United States
Decarbonization of Australia’s Energy System: Integrated Modelling of the Transformation of Electricity, Transportation, and Industrial Sectors
Jul 2020
Publication
To achieve the Paris Agreement’s long-term temperature goal current energy systems must be transformed. Australia represents an interesting case for energy system transformation modelling: with a power system dominated by fossil fuels and specifically with a heavy coal component there is at the same time a vast potential for expansion and use of renewables. We used the multi-sectoral Australian Energy Modelling System (AUSeMOSYS) to perform an integrated analysis of implications for the electricity transport and selected industry sectors to the mid-century. The state-level resolution allows representation of regional discrepancies in renewable supply and the quantification of inter-regional grid extensions necessary for the physical integration of variable renewables. We investigated the impacts of different CO2 budgets and selected key factors on energy system transformation. Results indicate that coal-fired generation has to be phased out completely by 2030 and a fully renewable electricity supply achieved in the 2030s according to the cost-optimal pathway implied by the 1.5 °C Paris Agreement-compatible carbon budget. Wind and solar PV can play a dominant role in decarbonizing Australia’s energy system with continuous growth of demand due to the strong electrification of linked energy sectors.
How Green is Blue Hydrogen?
Jul 2021
Publication
Hydrogen is often viewed as an important energy carrier in a future decarbonized world. Currently most hydrogen is produced by steam reforming of methane in natural gas (“gray hydrogen”) with high carbon dioxide emissions. Increasingly many propose using carbon capture and storage to reduce these emissions producing so-called “blue hydrogen” frequently promoted as low emissions. We undertake the first effort in a peer-reviewed paper to examine the lifecycle greenhouse gas emissions of blue hydrogen accounting for emissions of both carbon dioxide and unburned fugitive methane. Far from being low carbon greenhouse gas emissions from the production of blue hydrogen are quite high particularly due to the release of fugitive methane. For our default assumptions (3.5% emission rate of methane from natural gas and a 20-year global warming potential) total carbon dioxide equivalent emissions for blue hydrogen are only 9%-12% less than for gray hydrogen. While carbon dioxide emissions are lower fugitive methane emissions for blue hydrogen are higher than for gray hydrogen because of an increased use of natural gas to power the carbon capture. Perhaps surprisingly the greenhouse gas footprint of blue hydrogen is more than 20% greater than burning natural gas or coal for heat and some 60% greater than burning diesel oil for heat again with our default assumptions. In a sensitivity analysis in which the methane emission rate from natural gas is reduced to a low value of 1.54% greenhouse gas emissions from blue hydrogen are still greater than from simply burning natural gas and are only 18%-25% less than for gray hydrogen. Our analysis assumes that captured carbon dioxide can be stored indefinitely an optimistic and unproven assumption. Even if true though the use of blue hydrogen appears difficult to justify on climate ground
Addressing the Low-carbon Million-gigawatt-hour Energy Storage Challenge
Nov 2021
Publication
The energy system of the United States requires several million gigawatt hours of energy storage to meet variable demand for energy driven by (1) weather (heating and cooling) (2) social patterns (daily and weekday/weekend) of work play and sleep (3) weather-dependent energy production (wind and solar) and (4) industrial requirements. In a low-carbon world four storage options can meet this massive requirement at affordable costs: nuclear fuels heat storage hydrocarbon liquids made from biomass and hydrogen. Because of the different energy sector characteristics (electrical supply transportation commercial and industrial) each of these options must be developed. Capital costs associated with electricity storage at this scale using for example batteries and hydroelectric technologies are measured in hundreds of trillions of dollars for the United States alone and thus are not viable.
Durability of Anion Exchange Membrane Water Electrolyzers
Apr 2021
Publication
Interest in the low-cost production of clean hydrogen is growing. Anion exchange membrane water electrolyzers (AEMWEs) are considered one of the most promising sustainable hydrogen production technologies because of their ability to split water using platinum group metal-free catalysts less expensive anode flow fields and bipolar plates. Critical to the realization of AEMWEs is understanding the durability-limiting factors that restrict the long-term use of these devices. This article presents both durability-limiting factors and mitigation strategies for AEMWEs under three operation modes i.e. pure water-fed (no liquid electrolyte) concentrated KOH-fed and 1 wt% K2CO3-fed operating at a differential pressure of 100 psi. We examine extended-term behaviors of AEMWEs at the single-cell level and connect their behavior with the electrochemical chemical and mechanical instability of single-cell components. Finally we discuss the pros and cons of AEMWEs under these operation modes and provide direction for long-lasting AEMWEs with highly efficient hydrogen production capabilities.
