United States
Repurposing Pipelines for Hydrogen: Legal and Policy Considerations
Nov 2022
Publication
As the world looks to implement the Energy Transition repurposing existing fossil fuel infrastructure to produce or distribute “clean” energy will be critical. The most promising is using natural gas pipelines for moving hydrogen. This is the cheapest and fastest method of transport and reducing the cost of transporting hydrogen is a key step in making it economically viable. However while there are technical challenges the greater challenge is in the legal arena. This paper seeks to outline the numerous legal — treaty statutory and contractual — and regulatory obstacles to repurposing natural gas pipelines for hydrogen transport. Gas pipelines exist in a complex microclimate of international public and private law and domestic law and contracts. Ownership is often layered and tangled; financing doubly so; and myriad state interests compound the private interests including national security concerns energy supply imperatives and geopolitical balance. State aid — investment subsidies and tax breaks — may encumber the project with additional legal obligations. And the contracts that control the development of a pipeline project may inject further legal complexity such as dispute mediation procedures and fora and applicable law. This paper seeks to map all the likely areas of future conflict or difficulty so that work on developing the requisite legal regime and remedies to permit use of natural gas pipelines for hydrogen transport can begin now. For policy and lawmakers as well as the private sector evaluating these known unknowns is a good starting point for reconsidering legislation regulation contracts and project risk in preparation for the future probability of hydrogen pipelines.
Risk of the Hydrogen Economy for Atmospheric Methane
Dec 2022
Publication
Hydrogen (H2) is expected to play a crucial role in reducing greenhouse gas emissions. However hydrogen losses to the atmosphere impact atmospheric chemistry including positive feedback on methane (CH4) the second most important greenhouse gas. Here we investigate through a minimalist model the response of atmospheric methane to fossil fuel displacement by hydrogen. We find that CH4 concentration may increase or decrease depending on the amount of hydrogen lost to the atmosphere and the methane emissions associated with hydrogen production. Green H2 can mitigate atmospheric methane if hydrogen losses throughout the value chain are below 9 ± 3%. Blue H2 can reduce methane emissions only if methane losses are below 1%. We address and discuss the main uncertainties in our results and the implications for the decarbonization of the energy sector.
Fission Battery Markets and Economic Requirements
Oct 2022
Publication
Fission Batteries (FBs) are nuclear reactors for customers with heat demands less than 250 MWt—replacing oil and natural gas in a low-carbon economy. Individual FBs would have outputs between 5 and 30 MWt. The small FB size has two major benefits: (1) the possibility of mass production and (2) ease of transport and leasing with return of used FBs to factory for refurbishing and reuse. Comparatively these two features are lacking in larger conventional reactors. Larger reactors are not transportable and thus can’t obtain the manufacturing economics possible with mass production or the operational advantages of returning the FB to the factory after use. Leasing places the regulatory maintenance and fuel-cycle burden on the leasing company that is minimized by large-fleet operations of identical units. The markets and economic requirements for FBs were examined. The primary existing markets are industrial biofuels off-grid electricity and container ships. Two major future markets were identified—advanced biofuels and hydrogen. In a low-carbon world the competitive price range for heat is $20–50/MWh ($6–15/million BTU) and $70–115/MWh for non-grid electricity. The primary competition in these sectors is likely to be biofuels and hydrogen produced using alternative energy sources—grid electricity is non-competitive. Larger users of energy have alternative low-carbon energy choices including modular nuclear reactors and fossil fuels with carbon capture and sequestration (CCS).
Challenges Toward Achieving a Successful Hydrogen Economy in the US: Potential End-use and Infrastructure Analysis to the Year 2100
Jul 2022
Publication
Fossil fuels continue to exacerbate climate change due to large carbon emissions resulting from their use across a number of sectors. An energy transition away from fossil fuels seems inevitable and energy sources such as renewables and hydrogen may provide a low carbon alternative for the future energy system particularly in large emitting nations such as the United States. This research quantifies and maps potential hydrogen fuel distribution pathways for the continental US reflecting technological changes barriers to deployment and end-use-cases from 2020 to 2100 clarifying the potential role of hydrogen in the US energy transition. The methodology consists of two parts a linear optimization of the global energy system constrained by carbon reduction targets and system cost followed by a projection of hydrogen infrastructure development. Key findings include the emergence of trade pattern diversification with a greater variety of end-uses associated with imported fuels and greater annual hydrogen consumption over time. Further sensitivity analysis identified the influence of complementary technologies including nuclear power and carbon capture and storage technologies. We conclude that hydrogen penetration into the US energy system is economically viable and can contribute toward achieving Paris Agreement and more aggressive carbon reduction targets in the future.
The Hydrogen Economy and Jobs of the Future
Nov 2018
Publication
Growth in the hydrogen and fuel cell industries will lead to vast new employment opportunities and these will be created in a wide variety of industries skills tasks and earnings. Many of these jobs do not currently exist and do not have occupational titles defined in official classifications. In addition many of these jobs require different skills and education than current jobs and training requirements must be assessed so that this rapidly growing part of the economy has a sufficient supply of trained and qualified workers. We discuss the current hydrogen economy and technologies. We then identify by occupational titles the new jobs that will be created in the expanding hydrogen/fuel cell economy estimate the average US salary for each job identify the minimum educational attainment required to gain entry into that occupation and specify the recommended university degree for the advanced educational requirements. We provide recommendations for further research.
Hydrogen Storage Assessment in Depleted Oil Reservoir and Saline Aquifer
Oct 2022
Publication
Hydrogen (H2 ) is an attractive energy carrier to move store and deliver energy in a form that can be easily used. Field proven technology for underground hydrogen storage (UHS) is essential for a successful hydrogen economy. Options for this are manmade caverns salt domes/caverns saline aquifers and depleted oil/gas fields where large quantities of gaseous hydrogen have been stored in caverns for many years. The key requirements intrinsic of a porous rock formation for seasonal storage of hydrogen are: adequate capacity ability to contain H2 capability to inject/extract high volumes of H2 and a reliable caprock to prevent leakage. We have carefully evaluated a commercial non-isothermal compositional gas reservoir simulator and its suitability for hydrogen storage and withdrawal from saline aquifers and depleted oil/gas reservoirs. We have successfully calibrated the gas equation of state model against published laboratory H2 density and viscosity data as a function of pressure and temperature. Comparisons between the H2 natural gas and CO2 storage in real field models were also performed. Our numerical models demonstrated more lateral spread of the H2 when compared to CO2 and natural gas with a need for special containment in H2 projects. It was also observed that the experience with CO2 and natural gas storage cannot be simply replicated with H2 .
Hydrogen Production from Water Electrolysis: Role of Catalysts
Feb 2021
Publication
As a promising substitute for fossil fuels hydrogen has emerged as a clean and renewable energy. A key challenge is the efcient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efcient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active stable and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity stability and efciency. This will be followed by outlining current knowledge on the two half-cell reactions hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be dis‑ cussed. New strategies and insights in exploring the synergistic structure morphology composition and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efcient production of hydrogen from water splitting electrolysis will also be outlined.
A Study into Proton Exchange Membrane Fuel Cell Power and Voltage Prediction using Artificial Neural Network
Sep 2022
Publication
Polymer Electrolyte Membrane fuel cell (PEMFC) uses hydrogen as fuel to generate electricity and by-product water at relatively low operating temperatures which is environmentally friendly. Since PEMFC performance characteristics are inherently nonlinear and related predicting the best performance for the different operating conditions is essential to improve the system’s efficiency. Thus modeling using artificial neural networks (ANN) to predict its performance can significantly improve the capabilities of handling multi-variable nonlinear performance of the PEMFC. This paper predicts the electrical performance of a PEMFC stack under various operating conditions. The four input terms for the 5 W PEMFC include anode and cathode pressures and flow rates. The model performances are based on ANN using two different learning algorithms to estimate the stack voltage and power. The models have shown consistently to be comparable to the experimental data. All models with at least five hidden neurons have coefficients of determination of 0.95 or higher. Meanwhile the PEMFC voltage and power models have mean squared errors of less than 1 × 10−3 V and 1 × 10−3 W respectively. Therefore the model results demonstrate the potential use of ANN into the implementation of such models to predict the steady state behavior of the PEMFC system (not limited to polarization curves) for different operating conditions and help in the optimization process for achieving the best performance of the system.
