be future opportunities for stakeholder feedback as the report will be updated at least every three years as required by the BIL.
The report can be found on their website.
Reversible Molten Catalytic Methane Cracking Applied to Commercial Solar-Thermal Receivers
Nov 2020
Publication
When driven by sunlight molten catalytic methane cracking can produce clean hydrogen fuel from natural gas without greenhouse emissions. To design solar methane crackers a canonical plug flow reactor model was developed that spanned industrially relevant temperatures and pressures (1150–1350 Kelvin and 2–200 atmospheres). This model was then validated against published methane cracking data and used to screen power tower and beam-down reactor designs based on “Solar Two” a renewables technology demonstrator from the 1990s. Overall catalytic molten methane cracking is likely feasible in commercial beam-down solar reactors but not power towers. The best beam-down reactor design was 9% efficient in the capture of sunlight as fungible hydrogen fuel which approaches photovoltaic efficiencies. Conversely the best discovered tower methane cracker was only 1.7% efficient. Thus a beam-down reactor is likely tractable for solar methane cracking whereas power tower configurations appear infeasible. However the best simulated commercial reactors were heat transfer limited not reaction limited. Efficiencies could be higher if heat bottlenecks are removed from solar methane cracker designs. This work sets benchmark conditions and performance for future solar reactor improvement via design innovation and multiphysics simulation.
Economic Performance Evaluation of Flexible Centralised and Decentralised Blue Hydrogen Production Systems Design Under Uncertainty
Sep 2023
Publication
Blue hydrogen is viewed as an important energy vector in a decarbonised global economy but its large-scale and capital-intensive production displays economic performance vulnerabities in the face of increased market and regulatory uncertainty. This study analyses flexible (modular) blue hydrogen production plant designs and evaluates their effectiveness to enhance economic performance under uncertainty. The novelty of this work lies in the development of a comprehensive techno-economic evaluation framework that considers flexible centralised and decentralised blue hydrogen plant design alternatives in the presence of irreducible uncertainty whilst explicitly considering the time value of money economies of scale and learning effects. A case study of centralised and decentralised blue hydrogen production for the transport sector in the San Francisco area is developed to highlight the underlying value of flexibility. The proposed methodological framework considers various blue hydrogen plant designs (fixed phased and flexible) and compares them using relevant economic indicators (net present value (NPV) capex value-at-risk/gain etc.) through a detailed Monte Carlo simulation framework. Results indicate that flexible centralised hydrogen production yields greater economic value than alternative designs despite the associated cost-premium of modularity. It is also shown that the value of flexibility increases under greater uncertainty higher learning rates and weaker economies of scale. Moreover sensitivity analysis reveals that flexible design remains the preferred investment option over a wide range of market and regulatory conditions except for high initial hydrogen demand. Finally this study demonstrates that major regulatory and market uncertainties surrounding blue hydrogen production can be effectively managed through the application of flexible engineering system design that protects the investment from major downside risks whilst allowing access to favourable upside opportunities.
Optimal Design and Sizing of Hybrid Photovoltaic/Fuel Cell Electrical Power System
Aug 2023
Publication
Renewable energy solutions play a crucial role in addressing the growing energy demands while mitigating environmental concerns. This study examines the techno-economic viability and sensitivity of utilizing solar photovoltaic/polymer electrolyte membrane (PEM) fuel cells (FCs) to meet specific power demands in NEOM Saudi Arabia. The novelty of this study lies in its innovative approach to analyzing and optimizing PV/PEMFC systems aiming to highlight their economic feasibility and promote sustainable development in the region. The analysis focuses on determining the optimal size of the PV/PEMFC system based on two critical criteria: minimum cost of energy (COE) and minimum net present cost (NPC). The study considers PEMFCs with power ratings of 30 kW 40 kW and 50 kW along with four PV panel options: Jinko Solar Powerwave Tindo Karra and Trina Solar. The outcomes show that the 30 kW PEMFC and the 201 kW Trina Solar TSM-430NEG9R.28 are the most favorable choices for the case study. Under these optimal conditions the study reveals the lowest values for NPC at USD 703194 and COE at USD 0.498 per kilowatt-hour. The levelized cost of hydrogen falls within the range of USD 15.9 to 23.4 per kilogram. Furthermore replacing the 30 kW Trina solar panel with a 50 kW Tindo PV module results in a cost reduction of 32%. The findings emphasize the criticality of choosing optimal system configurations to attain favorable economic outcomes thereby facilitating the adoption and utilization of renewable energy sources in the region. In conclusion this study stands out for its pioneering and thorough analysis and optimization of PV/PEMFC systems providing valuable insights for sustainable energy planning in NEOM Saudi Arabia.
The Hydrogen Economy can Reduce Costs of Climate Change Mitigation by up to 22%
May 2024
Publication
In response to the urgent need to mitigate climate change via net-zero targets many nations are renewing their interest in clean hydrogen as a net-zero energy carrier. Although clean hydrogen can be directly used in various sectors for deep decarbonization the relatively low energy density and high production costs have raised doubts as to whether clean hydrogen development is worthwhile. Here we improve on the GCAM model by including a more comprehensive and detailed representation of clean hydrogen production distribution and demand in all sectors of the global economy and simulate 25 scenarios to explore the costeffectiveness of integrating clean hydrogen into the global energy system. We show that due to costly technical obstacles clean hydrogen can only provide 3%–9% of the 2050 global final energy use. Nevertheless clean hydrogen deployment can reduce overall energy decarbonization costs by 15%–22% mainly via powering ‘‘hard-to-electrify’’ sectors that would otherwise face high decarbonization expenditures. Our work provides practical references for cost-effective clean hydrogen planning.