Development of Liquid Hydrogen Leak Frequencies Using a Bayesian Update Process
Sep 2021
Publication
To quantify the risk of an accident in a liquid hydrogen system it is necessary to determine how often a leak may occur. To do this representative component leakage frequencies specific to liquid hydrogen can be determined as a function of the normalized leak size. Subsequently the system characteristics (e.g. system pressure) can be used to calculate accident consequences. Operating data (such as leak frequencies) for liquid hydrogen systems are very limited; rather than selecting a single leak frequency value from a literature source data from different sources can be combined using a Bayesian model. This approach provides leakage rates for different amounts of leakage distributions for leakage rates to propagate through risk assessment models to establish risk result uncertainty and a means for incorporating liquid hydrogen-specific leakage data with leakage frequencies from other fuels. Specifically other cryogenic fluids like liquefied natural gas are used as a baseline for the Bayesian analysis. This Bayesian update process is used to develop leak frequency distributions for different system component types and leak sizes. These leak frequencies can be refined as liquid hydrogen data becomes available and may then inform safety code requirements based on the likelihood of liquid hydrogen release for different systems.
Life-Cycle Greenhouse Gas Emissions Of Biomethane And Hydrogen Pathways In The European Union
Oct 2021
Publication
Gaseous fuels with low life-cycle emissions of greenhouse gases (GHG) play a prominent role in the European Union’s (EU) decarbonization plans. Renewable and low-GHG hydrogen are highlighted in the ambitious goals for a cross-sector hydrogen economy laid out in the European Commission’s Hydrogen Strategy. Renewable hydrogen and biomethane are given strong production incentives in the Commission’s proposed revision to the Renewable Energy Directive (REDII). The EU uses life-cycle analysis (LCA) to determine whether renewable gas pathways meet the GHG reduction thresholds for eligibility in the REDII. This study aims to support European policymakers with a better understanding of the uncertainties regarding gaseous fuels’ roles in meeting climate goals. Life-cycle GHG analysis is complex and differences in methodology as well as data inputs and assumptions can spell the difference between a renewable gas pathway qualifying or not for REDII eligibility at the 50% to 80% GHG reduction level. It is thus important for European policymakers to use robust LCA to ensure that policy only supports gas pathways consistent with a vision of deep decarbonization. For this purpose we conduct sensitivity analysis of the life-cycle GHG emissions of a number of low-GHG gas pathways including biomethane produced from four feedstocks: wastewater sludge manure landfill gas (LFG) and silage maize; and hydrogen produced from eight sources: natural gas combined with carbon capture and storage (CCS) coal with CCS biomass gasification renewable electricity 2030 EU grid electricity wastewater sludge biomethane manure biomethane and LFG biomethane. For each pathway we estimate the life-cycle GHG intensity using a default central case identify key parameters that strongly affect the fuel’s GHG intensity and conduct a sensitivity analysis by changing these key parameters according to the range of possible values collected from the literature. Figure ES1 summarizes the full range of possible GHG intensities for each gaseous pathway we analyzed in this study—biomethane is depicted in the top figure and hydrogen is shown in the bottom. The bars represent the GHG intensity of the central case and vertical error bars indicate the maximum and minimum GHG intensity of each pathway according to our sensitivity analysis. The dotted orange horizontal line illustrates the fossil comparator which is 94 grams of carbon dioxide equivalent per megajoule (gCO2e/MJ) for transport fuels in the REDII. The dotted yellow line represents the GHG intensity of a 65% GHG reduction goal for biomethane used in the transportation sector or 70% GHG reduction for hydrogen. Pathways are situated from left to right in increasing order of GHG intensity of the central case. Comparing the central cases of the four biomethane pathways the waste-based biomethane pathways generally have negative GHG intensity. However considering the uncertainty in these GHG intensities manure biomethane might have more limited carbon reduction potential in the 100-year timeframe if methane leakage from its production process is high. In contrast wastewater sludge biomethane and LFG biomethane even after accounting for uncertainties retain relatively low GHG emissions. On the other hand biomethane produced from silage maize can have much higher emissions; in the central case we find that silage maize biogas only reduces GHG emissions by 30% relative to the fossil comparator—the low carbon reduction potential is due to the significant emissions emerging from direct and indirect land use change involved in growing maize. Taking into account the variation in assumptions silage maize biomethane can be worse for the climate than fossil fuels.