Everything About Hydrogen Podcast: Using Hydrogen to Decarbonise Steel Manufacturing
Mar 2022
Publication
Hydrogen could be used in many hard-to-decarbonize sectors. Foremost amongst them is the steel manufacturing industry. On this episode of EAH we speak with Dr. Martin Pei Executive Vice President and CTO of SSAB and the first Chairman of the Board for Hybrit Development AB. SSAB is a global steel company with a leading position in high-strength steels and related services. Together with their partners LKAB and Vattenfall SSAB are making a unique joint effort to change the Swedish iron and steel industry fundamentally. With HYBRIT technology SSAB aims to be the first steel company in the world to bring fossil-free steel to the market already in 2026 and largely eliminate carbon dioxide emissions from the company's own operations as soon as 2030.
The podcast can be found on their website.
The podcast can be found on their website.
Experimental Investigation of Stress Corrosion on Supercritical CO2 Transportation Pipelines Against Leakage for CCUS Applications
Nov 2022
Publication
Carbon Capture Utilization and Storage (CCUS) is one of the key technologies that will determine how humans address global climate change. For captured CO2 in order to avoid the complications associated with two-phase flow most carbon steel pipelines are operated in the supercritical state on a large scale. A pipeline has clear Stress Corrosion Cracking (SCC) sensitivity under the action of stress and corrosion medium which will generally cause serious consequences. In this study X70 steel was selected to simulate an environment in the process of supercritical CO2 transportation by using high-temperature high-pressure Slow Strain Rate Tensile (SSRT) tests and high-temperature high-pressure electrochemical test devices with different O2 and SO2 contents. Studies have shown that 200 ppm SO2 shows a clear SCC sensitivity tendency which is obvious when the SO2 content reaches 600 ppm. The SCC sensitivity increases with the increase of SO2 concentration but the increase amplitude decreases. With the help of advanced microscopic characterization techniques such as scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) through the analysis of fracture and side morphology the stress corrosion mechanism of a supercritical CO2 pipeline containing SO2 and O2 impurities was obtained by hydrogen embrittlement fracture characteristics. With the increase of SO2 content the content of Fe element decreases and the corrosion increases demonstrating that SO2 plays a leading role in electrochemical corrosion. This study further strengthens the theoretical basis of stress corrosion of supercritical CO2 pipelines plays an important role in preventing leakage of supercritical CO2 pipelines and will provide guidance for the industrial application of CCUS.
Everything About Hydrogen Podcast: Decarbonizing Steel and Industrial Manufacturing
May 2022
Publication
H2 Green Steel was founded in 2020 with the aim to build a large-scale green steel production in northern Sweden. H2 Green Steel is on a mission to undertake the global steel industry’s greatest ever technological shift. By 2024 H2 Green Steel will be in production at their Boden site and by 2030 will produce five million tonnes of green steel annually. Vargas co-founder and a major shareholder in Northvolt is also H2 Green Steel’s founder and largest shareholder. The EAH team speaks with Kajsa Ryttberg-Wallgren head of the Hydrogen Business Unit at H2 Green Steel.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Global Energy Majors in the Hydrogen Space
Jul 2022
Publication
On today’s episode of Everything About Hydrogen we are speaking with Paul Bogers Vice President for Hydrogen at Shell. As a company Shell needs no introduction but the company’s work and investments in the hydrogen space make it a global leader in the energy transition especially when it comes to the hydrogen component. Paul is amongst the executives at Shell that are working to bring their hydrogen vision to fruition and it is great to have him with us on the show today.
The podcast can be found on their website
The podcast can be found on their website
Time-phased Geospatial Siting Analysis for Renewable Hydrogen Production Facilities under a Billion-kilogram-scale Build-out using California as an Example
Jun 2022
Publication
For renewable hydrogen to be a significant part of the future decarbonized energy and transportation sectors a rapid and massive build-out of hydrogen production facilities will be needed. This paper describes a geospatial modeling approach to identifying the optimal locations for renewable hydrogen fuel production throughout the state of California based on least-cost generation and transport. This is accomplished by (1) estimating and projecting California renewable hydrogen demand scenarios through the year 2050 (2) identifying feedstock locations (3) excluding areas not suitable for development and (4) selecting optimal site locations using commercial geospatial modeling software. The findings indicate that there is a need for hundreds of new renewable hydrogen production facilities in the decades preceding the year 2050. In selecting sites for development feedstock availability by technology type is the driving factor."
Can Industrial-Scale Solar Hydrogen Supplied from Commodity Technologies Be Cost Competitive by 2030?
Sep 2020
Publication
Expanding decarbonization efforts beyond the power sector are contingent on cost-effective production of energy carriers like H2 with near-zero life-cycle carbon emissions. Here we assess the levelized cost of continuous H2 supply (95% availability) at industrial-scale quantities (100 tonnes/day) in 2030 from integrating commodity technologies for solar photovoltaics electrolysis and energy storage. Our approach relies on modeling the least-cost plant design and operation that optimize component sizes while adhering to hourly solar availability production requirements and component inter-temporal operating constraints. We apply the model to study H2 production costs spanning the continental United States and through extensive sensitivity analysis explore system configurations that can achieve $2.5/kg levelized costs or less for a range of plausible 2030 technology projections at high-irradiance locations. Notably we identify potential sites and system configurations where PV-electrolytic H2 could substitute natural gas-derived H2 at avoided CO2 costs (%$120/ton) similar to the cost of deploying carbon capture and sequestration.
Adapted Tube Cleaning Practices to Reduce Particulate Contamination at Hydrogen Fueling Stations
Sep 2017
Publication
The higher rate of component failure and downtime during initial operation in hydrogen stations is not well understood. The National Renewable Energy Laboratory (NREL) has been collecting failed components from retail and research hydrogen fuelling stations in California and Colorado and analyzing them using an optical zoom and scanning electron microscope. The results show stainless steel metal particulate contamination. While it is difficult to definitively know the origin of the contaminants a possible source of the metal particulates is improper tube cleaning practices. To understand the impact of different cleaning procedures NREL performed an experiment to quantify the particulates introduced from newly cut tubes. The process of tube cutting threading and bevelling which is performed most often during station fabrication is shown to introduce metal contaminants and thus is an area that could benefit from improved cleaning practices. This paper shows how these particulates can be reduced which could prevent station downtime and costly repair. These results are from the initial phase of a project in which NREL intends to further investigate the sources of particulate contamination in hydrogen stations.
Effect of Wind on Cryogenic Hydrogen Dispersion from Vent Stacks
Sep 2021
Publication
Liquid hydrogen vent stacks often release hydrogen for example due to pressure relief from an underutilized tank boiling off hydrogen or after hydrogen delivery and transfer (trucks often depressurize through the tank vent stack to meet pressure regulations for on-road transport).<br/>A rapid release of cryogenic hydrogen through a vent stack will condense moisture from the entrained air forming a visible cloud. It is often assumed that the extent of the cold hydrogen is concurrent with the cloud. In this work a laser-based Raman scattering diagnostic was used to map out the hydrogen location during a series of vent stack release experiments. A description of the diagnostic instrument is given followed by a comparison of hydrogen signals to the visible cloud for releases through a liquid hydrogen vent stack. A liquid hydrogen pump was used to vary the flowrate of hydrogen through the vent stack and tests were performed under low and high wind conditions as well as low and high humidity conditions. The hydrogen was observed only where the condensed moisture was located regardless of the humidity level or wind. These measurements are being used to validate models such as those included in Sanda’s HyRAM toolkit and inform safety codes and standards.
The Renewable Hydrogen–Methane (RHYME) Transportation Fuel: A Practical First Step in the Realization of the Hydrogen Economy
Feb 2022
Publication
The permanent introduction of green hydrogen into the energy economy would require that a discriminating selection be made of its use in the sectors where its value is optimal in terms of relative cost and life cycle reduction in carbon dioxide emissions. Consequently hydrogen can be used as an energy storage medium when intermittent wind and solar power exceed certain penetration in the grid likely above 40% and in road transportation right away to begin displacing gasoline and diesel fuels. To this end the proposed approach is to utilize current technologies represented by PHEV in light-duty and HEV in heavy-duty vehicles where a high-performance internal combustion engine is used with a fuel comprised of 15–20% green hydrogen and 85–89% green methane depending on vehicle type. This fuel designated as RHYME takes advantage of the best attributes of hydrogen and methane results in lower life cycle carbon dioxide emissions than BEVs or FCEVs and offers a cost-effective and pragmatic approach both locally as well as globally in establishing hydrogen as part of the energy economy over the next ten to thirty years.