Market-based Asset Valuation of Hydrogen Geological Storage
Jul 2023
Publication
Because of hydrogen's low energy density hydrogen storage is a critical component of the hydrogen economy particularly when large-scale and flexible hydrogen utilization is required. There is a sense of urgency to develop hydrogen geological storage projects to support large-scale yet flexible hydrogen utilization. This study aims to answer questions not yet resolved in the research literature discussing the valuation of hydrogen geological storage options for commercial development. This study establishes a net present value (NPV) evaluation framework for geological hydrogen storage that integrates the updated techno-economic analysis and market-based operations. The capital asset pricing model (CAPM) and the related finance theories are applied to determine the risk-adjusted discount rate in building the NPV evaluation framework. The NPV framework has been applied to two geological hydrogen storage projects a single-turn storage serving downstream transportation seasonal demand versus a multiturn storage as part of an integrated renewables-based hydrogen energy system providing peak electric load. From the NPV framework both projects have positive NPVs $46 560 632 and $12 457 546 respectively and International Rate of Return (IRR) values which are higher than the costs of capital. The NPV framework is also applied to the sensitivity analysis and shows that the hydrogen price spread between withdrawal and injection prices site development and well costs are the top three factors that impact both NPV and IRR the most for both projects. The established NPV framework can be used for project risk management by discovering the key cost drivers for the storage assets.
An Overview of Challenges for the Future of Hydrogen
Oct 2023
Publication
Hydrogen’s wide availability and versatile production methods establish it as a primary green energy source driving substantial interest among the public industry and governments due to its future fuel potential. Notable investment is directed toward hydrogen research and material innovation for transmission storage fuel cells and sensors. Ensuring safe and dependable hydrogen facilities is paramount given the challenges in accident control. Addressing material compatibility issues within hydrogen systems remains a critical focus. Challenges roadmaps and scenarios steer long-term planning and technology outlooks. Strategic visions align actions and policies encompassing societal and ecological dimensions. The confluence of hydrogen’s promise with material progress holds the prospect of reshaping our energy landscape sustainably. Forming collective future perspectives to foresee this emerging technology’s potential benefits is valuable. Our review article comprehensively explores the forthcoming challenges in hydrogen technology. We extensively examine the challenges and opportunities associated with hydrogen production incorporating CO2 capture technology. Furthermore the interaction of materials and composites with hydrogen particularly in the context of hydrogen transmission pipeline and infrastructure are discussed to understand the interplay between materials and hydrogen dynamics. Additionally the exploration extends to the embrittlement phenomena during storage and transmission coupled with a comprehensive examination of the advancements and hurdles intrinsic to hydrogen fuel cells. Finally our exploration encompasses addressing hydrogen safety from an industrial perspective. By illuminating these dimensions our article provides a panoramic view of the evolving hydrogen landscape.
Natural Hydrogen in the Energy Transition: Fundamentals, Promise, and Enigmas
Oct 2023
Publication
Beyond its role as an energy vector a growing number of natural hydrogen sources and reservoirs are being discovered all over the globe which could represent a clean energy source. Although the hydrogen amounts in reservoirs are uncertain they could be vast and they could help decarbonize energy-intensive economic sectors and facilitate the energy transition. Natural hydrogen is mainly produced through a geochemical process known as serpentinization which involves the reaction of water with low-silica ferrous minerals. In favorable locations the hydrogen produced can become trapped by impermeable rocks on its way to the atmosphere forming a reservoir. The safe exploitation of numerous natural hydrogen reservoirs seems feasible with current technology and several demonstration plants are being commissioned. Natural hydrogen may show variable composition and require custom separation purification storage and distribution facilities depending on the location and intended use. By investing in research in the mid-term more hydrogen sources could become exploitable and geochemical processes could be artificially stimulated in new locations. In the long term it may be possible to leverage or engineer the interplay between microorganisms and geological substrates to obtain hydrogen and other chemicals in a sustainable manner.
Review of Sampling and Analysis of Particulate Matter in Hydrogen Fuel
Sep 2023
Publication
This review presents state-of-the-art for representative sampling of hydrogen from hydrogen refueling stations. Documented sampling strategies are presented as well as examples of commercially available equipment for sampling at the hydrogen refueling nozzle. Filter media used for sampling is listed and the performance of some of the filters evaluated. It was found that the filtration efficiency of 0.2 and 5 mm filters were not significantly different when exposed to 200 and 300 nm particles. Several procedures for gravimetric analysis are presented and some of the challenges are identified to be filter degradation pinhole formation and conditioning of the filter prior to measurement. Lack of standardization of procedures was identified as a limitation for result comparison. Finally the review summarizes results including particulate concentration in hydrogen fuel quality data published. It was found that less than 10% of the samples were in violation with the tolerance limit.
No more items...