Road Map to a US Hydrogen Energy: Reducing Emissions and Driving Growth Across the Nation
Oct 2020
Publication
This US Hydrogen Road Map was created through the collaboration of executives and technical industry experts in hydrogen across a broad range of applications and sectors who are committed to improving the understanding of hydrogen and how to increase its adoption across many sectors of the economy. For the first time this coalition of industry leaders has convened to develop a targeted holistic approach for expanding the use of hydrogen as an energy carrier. Due to great variation among national and state policies infrastructure needs and community interests each state and region of the US will likely have its own specific policies and road maps for implementing hydrogen infrastructure. The West Coast for example has traditionally had progressive policies on reducing transportation emissions so it is likely that hydrogen will scale sooner for vehicles in this region especially California. Experts also acknowledge the role that hydrogen in combination with renewables can play in supplying microgrid-type power to communities with the highest risk of shut-offs during seasonal weather-related issues such as high temperatures or wildfire-related power interruptions. Some states have emphasized the need to decarbonize the gas grid so blending hydrogen in natural gas networks and using hydrogen as feedstock may advance more quickly in these regions. Other states are interested in hydrogen as a means to address power grid issues enable the deployment of renewables and support competitive nuclear power. The launch of hydrogen technologies in some states or regions will help to scale hydrogen in various applications across the country laying the foundation for energy security grid resiliency economic growth and the reduction of both greenhouse gas (GHG) emissions and air pollutants. This report outlines the benefits and impact of fuel cell technologies and hydrogen as a viable solution to the energy challenges facing the US through 2030 and beyond. As such it can serve as the latest comprehensive industry-driven national road map to accelerate and scale up hydrogen in the economy across North America
The Future of Clean Hydrogen in the United States: Views from Industry, Market Innovators, and Investors
Sep 2021
Publication
This report The Future of Clean Hydrogen in the United States: Views from Industry Market Innovators and Investors sheds light on the rapidly evolving hydrogen market based on 72 exploratory interviews with organizations across the current and emerging hydrogen value chain. This report is part of a series From Kilograms to Gigatons: Pathways for Hydrogen Market Formation in the United States which will build on this study to evaluate policy opportunities for further hydrogen development in the United States. The goal of the interviews was to provide a snapshot of the clean hydrogen investment environment and better understand organizations’ market outlook investment rationale and areas of interest. This interview approach was supported by traditional research methods to contextualize and enrich the qualitative findings. This report should be understood as input to a more extensive EFI analysis of hydrogen market formation in the United States; the directions that companies are pursuing in hydrogen production transport and storage and end use at this early stage of value chain development will inform subsequent analysis in important ways.
Influence of Cs Promoter on Ethanol Steam-Reforming Selectivity of Pt/m-ZrO2 Catalysts at Low Temperature
Sep 2021
Publication
The decarboxylation pathway in ethanol steam reforming ultimately favors higher selectivity to hydrogen over the decarbonylation mechanism. The addition of an optimized amount of Cs to Pt/m-ZrO2 catalysts increases the basicity and promotes the decarboxylation route converting ethanol to mainly H2 CO2 and CH4 at low temperature with virtually no decarbonylation being detected. This offers the potential to feed the product stream into a conventional methane steam reformer for the production of hydrogen with higher selectivity. DRIFTS and the temperature-programmed reaction of ethanol steam reforming as well as fixed bed catalyst testing revealed that the addition of just 2.9% Cs was able to stave off decarbonylation almost completely by attenuating the metallic function. This occurs with a decrease in ethanol conversion of just 16% relative to the undoped catalyst. In comparison with our previous work with Na this amount is—on an equivalent atomic basis—just 28% of the amount of Na that is required to achieve the same effect. Thus Cs is a much more efficient promoter than Na in facilitating decarboxylation.