Boosting Photocatalytic Hydrogen Production from Water by Photothermally Induced Biphase Systems
Feb 2021
Publication
Solar-driven hydrogen production from water using particulate photocatalysts is considered the most economical and effective approach to produce hydrogen fuel with little environmental concern. However the efficiency of hydrogen production from water in particulate photocatalysis systems is still low. Here we propose an efficient biphase photocatalytic system composed of integrated photothermal–photocatalytic materials that use charred wood substrates to convert liquid water to water steam simultaneously splitting hydrogen under light illumination without additional energy. The photothermal–photocatalytic system exhibits biphase interfaces of photothermally-generated steam/photocatalyst/hydrogen which significantly reduce the interface barrier and drastically lower the transport resistance of the hydrogen gas by nearly two orders of magnitude. In this work an impressive hydrogen production rate up to 220.74 μmol h−1 cm−2 in the particulate photocatalytic systems has been achieved based on the wood/CoO system demonstrating that the photothermal–photocatalytic biphase system is cost-effective and greatly advantageous for practical applications.
Role of Hydrogen in a Low-Carbon Electric Power System: A Case Study
Jan 2021
Publication
The European Union set a 2050 decarbonization target in the Paris Agreement to reduce carbon emissions by 90–95% relative to 1990 emission levels. The path toward achieving those deep decarbonization targets can take various shapes but will surely include a portfolio of economy-wide low-carbon energy technologies/options. The growth of the intermittent renewable power sources in the grid mix has helped reduce the carbon footprint of the electric power sector. Under the need for decarbonizing the electric power sector we simulated a low-carbon power system. We investigated the role of hydrogen for future electric power systems under current cost projections. The model optimizes the power generation mix economically for a given carbon constraint. The generation mix consists of intermittent renewable power sources (solar and wind) and dispatchable gas turbine and combined cycle units fuelled by natural gas with carbon capture and sequestration as well as hydrogen. We created several scenarios with battery storage options pumped hydro hydrogen storage and demand-side response (DSR). The results show that energy storage replaces power generation and pumped hydro entirely replaces battery storage under given conditions. The availability of pumped hydro storage and demand-side response reduced the total cost as well as the combination of solar photovoltaic and pumped hydro storage. Demand-side response reduces relatively costly dispatchable power generation reduces annual power generation halves the shadow carbon price and is a viable alternative to energy storage. The carbon constrain defines the generation mix and initializes the integration of hydrogen (H2). Although the model rates power to gas with hydrogen as not economically viable in this power system under the given conditions and assumptions hydrogen is important for hard-to-abate sectors and enables sector coupling in a real energy system. This study discusses the potential for hydrogen beyond this model approach and shows the differences between cost optimization models and real-world feasibility.
A Manganese Hydride Molecular Sieve for Practical Hydrogen Storage Under Ambient Conditions
Dec 2018
Publication
A viable hydrogen economy has thus far been hampered by the lack of an inexpensive and convenient hydrogen storage solution meeting all requirements especially in the areas of long hauls and delivery infrastructure. Current approaches require high pressure and/or complex heat management systems to achieve acceptable storage densities. Herein we present a manganese hydride molecular sieve that can be readily synthesized from inexpensive precursors and demonstrates a reversible excess adsorption performance of 10.5 wt% and 197 kgH2 m-3 at 120 bar at ambient temperature with no loss of activity after 54 cycles. Inelastic neutron scattering and computational studies confirm Kubas binding as the principal mechanism. The thermodynamically neutral adsorption process allows for a simple system without the need for heat management using moderate pressure as a toggle. A storage material with these properties will allow the DOE system targets for storage and delivery to be achieved providing a practical alternative to incumbents such as 700 bar systems which generally provide volumetric storage values of 40 kgH2 m-3 or less while retaining advantages over batteries such as fill time and energy density. Reasonable estimates for production costs and loss of performance due to system implementation project total energy storage costs roughly 5 times cheaper than those for 700 bar tanks potentially opening doors for increased adoption of hydrogen as an energy vector.
Everything About Hydrogen Podcast: Hydrogen News Roundup and Hydrogen Q&A
Jun 2020
Publication
This week on the show the team take a pause to review the current state of hydrogen and fuel cell affairs globally whilst taking time to go over all the excellent questions that our listeners have kindly shared with us over the last few months. We cover carbon capture the green new deal synthetic fuels hydrogenspiders green hydrogen in Australia and many more themes this week so don’t miss this episode!
The podcast can be found on their website
The podcast can be found on their website
Technologies and Policies to Decarbonize Global Industry: Review and Assessment of Mitigation Drivers Through 2070
Mar 2020
Publication
Jeffrey Rissman,
Chris Bataille,
Eric Masanet,
Nate Aden,
William R. Morrow III,
Nan Zhou,
Neal Elliott,
Rebecca Dell,
Niko Heeren,
Brigitta Huckestein,
Joe Cresko,
Sabbie A. Miller,
Joyashree Roy,
Paul Fennell,
Betty Cremmins,
Thomas Koch Blank,
David Hone,
Ellen D. Williams,
Stephane de la Rue du Can,
Bill Sisson,
Mike Williams,
John Katzenberger,
Dallas Burtraw,
Girish Sethi,
He Ping,
David Danielson,
Hongyou Lu,
Tom Lorber,
Jens Dinkel and
Jonas Helseth
Fully decarbonizing global industry is essential to achieving climate stabilization and reaching net zero greenhouse gas emissions by 2050–2070 is necessary to limit global warming to 2 °C. This paper assembles and evaluates technical and policy interventions both on the supply side and on the demand side. It identifies measures that employed together can achieve net zero industrial emissions in the required timeframe. Key supply-side technologies include energy efficiency (especially at the system level) carbon capture electrification and zero-carbon hydrogen as a heat source and chemical feedstock. There are also promising technologies specific to each of the three top-emitting industries: cement iron & steel and chemicals & plastics. These include cement admixtures and alternative chemistries several technological routes for zero-carbon steelmaking and novel chemical catalysts and separation technologies. Crucial demand-side approaches include material-efficient design reductions in material waste substituting low-carbon for high-carbon materials and circular economy interventions (such as improving product longevity reusability ease of refurbishment and recyclability). Strategic well-designed policy can accelerate innovation and provide incentives for technology deployment. High-value policies include carbon pricing with border adjustments or other price signals; robust government support for research development and deployment; and energy efficiency or emissions standards. These core policies should be supported by labeling and government procurement of low-carbon products data collection and disclosure requirements and recycling incentives. In implementing these policies care must be taken to ensure a just transition for displaced workers and affected communities. Similarly decarbonization must complement the human and economic development of low- and middle-income countries.
Everything About Hydrogen Podcast: Is Small the Perfect Answer for SMRs?
Jun 2020
Publication
On this week’s episode the team discuss the appeal of modular reforming of biogas and natural gas with Mo Vargas from Bayotech. The company use a proprietary modular reformer technology to help provide low cost decentralise hydrogen production units for onsite demand at various scales using biogas waste gases and natural gas with carbon capture. With large scale steam methane reforming accounting for 95% of hydrogen production in major markets like the US and Europe today the team dive into the good the bad and the unusual considerations behind the growing international demand for modular methane reforming technologies and how Bayotech see the transition from a CO2 intensive process today to a net zero emission future. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Show Me the Money!
Jul 2020
Publication
This week on the show the team catch up with Alena Fargere Principal at SWEN Capital Partners and a former special advisor to the World Energy Council on Hydrogen projects. As one of the few current project finance funds in Europe with a green gas mandate and a dedicated allocation for investing in hydrogen project finance SWEN Capital Partners provide an invaluable perspective on the challenges and opportunities for hydrogen project investment in Europe and the synergies that exist from Green Gas funds that support biogas and hydrogen opportunities. On the show our hosts discuss the rationale for this fund the profile of projects SWEN are considering and Alena’s broader perspective on the hydrogen market. All this and many more themes this week so don’t miss this episode!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Masters of Scale: How to Build the Hydrogen Infrastructure of the Future
Oct 2020
Publication
On this week's episode the EAH team speaks with Prof. Armin Schnettler CEO of New Energy Business at Siemens Energy to talk about where green hydrogen solutions fit into the path to decarbonisation how companies like Siemens are looking at those solutions and working to scale them to meet future demand timelines for deployment in different markets how governments can help the private sector and much much more.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Toyota's global hydrogen ambitions
Feb 2020
Publication
On this weeks episode the team are talking all things hydrogen with Craig Scott the Group Manager for Toyota North America a global automotive giant and a recognised pioneer in the field of fuel cell mobility. On the show we get into the story of Toyota’s roll out of fuel cell mobility solutions in North America the challenges and opportunities that fuel cell vehicles can offer in the hydrogen market and the challenges around infrastructure. Importantly we also dive into the scaling up work that Toyota is undertaking and some of its plans for next steps on the mission to become the world’s leader in fuel cell mobility solutions. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Highway to the Hydrogen Zone
May 2020
Publication
On this weeks episode the team discuss hydrogen for aviation with ZeroAvia. Val launched ZeroAvia to provide a genuinely zero emission flight proposition with two aircraft currently undergoing trials in California and the UK. The company is due to complete a 300 mile flight of its six seater aircraft from the Orkney islands to the Scottish mainland this summer 2020 with plans for twenty seat planes flying regional routes as early as 20205. On the show we discuss why Val set up ZeroAvia how the proposition stacks up against conventional alternatives infrastructure and plans for the future. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Masters of Scale: The World of SOFC & SOE Technologies
Oct 2020
Publication
On this week's episode the EAH team catches up with Mark Selby Chief Technology Officer at Ceres Power to dive into the world of solid oxide fuel cell (SOFC) and solid oxide electrolyzer (SOE) technologies. Ceres Power specializes in the design of SOFCs for applications in a diverse range of energy intensive sectors. Mark takes the time in this episode to walk the team through the details advantages and challenges of deploying SOFCs and low-carbon hydrogen solutions more broadly and discusses how consumer and customer awareness of these technologies varies widely across international markets. We cover a lot of ground this week so be sure not to miss out on our conversation with Mark!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Flying Hy!
Feb 2021
Publication
Decarbonizing aviation is a big challenge. It is one of the most carbon intensive business sectors in the modern world and change comes slowly to the aviation industry. Hydrogen and fuel cell technologies offer a pathway to decarbonize regional flights in the not-so-distant future and big names are looking at potential solutions for long-haul flights in the longer term. But even if we build the aircraft that can use hydrogen as a fuel how do we get the fuel to them in a timely reliable and cost-efficient way?
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Taking the Lead in the Hydrogen Economy
Sep 2021
Publication
On the season premier episode the EAH hosts are joined by the Governor of New Mexico Michelle Lujan Grisham. The State of New Mexico has the opportunity to lead the United States into the hydrogen era and the Governor and her team are poised to take the opportunity to make New Mexico the strategic center of the US hydrogen economy. The Governor is joined by New Mexico Environment Department Secretary James Kenney on the show to announce the forthcoming New Mexico Hydrogen Hub Act which her administration expects to drive investment in the state job growth in the energy sector and catapult New Mexico to top of the list of states driving the hydrogen revolution.
The podcast can be found on their website.
The podcast can be found on their website.
Everything About Hydrogen Podcast: The Oracle of Hydrogen
Oct 2019
Publication
Nel Hydrogen is one of the largest electrolysis companies in the world with an array of Alkaline and PEM solutions that have been used in an array of energy and industrial applications. On the show we ask Bjørn Simonsen Vice President of Investor Relations and Corporate Communication at Nel Hydrogen to talk through how Nel has seen the green hydrogen market evolve and where Nel fits into this sector transition.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Going "Green"
May 2021
Publication
Founded in 2007 and based in Denmark Green Hydrogen Systems designs and manufactures efficient standardized and modular electrolysers for the production of green hydrogen with renewable energy. Niels-Arne Baden has led the company to the upper echelons of the electrolysis sector and he now leads the company's strategy and and public-facing initiatives as the Vice President for Strategy and Public Affairs. On this episode of the Everything About Hydrogen podcast the EAH team sits down with Niels to talk about the journey of the clean hydrogen sector over the recent decades and its rise to prominence in the transition to a decarbonized energy future and how modular electrolysis fits into that picture.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Decarbonising the Gas Grid with Cadent
Mar 2020
Publication
On this weeks episode the team are talking all things hydrogen with Lorna Millington Future Networks Manager in the Safety and Network Strategy team at Cadent. On the show we discuss the role that Cadent and other gas distribution network operators (GDNOs) are playing in supporting the transition towards a low (and eventually zero) carbon gas grid through the use of hydrogen. The potential for hydrogen to support decarbonisation of heat through the gas network is one of the most exciting emerging themes for countries that have large existing gas networks and who are looking to repurpose those assets towards national net zero objectives. As a leader on hydrogen into the gas grid projects Cadent offer a wealth of knowledge around the potential opportunities and considerations for displacing natural gas with hydrogen over time. And given the chance to reduce up to 6 million tonnes of CO2 a year through using more hydrogen in the gas grid this is a show you won’t want to miss! All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Supplying the Building Blocks of an Energy Revolution
Apr 2021
Publication
On this episode of Everything About Hydrogen the team is joined by Sam French Business Development Director at JM who spent some time speaking with us about the transition from grey hydrogen to low-carbon generation technologies and what steps the UK - and countries all over the world - to use hydrogen as part of the pathway to a sustainable energy future.
The podcast can be found on their website
The podcast can be found on their website
Outlook of Fermentative Hydrogen Production Techniques: An Overview of Dark, Photo and Integrated Dark-photo Fermentative Approach to Biomass
Jan 2019
Publication
Biomass can be a sustainable choice for bioenergy production worldwide. Biohydrogen production using fermentative conversion of biomass has gained great interest during the last decade. Besides being an efficient transportation fuel biohydrogen can also be also be a low-carbon source of heat and electricity. Microbes assisted conversion (bioconversion) can be take place either in presence or absence of light. This is called photofermentation or dark-fermentation respectively. This review provides an overview of approaches of fermentative hydrogen production. This includes: dark photo and integrated fermentative modes of hydrogen production; the molecular basis behind its production and diverse range of its applicability industrially. Mechanistic understanding of the metabolic pathways involved in biomass-based fermentative hydrogen production are also reviewed.
Everything About Hydrogen Podcast: Building an Integrated Clean Hydrogen Infrastructure from the Ground Up
Nov 2021
Publication
On this episode of EAH we are joined by Andrew Clennett Co-Founder and CEO of Hiringa Energy. Hiringa is headquartered in New Zealand where they are building clean hydrogen production projects using renewable energy to displace the use of fossil fuels for transport and industrial feedstock across New Zealand. We are delighted to have Andrew with us today to speak about how Hiringa are using hydrogen to change the energy and carbon landscape of New Zealand.
This podcast can be found on their website
This podcast can be found on their website
Molten Carbonate Fuel Cells for Simultaneous CO2 Capture, Power Generation, and H2 Generation
Mar 2022
Publication
This article presents a new technology for the generation of power and steam or other process heat with very low CO2 emissions. It is well known that cogeneration of electricity and steam is highly efficient and that amine units can be used to remove CO2 from combustion flue gas but that the amine unit consumes a significant amount of steam and power reducing the overall system efficiency. In this report the use of molten carbonate fuel cells (MCFCs) to capture CO2 from cogen units is investigated and shown to be highly efficient due to the additional power that they produce while capturing the CO2. Furthermore the MCFCs are capable of reforming methane to hydrogen simultaneous to the power production and CO2 capture. This hydrogen can either be recycled as fuel for consumption by the cogen or MCFCs or exported to an independent combustion unit as low carbon fuel thereby decarbonizing that unit as well. The efficiency of MCFCs for CO2 capture is higher than use of amines in all cases studied often by a substantial margin while at the same time the MCFCs avoid more CO2 than the amine technology. As one example the use of amines on a cogeneration unit can avoid 87.6% of CO2 but requires 4.91 MJ/kg of additional primary energy to do so. In contrast the MCFCs avoid 89.4% of CO2 but require only 1.37 MJ/kg of additional primary energy. The high thermal efficiency and hydrogen export option demonstrate the potential of this technology for widespread deployment in a low carbon energy economy.