Optimization of Component Sizing for a Fuel Cell-Powered Truck to Minimize Ownership Cost
Mar 2019
Publication
In this study we consider fuel cell-powered electric trucks (FCETs) as an alternative to conventional medium- and heavy-duty vehicles. FCETs use a battery combined with onboard hydrogen storage for energy storage. The additional battery provides regenerative braking and better fuel economy but it will also increase the initial cost of the vehicle. Heavier reliance on stored hydrogen might be cheaper initially but operational costs will be higher because hydrogen is more expensive than electricity. Achieving the right tradeoff between these power and energy choices is necessary to reduce the ownership cost of the vehicle. This paper develops an optimum component sizing algorithm for FCETs. The truck vehicle model was developed in Autonomie a platform for modelling vehicle energy consumption and performance. The algorithm optimizes component sizes to minimize overall ownership cost while ensuring that the FCET matches or exceeds the performance and cargo capacity of a conventional vehicle. Class 4 delivery truck and class 8 linehaul trucks are shown as examples. We estimate the ownership cost for various hydrogen costs powertrain components ownership periods and annual vehicle miles travelled.
Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures
Jul 2015
Publication
Here we report direct physical evidence that confinement of molecular hydrogen (H2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H2 at temperatures up to 67 K above the liquid vapor critical temperature of bulk H2. This extreme densification is attributed to confinement of H2 molecules in the optimally sized micropores and occurs at pressures as low as 0.02 MPa. The quantities of contained solid-like H2 increased with pressure and were directly evaluated using in situ inelastic neutron scattering and confirmed by analysis of gas sorption isotherms. The demonstration of the existence of solid-like H2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H2 density. Thus this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.
Nuclear-Renewables Energy System for Hydrogen and Electricity Production
May 2011
Publication
In the future the world may have large stranded resources of low-cost wind and solar electricity. Renewable electricity production does not match demand and production is far from major cities. The coupling of nuclear energy with renewables may enable full utilization of nuclear and renewable facilities to meet local electricity demands and export pipeline hydrogen for liquid fuels fertilizer and metals production. Renewables would produce electricity at full capacity in large quantities. The base-load nuclear plants would match electricity production with demand by varying the steam used for electricity versus hydrogen production. High-temperature electrolysis (HTE) would produce hydrogen from water using (a) steam from nuclear plants and (b) electricity from nuclear plants and renewables. During times of peak electricity demand the HTE cells would operate in reverse fuel cell mode to produce power substituting for gas turbines that are used for very few hours per year and that thus have very high electricity costs. The important net hydrogen production would be shipped by pipeline to customers. Local hydrogen storage would enable full utilization of long-distance pipeline capacity with variable production. The electricity and hydrogen production were simulated with real load and wind data to understand under what conditions such systems are economic. The parametric case study uses a wind-nuclear system in North Dakota with hydrogen exported to the Chicago refinery market. North Dakota has some of the best wind conditions in the United States and thus potentially low-cost wind. The methodology allows assessments with different economic and technical assumptions - including what electrolyzer characteristics are most important for economic viability.
Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect
Aug 2020
Publication
Natural gas (Methane) is currently the primary source of catalytic hydrogen production accounting for three quarters of the annual global dedicated hydrogen production (about 70 M tons). Steam–methane reforming (SMR) is the currently used industrial process for hydrogen production. However the SMR process suffers with insufficient catalytic activity low long-term stability and excessive energy input mostly due to the handling of large amount of CO2 coproduced. With the demand for anticipated hydrogen production to reach 122.5 M tons in 2024 novel and upgraded catalytic processes are desired for more effective utilization of precious natural resources. In this review we summarized the major descriptors of catalyst and reaction engineering of the SMR process and compared the SMR process with its derivative technologies such as dry reforming with CO2 (DRM) partial oxidation with O2 autothermal reforming with H2O and O2. Finally we discussed the new progresses of methane conversion: direct decomposition to hydrogen and solid carbon and selective oxidation in mild conditions to hydrogen containing liquid organics (i.e. methanol formic acid and acetic acid) which serve as alternative hydrogen carriers. We hope this review will help to achieve a whole picture of catalytic hydrogen production from methane.