Seasonal Hydrogen Storage for Sustainable Renewable Energy Integration in the Electricity Sector: A Case Study of Finland
Nov 2021
Publication
Wind power is rapidly growing in the Finnish grid and Finland’s electricity consumption is low in the summer compared to the winter. Hence there is a need for storage that can absorb a large amount of energy during summer and discharge it during winter. This study examines one such storage technology geological hydrogen storage which has the potential to store energy on a GWh scale and also over longer periods of time. Finland’s electricity generation system was modelled with and without hydrogen storage using the LEAP-NEMO modeling toolkit. The results showed about 69% decline in carbon dioxide emissions as well as a decline in the fossil fuel-based power accompanied with a higher capability to meet demand with less imports in both scenarios. Finally a critical analysis of the Finnish electricity mix with and without hydrogen storage is presented.
Everything About Hydrogen Podcast: Hydrogen from Waste
Mar 2021
Publication
On this episode of EAH the team is joined by Tim Yeo Chairman of Powerhouse Energy to talk about the work they are doing in the waste-to-energy space and how they see the sector evolving in the coming years.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Building Europe's Hydrogen Mobility Network
Jan 2020
Publication
On this weeks episode the team are talking all things hydrogen with Jacob Krogsgaard the CEO of Everfuel a leading supplier of green hydrogen for mobility and industry in Europe. Since its establishment by Nel and a Consortium of parties and investors Everfuel has become a market leader in establishing green hydrogen solutions for mobility in Europe and has recently expanded into areas such as power-to-gas as well. The team catch up with Jacob on Everfuels business model the establishment of the H2Bus Consortium Jacob’s views on how the market for green hydrogen is evolving in Europe and where he sees the greatest early potential for scaling.…..All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Rethinking Hydrogen Storage with H2GOPOWER
Sep 2019
Publication
For this episode we speak to Enass Abo-Hamed the CEO of H2GOPower about their cutting edge hydrogen storage technology. Below we have attached a few links to the content discussed on the show and some further background reading.
The podcast can be found on their website
The podcast can be found on their website
Is Hydrogen the Future of Nuclear Energy?
Jan 2008
Publication
The traditionally held belief is that the future of nuclear energy is electricity production. However another possible future exists: nuclear energy used primarily for the production of hydrogen. The hydrogen in turn would be used to meet our demands for transport fuels (including liquid fuels) materials such as steel and fertilizer and peak-load electricity production. Hydrogen would become the replacement for fossil fuels in these applications that consume more than half the world’s energy. Such a future would follow from several factors: (a) concerns about climatic change that limit the use of fossil fuels (b) the fundamental technological differences between hydrogen and electricity that may preferentially couple different primary energy sources with either hydrogen or electricity and (c) the potential for other technologies to competitively produce electricity but not hydrogen. Electricity (movement of electrons) is not fundamentally a large-scale centralized technology that requires centralized methods of production distribution or use. In contrast hydrogen (movement of atoms) is intrinsically a large-scale centralized technology. The large-scale centralized characteristics of nuclear energy as a primary energy source hydrogen production systems and hydrogen storage systems naturally couple these technologies. This connection suggests that serious consideration be given to hydrogen as the ultimate product of nuclear energy and that nuclear systems be designed explicitly for hydrogen production.
Everything About Hydrogen Podcast: Building Hydrogen Infrastructure with Black & Veatch
Feb 2020
Publication
On this weeks episode the team are talking all things hydrogen with Maryline Daviaud Lewett Director of Business Development for Transformative Technologies at Black & Veatch (B&V). On the show we discuss the role that Engineering Procurement and Construction (EPC) firms are playing in developing hydrogen and fuel cell infrastructure as well as discussing the unique aspects of developing projects in North America. As the leading EPC for hydrogen refuelling stations in North America and a wealth of experience across electric vehicle charging and hydrogen Maryline brings a uniquely well rounded perspective to the discussion and shares a wealth of insights for how the market may evolve. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: The Other Hydrogen Vehicle?
Oct 2019
Publication
For this episode we speak to Amanda Lyne the Managing Director of ULEMCo and the Chair of the UK Hydrogen and Fuel Cell Association (UKHFCA). Below are a few links to some of the content discussed on the show and some further background reading.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Greening the Maritime Transport Sector
Nov 2021
Publication
We have been talking about the difficulties of decarbonizing the maritime sector since the beginning of the Everything About Hydrogen podcast. For this episode we finally bring on the experts who are looking to make the changes in maritime and marine operations a reality for a zero-carbon shipping future. The EAH Team sits down with Tomas Tronstad Head of Shipping and Technology for the New Energy Division at Wilhelmsen Group. Founded in Norway in 1861 Wilhelmsen is now a comprehensive global maritime group providing essential products and services to the merchant fleet along with supplying crew and technical management to the largest and most complex vessels ever to sail. Committed to shaping the maritime industry the company also seeks to develop new opportunities and collaborations in renewables zero-emission shipping and marine digitalization. Tomas is helping Wilhelmsen achieve its decarbonization ambitions and we are delighted to share our conversation with him with our listerners!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Venturing into Hydrogen
Apr 2021
Publication
Since 2014 when the firm was founded within Anglo-American AP Ventures has been at the forefront of investment in hydrogen sector technologies. At the time the firm started the concerns around climate change and investment in renewable energy tech was gearing up but interest in hydrogen as part of the path to a decarbonized future was limited. The founders of AP Ventures felt differently and saw significant potential for hydrogen to offer a means for cleaning up highly carbon intensive sectors such as heavy transport industrial manufacturing and mining operations. Today that vision for hydrogen appears rather prescient. We are delighted to have two members from the team at AP Ventures with us on the show today. The team is joined by Kevin Eggers - a founding partner at AP - and Michell Robson - associate on the firm's investment team.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Hydrogen: The Next Generation
May 2021
Publication
This is the inaugural episode of the EAH: Deep Dive podcast mini-series! Our first episode features the co-founders of Enapter Vaitea Cowan and Jan Justus-Schmidt. Enapter is a young company that has made a big splash in the hydrogen space with their modular scalable AEM electrolyzer technology. Last year they made headlines with their successful public offering on the DAX and the company is expected to be a the forefront of the hydrogen sector again in 2021 as they begin construction of their mass production facility in Germany and announce the upcoming Generation Hydrogen event on May 19 2021.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Why Generate Capital is Excited About the Prospects of Hydrogen
Dec 2019
Publication
On this weeks episode the team are talking all things hydrogen with Jigar Shah the President of Generate Capital and Co-host of the Energy Gang podcast. Jigar Shah has a well earned reputation as one of the most influential voices in the US clean energy market having pioneered no-money down solar with SunEdison and led the not for profit climate group the Carbon War Room. Since its founding in 2014 Generate Capital the company has provided $130 million of funds to a leading fuel cell provide Plug Power meanwhile in October 2019 Jigar declared hydrogen to be the ultimate clean electricity enabler. On the show we ask Jigar why he thinks Hydrogen is becoming interesting for investors today what business models he feels are exciting and offer the most attractive niches for hydrogen technology businesses whilst getting his side of the story on that time he met Chris at a conference…..All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Ending on a Hy Note
Jul 2021
Publication
This week's show is the last episode of Season 2! To celebrate we invited our friend and colleague Markus Wilthaner partner at McKinsey & Company to come speak with us. Markus has been a leader in the hydrogen space for the past ten years and has drafted a number of the Hydrogen Council's reports since its founding including the newly released - and highly anticipated - Hydrogen Insights 2021 (link below). In this episode we speak with Markus about the state of the market and the innovation he has seen in the last couple of years that make hydrogen a critical part of the energy transition. We had a lot of fun recording this interview and it was the perfect way to end a fantastic EAH season!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Hydrogen Technology: The Engineer's Perspective
Sep 2020
Publication
The team are joined by Dr. Jenifer Baxter of the Institution for Mechanical Engineers (IMECHE). Dr. Baxter is based in the UK and is the Chief Engineer at IMECHE. We often focus heavily on the business cases and development models at the heart of the hydrogen economy here at EAH. On this episode we bring the technical discussion to the forefront and speak with Dr. Baxter about the technical advantages and the challenges that hydrogen presents as an essential part of the path to decarbonizing the future. The team's conversation is a can't miss exploration of a wide range of potential applications for hydrogen technologies that brings a new and essential perspective to the podcast. Don't miss out on EAH's newest episode where we get the engineer's perspective on the future of hydrogen!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Giga-watt it Takes to Scale Green Hydrogen (and Ammonia)
Feb 2021
Publication
How do we get green hydrogen (and green ammonia) production to scale and make it cost competitive? It's a great question and we ask it all the time on the show. Well Alicia Eastman Co-founder & Managing Director of InterContinental Energy (ICE) may be one of the best authorities in the world on this topic and she joins us on this episode of EAH to tell the team all about her and ICE's work developing the Asian Renewable Energy Hub (AREH). Located in Western Australia the AREH when completed will be the largest renewable energy project by total generation capacity on the planet. At 26 GW it surpasses even the likes of the Three Gorges Dam and will act as a central production and distribution point for huge quantities of clean hydrogen and ammonia for offtakers and customers across APAC and beyond. The AREH is a truly massive project that has global implications for the global energy landscape of the future.
The podcast can be found on their website.
The podcast can be found on their website.
Everything About Hydrogen Podcast: ITM Power
Sep 2019
Publication
On this weeks show we discuss with Graham Cooley the CEO of ITM Power how his company has expanded from a research company on AIM in the early 2000’s to one of the largest electrolyser manufacturers in the world. On the show we also ask Graham to talk about how the hydrogen market has evolved where he sees the potential growth trajectory for the industry and how ITM sees its role within this space.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Hydrogen, Net Zero and Circularity a Perfect Syzygy!
Jul 2020
Publication
On this week's show we speak with Trevor Best CEO of Syzygy Plasmonics a Houston area startup who is a pioneer in the field of photocatalytic based hydrogen production. The company has recently closed its series A funding round. We discuss with Trevor the potential applications of the Syzygy approach and where they are aiming to engage the market first as well as his view of the evolution of the hydrogen market today. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Catching up on the State of Scale in PEM Electrolysis
Feb 2022
Publication
This episode of EAH is a chance for the team to catch up with one of our early guests on the show Graham Cooley - CEO of ITM Power. For the past twenty years ITM Power PLC has been designing and manufacturing electrolyser systems that generate hydrogen based on proton exchange membrane (PEM) technology. As the first hydrogen related company to be listed on the London Stock Exchange ITM are globally recognised experts in the field of electrolysis. In 2021 the company opened its first Gigafactory in Bessemer Park Sheffield: the world’s largest electrolyser production factory.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Financing the Hydrogen Revolution
Aug 2020
Publication
On this week's episode of Everything About Hydrogen the team are catching up with Astrid Behaghel the Energy Transition expert on hydrogen for BNP Paribas. On the show the team discuss how BNP Paribas see the emerging role of hydrogen in the energy transition how the financing of hydrogen projects differs for newer hydrogen initiatives and why BNP Paribas joined the Hydrogen Council. We also dive into the question of what role can (or even should) Banks play in the evolution and development of the emerging hydrogen market and BNPs plans to expand its activities in this sector. All this and more!
The podcast can be found on their website
The podcast can be found on their website
Analysis of Trends and Emerging Technologies in Water Electrolysis Research Based on a Computational Method: A Comparison with Fuel Cell Research
Feb 2018
Publication
Water electrolysis for hydrogen production has received increasing attention especially for accumulating renewable energy. Here we comprehensively reviewed all water electrolysis research areas through computational analysis using a citation network to objectively detect emerging technologies and provide interdisciplinary data for forecasting trends. The results show that all research areas increase their publication counts per year and the following two areas are particularly increasing in terms of number of publications: “microbial electrolysis” and “catalysts in an alkaline water electrolyzer (AWE) and in a polymer electrolyte membrane water electrolyzer (PEME).”. Other research areas such as AWE and PEME systems solid oxide electrolysis and the whole renewable energy system have recently received several review papers although papers that focus on specific technologies and are cited frequently have not been published within the citation network. This indicates that these areas receive attention but there are no novel technologies that are the center of the citation network. Emerging technologies detected within these research areas are presented in this review. Furthermore a comparison with fuel cell research is conducted because water electrolysis is the reverse reaction to fuel cells and similar technologies are employed in both areas. Technologies that are not transferred between fuel cells and water electrolysis are introduced and future water electrolysis trends are discussed.
Everything About Hydrogen Podcast: Costs, Cost, Costs!
Aug 2020
Publication
On this week's episode of Everything About Hydrogen the team are celebrating the show's one year anniversary with Randy MacEwen the CEO of Ballard Power Systems. On the show the team ask Randy to explain the stunning rise of hydrogen over the last 12-24 months how the use cases for hydrogen are evolving and how the growing capitalisation of listed businesses like Ballard is driving a change in the investor base across the hydrogen & fuel cell sector. We also dive into the future for Ballard where the challenges and focuses for the business lie while the team reflect on what has been a very intense year for the show and the hydrogen industry. All this and more!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Geopolitical Factors in Hydrogen Markets
Mar 2022
Publication
The EAH Team takes a break from standard format on this special episode of Everything About Hydrogen to discuss some of the geopolitical factors and considerations driving the evolution of global hydrogen markets.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: FCEV's "Down Under"
Dec 2020
Publication
On today's show the EAH team will be joined by Brendan Norman to talk about deployment of sustainable FCEV technologies across many different segments of the transport sector and utility vehicles. Brendan is the CEO of H2X a new vehicle manufacturing company based in Sydney with a manufacturing facility in Port Kembla will deliver its first hydrogen FCEVs to market beginning in 2022 before expanding its vehicle offerings in subsequent years. Brendan joined the EAH team via SquadCast from Kuala Lumpur to talk fuel cells with us and you don't want to miss the excellent discussion that we had on this week's episode.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Championing a Clean Energy Future
Nov 2021
Publication
With COP starting this week we discuss with the HLC team the role of hydrogen in decarbonization and the critical need for hydrogen to scale quickly. Andrew and Patrick sit down with Kieran Coleman Energy & Industry Lead for the United Nations COP High Level Champions to chat about the work being done in advance of COP with partners and the level of ambition we’ve seen across various sectors about the future of hydrogen and a lot more!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: The year-end Round Up! 2020 in Review
Dec 2020
Publication
2020 has been a year for the history books! Some good most of it not so good; but 2020 has been a boom year for the future of hydrogen technologies. Patrick Chris and Andrew do their level best on this episode to talk about all the stories and the highlights of 2020 in under 50 minutes. Have a listen and let us know if we missed anything in our penultimate episode of 2020!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Can CUTRIC Clean Canada?
Mar 2021
Publication
When the pandemic recedes lockdowns and restrictions are relaxed and eventually eliminated and millions of residents in cities across the world begin to return to their offices and workplaces public transit systems will once again be at the core of billions of commuters' daily activities. Urban transit systems are designed to move huge volumes of people through cities and communities quickly reliably and cost-efficiently (some systems accomplish these goals better than others!). The energy needed to run these networks of cars trains and buses is enormous and today most of it comes from fossil fuels. How can communities - both large and small - redesign their transit systems to eliminate operational carbon emissions in the future?
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Hydrogen in the E-Mobility Sector
Oct 2021
Publication
Quantron AG was created in 2019 as a high-tech spin-off of the well-known Haller GmbH & Co. KG with the vision of paving the way for e-mobility in inner-city and regional passenger and cargo transportation. Quantron AG combines innovative ability and expertise in e-vans e-trucks and e-buses with the long-standing knowledge and experience of Haller GmbH & Co. KG in the commercial vehicle sector. The company's approach to e-Mobility is defined by its commitment to leveraging the most effective zero-emission vehicle technology for the use case which means Quantron is building both hydrogen fuel cell electric vehicles (FCEVs) and battery electric vehicles (BEVs) for its clients.
The podcast can be found on the website
The podcast can be found on the website
A Review of Ni Based Powder Catalyst for Urea Oxidation in Assisting Water Splitting Reaction
Jan 2022
Publication
Water splitting has been regarded as a sustainable and environmentally-friendly technique to realize green hydrogen generation while more energy is consumed due to the high overpotentials required for the anode oxygen evolution reaction. Urea electrooxidation an ideal substitute is thus received increasing attention in assisting water-splitting reactions. Note that highly efficient catalysts are still required to drive urea oxidation and the facile generation of high valence state species is significant in the reaction based on the electrochemical-chemical mechanisms. The high cost and rareness make the noble metal catalysts impossible for further consideration in large-scale application. Ni-based catalysts are very promising due to their cheap price facile structure tuning good compatibility and easy active phase formation. In the light of the significant advances made recently herein we reviewed the recent advances of Ni-based powder catalysts for urea oxidation in assisting water-splitting reaction. The fundamental of urea oxidation is firstly presented to clarify the mechanism of urea-assisted water splitting and then the prevailing evaluation indicators are briefly expressed based on the electrochemical measurements. The catalyst design principle including synergistic effect electronic effect defect construction and surface reconstruction as well as the main fabrication approaches are presented and the advances of various Ni-based powder catalysts for urea assisted water splitting are summarized and discussed. The problems and challenges are also concluded for the Ni-based powder catalysts fabrication the performance evaluation and their application. Considering the key influence factors for catalytic process and their application attention should be given to structure-property relationship deciphering novel Ni-based powder catalysts development and their construction in the real device; specifically the effort should be directed to the Ni-based powder catalyst with multi-functions to simultaneously promote the fundamental steps and high anti-corrosion ability by revealing the local structure reconstruction as well as the integration in the practical application. We believe the current summarization will be instructive and helpful for the Ni-based powder catalysts development and understanding their catalytic action for urea-assisted hydrogen generation via water splitting technique.