The Role of LNG in the Transition Toward Low- and Zero-carbon Shipping
Apr 2021
Publication
Due to its much lower air pollution and potential greenhouse gas (GHG) emissions benefits liquefied natural gas (LNG) is frequently discussed as a fuel pathway towards greener maritime transport. While LNG’s air quality improvements are undeniable there is debate within the sector as to what extent LNG may be able to contribute to decarbonizing shipping. This report “The Role of LNG in the Transition Toward Low- and Zero-Carbon Shipping” considers the potential of LNG to play either a transitional role in which existing LNG infrastructure and vessels could continue to be used with compatible zero-carbon bunker fuels after 2030 or a temporary one in which LNG would be rapidly supplanted by zero-carbon alternatives from 2030. Over concerns about methane leakage which could diminish or even offset any GHG benefits associated with LNG and additional capital expenditures the risk of stranded assets as well as a technology lock-in the report concludes that LNG is unlikely to play a significant role in decarbonizing maritime transport. Instead the research finds that LNG is likely to only be used in niche shipping applications or in its non-liquefied form as a feedstock to kickstart the production of zero-carbon bunker fuels when used in conjunction with carbon capture and storage technology. The research further suggests that new public policy in support of LNG as a bunker fuel should be avoided existing policy support should be reconsidered and methane emissions should be regulated.
Numerical Predictions of a Swirl Combustor Using Complex Chemistry Fueled with Ammonia/Hydrogen Blends
Jan 2020
Publication
Ammonia a chemical that contains high hydrogen quantities has been presented as a candidate for the production of clean power generation and aerospace propulsion. Although ammonia can deliver more hydrogen per unit volume than liquid hydrogen itself the use of ammonia in combustion systems comes with the detrimental production of nitrogen oxides which are emissions that have up to 300 times the greenhouse potential of carbon dioxide. This factor combined with the lower energy density of ammonia makes new studies crucial to enable the use of the molecule through methods that reduce emissions whilst ensuring that enough power is produced to support high-energy intensive applications. Thus this paper presents a numerical study based on the use of novel reaction models employed to characterize ammonia combustion systems. The models are used to obtain Reynolds Averaged Navier-Stokes (RANS) simulations via Star-CCM+ with complex chemistry of a 70%–30% (mol) ammonia–hydrogen blend that is currently under investigations elsewhere. A fixed equivalence ratio (1.2) medium swirl (0.8) and confined conditions are employed to determine the flame and species propagation at various operating atmospheres and temperature inlet values. The study is then expanded to high inlet temperatures high pressures and high flowrates at different confinement boundary conditions. The results denote how the production of NOx emissions remains stable and under 400 ppm whilst higher concentrations of both hydrogen and unreacted ammonia are found in the flue gases under high power conditions. The reduction of heat losses (thus higher temperature boundary conditions) has a crucial impact on further destruction of ammonia post-flame with a raise in hydrogen water and nitrogen through the system thus presenting an opportunity of combustion efficiency improvement of this blend by reducing heat losses. Final discussions are presented as a method to raise power whilst employing ammonia for gas turbine systems.
Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen
Jan 2022
Publication
Effective global decarbonization will require an array of solutions across a portfolio of low-carbon resources. One such solution is developing clean hydrogen. This unique fuel has the potential to minimize climate change impacts helping decarbonize hard-to-abate sectors such as heavy industry and global transport while also promoting energy security sustainable growth and job creation. The authors estimate suggest that hydrogen needs to grow seven-fold to support the global energy transition eventually accounting for ten percent of total energy consumption by 2050. A scaleup of this magnitude will increase demand for materials such as aluminum copper iridium nickel platinum vanadium and zinc to support hydrogen technologies - renewable electricity technologies and the electrolyzers for renewable hydrogen carbon storage for low-carbon hydrogen or fuel cells using hydrogen to power transport. This report a joint product of the World Bank and the Hydrogen Council examines these three critical areas. Using new data on the material intensities of key technologies the report estimates the amount of critical minerals needed to scale clean hydrogen. In addition it shows how incorporating sustainable practices and policies for mining and processing materials can help minimize environmental impacts. Key among these approaches is the use of recycled materials innovations in design in order to reduce material intensities and adoption of policies from the Climate Smart Mining (CSM) Framework to reduce impacts to greenhouse gas emissions and water footprint.