Optimized Configuration of Diesel Engine-Fuel Cell-Battery Hybrid Power Systems in a Platform Supply Vessel to Reduce CO2 Emissions
Mar 2022
Publication
The main objective of this paper is to select the optimal configuration of a ship’s power system considering the use of fuel cells and batteries that would achieve the lowest CO2 emissions also taking into consideration the number of battery cycles. The ship analyzed in this work is a Platform Supply Vessel (PSV) used to support oil and gas offshore platforms transporting goods equipment and personnel. The proposed scheme considers the ship’s retrofitting. The ship’s original main generators are maintained and the fuel cell and batteries are installed as complementary sources. Moreover a sensitivity analysis is pursued on the ship’s demand curve. The simulations used to calculate the CO2 emissions for each of the new hybrid configurations were developed using HOMER software. The proposed solutions are auxiliary generators three types of batteries and a protonexchange membrane fuel cell (PEMFC) with different sizes of hydrogen tanks. The PEMFC and batteries were sized as containerized solutions and the sizing of the auxiliary engines was based on previous works. Each configuration consists of a combination of these solutions. The selection of the best configuration is one contribution of this paper. The new configurations are classified according to the reduction of CO2 emitted in comparison to the original system. For different demand levels the results indicate that the configuration classification may vary. Another valuable contribution of this work is the sizing of the battery and hydrogen storage systems. They were installed in 20 ft containers since the installation of batteries fuel cells and hydrogen tanks in containers is widely used for ship retrofit. As a result the most significant reduction of CO2 emissions is 10.69%. This is achieved when the configuration includes main generators auxiliary generators a 3119 kW lithium nickel manganese cobalt (LNMC) battery a 250 kW PEMFC and 581 kg of stored hydrogen.
Improvement of Temperature and Humidity Control of Proton Exchange Membrane Fuel Cells
Sep 2021
Publication
Temperature and humidity are two important interconnected factors in the performance of PEMFCs (Proton Exchange Membrane Fuel Cells). The fuel and oxidant humidity and stack temperature in a fuel cell were analyzed in this study. There are many factors that affect the temperature and humidity of the stack. We adopt the fuzzy control method of multi-input and multi-output to control the temperature and humidity of the stack. A model including a driver vehicle transmission motor air feeding electrical network stack hydrogen supply and cooling system was established to study the fuel cell performance. A fuzzy controller is proven to be better in improving the output power of fuel cells. The three control objectives are the fan speed control for regulating temperature the solenoid valve on/off control of the bubble humidifier for humidity variation and the speed of the pump for regulating temperature difference. In addition the results from the PID controller stack model and the fuzzy controller stack model are compared in this research. The fuel cell bench test has been built to validate the effectiveness of the proposed fuzzy control. The maximum temperature of the stack can be reduced by 5 ◦C with the fuzzy control in this paper so the fuel cell output voltage (power) increases by an average of approximately 5.8%.
Techno-economic Analysis of High-Pressure Metal Hydride Compression Systems
Jun 2018
Publication
Traditional high-pressure mechanical compressors account for over half of the car station’s cost have insufficient reliability and are not feasible for a large-scale fuel cell market. An alternative technology employing a two-stage hybrid system based on electrochemical and metal hydride compression technologies represents an excellent alternative to conventional compressors. The high-pressure stage operating at 100–875 bar is based on a metal hydride thermal system. A techno-economic analysis of the metal hydride system is presented and discussed. A model of the metal hydride system was developed integrating a lumped parameter mass and energy balance model with an economic model. A novel metal hydride heat exchanger configuration is also presented based on minichannel heat transfer systems allowing for effective high-pressure compression. Several metal hydrides were analyzed and screened demonstrating that one selected material namely (Ti0.97Zr0.03)1.1Cr1.6Mn0.4 is likely the best candidate material to be employed for high-pressure compressors under the specific conditions. System efficiency and costs were assessed based on the properties of currently available materials at industrial levels. Results show that the system can reach pressures on the order of 875 bar with thermal power provided at approximately 150 ◦C. The system cost is comparable with the current mechanical compressors and can be reduced in several ways as discussed in the paper.
Everything About Hydrogen Podcast: Digging into the Mining Industry
Jan 2021
Publication
On this episode of Everything About Hydrogen Jan Klawitter Head of International Policy for Anglo American speaks with Andrew Chris and Patrick about Anglo American's strategy for decarbonizing its mining operations and how they plan to use hydrogen and fuel cell technologies as a key part of their approach.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Envisioning the Hydrogen Revolution
May 2021
Publication
For our 40th episode of the Everything About Hydrogen podcast the gang are joined by hydrogen luminary Marco Alverà the CEO of Snam. Founded in 1941 and listed on the Italian stock exchange since 2001 Snam is a leader in the European gas market and operator of over 41000km of transport networks. Hailed as a visionary who has led the pivot of the world’s 2nd largest gas distribution company towards a clean gas trajectory Marco is widely recognized as a thought leader and a key figure driving the transition towards hydrogen. On the show the team discuss why Marco decided to lead Snam's pivot towards hydrogen what he sees as the role of hydrogen in the energy transition and how blue hydrogen can sit alongside green hydrogen as part of the solution to a decarbonized gas network.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: High-temperature Fuel Cells at High Altitudes
Jun 2021
Publication
HyPoint led by its CEO and co-founder Alex Ivanenko is at the cutting edge of the industry's efforts to find zero-emissions aircraft propulsion systems that do not sacrifice speed and power in the name of sustainability. HyPoint is a leading producer of high-temperature PEM fuel cells for aviation applications including for logistic drones air taxis electric vertical takeoff and landing vehicles (eVTOLs) and fixed-wing airplanes. On this episode of the EAH podcast the team speaks with Alex about the incredible pace of development and rapid innovation that he and his colleagues are driving in the hydrogen aviation space and how his company is leading the way in a highly complex and competitive race to decarbonize modern air travel.
The podcast can be found on their website
The podcast can be found on their website
A New Model For Hydrogen-Induced Crack (HIC) Growth in Metal Alloy Pipelines Under Extreme Pressure
Dec 2020
Publication
Pipeline failure caused by Hydrogen-Induced Cracking (HIC) also known as Hydrogen Embrittlement (HE) is a pressing issue for the oil and natural gas industry. Bursts in pipelines are devastating and extremely costly. The explosive force of a bursting pipe can inflict fatal injuries to workers while the combined loss of product and effort to repair are highly costly to producers. Further pipeline failures due to HIC have a long lasting impact on the surrounding environment. Safe use and operation of such pipelines depend on a good understanding of the underlying forces that cause HIC. Specifically a reliable way to predict the growth rate of hydrogen-induced cracks is needed to establish a safe duration of service for each length of pipeline. Pipes that have exceeded or are near the end of their service life can then be retired before the risk of HIC-related failures becomes too high. However little is known about the mechanisms that drive HIC. To date no model has been put forth that accurately predicts the growth rate of fractures due to HIC under extreme pressures such as in the context of natural gas and petroleum pipelines. Herein a mathematical model for the growth of fractures by HIC under extreme pressures is presented. This model is derived from first principles and the results are compared with other models. The implications of these findings are discussed and a description of future work based on these findings is presented.