A Compilation of Operability and Emissions Performance of Residential Water Heaters Operated on Blends of Natural Gas and Hydrogen Including Consideration for Reporting Bases
Feb 2023
Publication
The impact of hydrogen added to natural gas on the performance of commercial domestic water heating devices has been discussed in several recent papers in the literature. Much of the work focuses on performance at specific hydrogen levels (by volume) up to 20–30% as a near term blend target. In the current work new data on several commercial devices have been obtained to help quantify upper limits based on flashback limits. In addition results from 39 individual devices are compiled to help generalize observations regarding performance. The emphasis of this work is on emissions performance and especially NOx emissions. It is important to consider the reporting bases of the emissions numbers to avoid any unitended bias. For water heaters the trends associated with both mass per fuel energy input and concentration-based representation are similar For carbon free fuels bases such as 12% CO2 should be avoided. In general the compiled data shows that NOx NO UHC and CO levels decrease with increasing hydrogen percentage. The % decrease in NOx and NO is greater for low NOx devices (meaning certified to NOx <10 ng/J using premixing with excess air) compared to conventional devices (“pancake burners” partial premixing). Further low NOx devices appear to be able to accept greater amounts of hydrogen above 70% hydrogen in some cases without modification while conventional water heaters appear limited to 40–50% hydrogen. Reporting emissions on a mass basis per unit fuel energy input is preferred to the typical dry concentration basis as the greater amount of water produced by hydrogen results in a perceived increase in NOx when hydrogen is used. While this effort summarizes emissions performance with added hydrogen additional work is needed on transient operation higher levels of hydrogen system durability/reliability and heating efficiency.
Transition to a Hydrogen-Based Economy: Possibilities and Challenges
Nov 2022
Publication
Across the globe energy production and usage cause the greatest greenhouse gas (GHG) emissions which are the key driver of climate change. Therefore countries around the world are aggressively striving to convert to a clean energy regime by altering the ways and means of energy production. Hydrogen is a frontrunner in the race to net-zero carbon because it can be produced using a diversity of feedstocks has versatile use cases and can help ensure energy security. While most current hydrogen production is highly carbon-intensive advances in carbon capture renewable energy generation and electrolysis technologies could help drive the production of low-carbon hydrogen. However significant challenges such as the high cost of production a relatively small market size and inadequate infrastructure need to be addressed before the transition to a hydrogen-based economy can be made. This review presents the state of hydrogen demand challenges in scaling up low-carbon hydrogen possible solutions for a speedy transition and a potential course of action for nations.
Hydrogen Liquefaction: A Review of the Fundamental Physics, Engineering Practice and Future Opportunities
Apr 2022
Publication
Hydrogen is emerging as one of the most promising energy carriers for a decarbonised global energy system. Transportation and storage of hydrogen are critical to its large-scale adoption and to these ends liquid hydrogen is being widely considered. The liquefaction and storage processes must however be both safe and efficient for liquid hydrogen to be viable as an energy carrier. Identifying the most promising liquefaction processes and associated transport and storage technologies is therefore crucial; these need to be considered in terms of a range of interconnected parameters ranging from energy consumption and appropriate materials usage to considerations of unique liquid-hydrogen physics (in the form of ortho–para hydrogen conversion) and boil-off gas handling. This study presents the current state of liquid hydrogen technology across the entire value chain whilst detailing both the relevant underpinning science (e.g. the quantum behaviour of hydrogen at cryogenic temperatures) and current liquefaction process routes including relevant unit operation design and efficiency. Cognisant of the challenges associated with a projected hydrogen liquefaction plant capacity scale-up from the current 32 tonnes per day to greater than 100 tonnes per day to meet projected hydrogen demand this study also reflects on the next-generation of liquid-hydrogen technologies and the scientific research and development priorities needed to enable them.
Renewable Energy Transport via Hydrogen Pipelines and HVDC Transmission Lines
May 2021
Publication
The majority penetration of Variable Renewable Energy (VRE) will challenge the stability of electrical transmission grids due to unpredictable peaks and troughs of VRE generation. With renewable generation located further from high demand urban cores there will be a need to develop new transmission pathways to deliver the power. This paper compares the transport and storage of VRE through a hydrogen pipeline to the transport of VRE through a High Voltage Direct Current (HVDC) transmission line. The analysis found a hydrogen pipeline can offer a cost-competitive method for VRE transmission compared to a HVDC transmission line on a life-cycle cost basis normalized by energy flows for distances at 1000 miles with 2030 technology. This finding has implications for policy makers project developers and system operators for the future development of transmission infrastructure projects given the additionality which hydrogen pipelines can provide in terms of energy storage.
No more items...