Polymer Electrolyte Membrane Fuel Cell and Hydrogen Station Networks for Automobiles: Status, Technology, and Perspectives
Feb 2021
Publication
The U.S. transportation sector accounts for 37% of total energy consumption. Automobiles are a primary application of polymer electrolyte membrane (PEM) fuel cells which operate under low temperature and high efficiency to reduce fossil fuel consumption and CO2 emissions. Using hydrogen fuel PEM fuel cells can reach a practical efficiency as high as 65% with water as the only byproduct. Almost all the major automakers are involved in fuel cell electric vehicle (FCEV) development. Toyota and Hyundai introduced FCEVs (the Mirai and NEXO respectively) to consumers in recent years with a driving range between 312 and 402 miles and cold-start capacity from -30 °C. About 50 fuel cell electric buses (FCEB) are operating in California and most of them have achieved the durability target i.e. 25000 h in real-world driving conditions. As of September 2020 over 8573 FCEVs have been sold or leased in the U.S. More than 3521 FCEVs and 22 FCEBs have been sold or leased in Japan as of September 2019. An extensive hydrogen station network is required for the successful deployment of FCEVs and FCEBs. The U.S. currently has over 44 hydrogen fuelling stations (HFSs) nearly all located in California. Europe has over 139 HFSs with ~1500 more stations planned by 2025. This review has three primary objectives: 1) to present the current status of FCEV/FCEB commercialization and HFS development; 2) to describe the PEM fuel cell research/development in automobile applications and the significance of HFS networks; and 3) to outline major challenges and opportunities.
A Comparative Technoeconomic Analysis of Renewable Hydrogen Production Using Solar Energy
May 2016
Publication
A technoeconomic analysis of photoelectrochemical (PEC) and photovoltaic-electrolytic (PV-E) solar-hydrogen production of 10 000 kg H2 day−1 (3.65 kilotons per year) was performed to assess the economics of each technology and to provide a basis for comparison between these technologies as well as within the broader energy landscape. Two PEC systems differentiated primarily by the extent of solar concentration (unconcentrated and 10× concentrated) and two PV-E systems differentiated by the degree of grid connectivity (unconnected and grid supplemented) were analyzed. In each case a base-case system that used established designs and materials was compared to prospective systems that might be envisioned and developed in the future with the goal of achieving substantially lower overall system costs. With identical overall plant efficiencies of 9.8% the unconcentrated PEC and non-grid connected PV-E system base-case capital expenses for the rated capacity of 3.65 kilotons H2 per year were $205 MM ($293 per m2 of solar collection area (mS−2) $14.7 WH2P−1) and $260 MM ($371 mS−2 $18.8 WH2P−1) respectively. The untaxed plant-gate levelized costs for the hydrogen product (LCH) were $11.4 kg−1 and $12.1 kg−1 for the base-case PEC and PV-E systems respectively. The 10× concentrated PEC base-case system capital cost was $160 MM ($428 mS−2 $11.5 WH2P−1) and for an efficiency of 20% the LCH was $9.2 kg−1. Likewise the grid supplemented base-case PV-E system capital cost was $66 MM ($441 mS−2 $11.5 WH2P−1) and with solar-to-hydrogen and grid electrolysis system efficiencies of 9.8% and 61% respectively the LCH was $6.1 kg−1. As a benchmark a proton-exchange membrane (PEM) based grid-connected electrolysis system was analyzed. Assuming a system efficiency of 61% and a grid electricity cost of $0.07 kWh−1 the LCH was $5.5 kg−1. A sensitivity analysis indicated that relative to the base-case increases in the system efficiency could effect the greatest cost reductions for all systems due to the areal dependencies of many of the components. The balance-of-systems (BoS) costs were the largest factor in differentiating the PEC and PV-E systems. No single or combination of technical advancements based on currently demonstrated technology can provide sufficient cost reductions to allow solar hydrogen to directly compete on a levelized cost basis with hydrogen produced from fossil energy. Specifically a cost of CO2 greater than ∼$800 (ton CO2)−1 was estimated to be necessary for base-case PEC hydrogen to reach price parity with hydrogen derived from steam reforming of methane priced at $12 GJ−1 ($1.39 (kg H2)−1). A comparison with low CO2 and CO2-neutral energy sources indicated that base-case PEC hydrogen is not currently cost-competitive with electrolysis using electricity supplied by nuclear power or from fossil-fuels in conjunction with carbon capture and storage. Solar electricity production and storage using either batteries or PEC hydrogen technologies are currently an order of magnitude greater in cost than electricity prices with no clear advantage to either battery or hydrogen storage as of yet. Significant advances in PEC technology performance and system cost reductions are necessary to enable cost-effective PEC-derived solar hydrogen for use in scalable grid-storage applications as well as for use as a chemical feedstock precursor to CO2-neutral high energy-density transportation fuels. Hence such applications are an opportunity for foundational research to contribute to the development of disruptive approaches to solar fuels generation systems that can offer higher performance at much lower cost than is provided by current embodiments of solar fuels generators. Efforts to directly reduce CO2 photoelectrochemically or electrochemically could potentially produce products with higher value than hydrogen but many as yet unmet challenges include catalytic efficiency and selectivity and CO2 mass transport rates and feedstock cost. Major breakthroughs are required to obtain viable economic costs for solar hydrogen production but the barriers to achieve cost-competitiveness with existing large-scale thermochemical processes for CO2 reduction are even greater.
Carbon Capture and Storage (CCS): The Way Forward
Mar 2018
Publication
Mai Bui,
Claire S. Adjiman,
André Bardow,
Edward J. Anthony,
Andy Boston,
Solomon Brown,
Paul Fennell,
Sabine Fuss,
Amparo Galindo,
Leigh A. Hackett,
Jason P. Hallett,
Howard J. Herzog,
George Jackson,
Jasmin Kemper,
Samuel Krevor,
Geoffrey C. Maitland,
Michael Matuszewski,
Ian Metcalfe,
Camille Petit,
Graeme Puxty,
Jeffrey Reimer,
David M. Reiner,
Edward S. Rubin,
Stuart A. Scott,
Nilay Shah,
Berend Smit,
J. P. Martin Trusler,
Paul Webley,
Jennifer Wilcox and
Niall Mac Dowell
Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets delivering low carbon heat and power decarbonising industry and more recently its ability to facilitate the net removal of CO2 from the atmosphere. However despite this broad consensus and its technical maturity CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus in this paper we review the current state-of-the-art of CO2 capture transport utilisation and storage from a multi-scale perspective moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS) and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.
Reversible Hydrogen Storage Using Nanocomposites
Jul 2020
Publication
In the field of energy storage recently investigated nanocomposites show promise in terms of high hydrogen uptake and release with enhancement in the reaction kinetics. Among several carbonaceous nanovariants like carbon nanotubes (CNTs) fullerenes and graphitic nanofibers reveal reversible hydrogen sorption characteristics at 77 K due to their van der Waals interaction. The spillover mechanism combining Pd nanoparticles on the host metal-organic framework (MOF) show room temperature uptake of hydrogen. Metal or complex hydrides either in the nanocomposite form and its subset nanocatalyst dispersed alloy phases illustrate the concept of nanoengineering and nanoconfinement of particles with tailor-made properties for reversible hydrogen storage. Another class of materials comprising polymeric nanostructures such as conducting polyaniline and their functionalized nanocomposites are versatile hydrogen storage materials because of their unique size high specific surface-area pore-volume and bulk properties. The salient features of nanocomposite materials for reversible hydrogen storage are reviewed and discussed.
Direct Numerical Simulation of Hydrogen Combustion at Auto-ignitive Conditions Ignition, Stability and Turbulent Reaction-front Velocity
Mar 2021
Publication
Direct Numerical Simulations (DNS) are performed to investigate the process of spontaneous ignition of hydrogen flames at laminar turbulent adiabatic and non-adiabatic conditions. Mixtures of hydrogen and vitiated air at temperatures representing gas-turbine reheat combustion are considered. Adiabatic spontaneous ignition processes are investigated first providing a quantitative characterization of stable and unstable flames. Results indicate that in hydrogen reheat combustion compressibility effects play a key role in flame stability and that unstable ignition and combustion are consistently encountered for reactant temperatures close to the mixture’s characteristic crossover temperature. Furthermore it is also found that the characterization of the adiabatic processes is also valid in the presence of non-adiabaticity due to wall heat-loss. Finally a quantitative characterization of the instantaneous fuel consumption rate within the reaction front is obtained and of its ability at auto-ignitive conditions to advance against the approaching turbulent flow of the reactants for a range of different turbulence intensities temperatures and pressure levels.
Ultrasonic-assisted Catalytic Transfer Hydrogenation for Upgrading Pyrolysis-oil
Feb 2021
Publication
Recent interest in biomass-based fuel blendstocks and chemical compounds has stimulated research efforts on conversion and upgrading pathways which are considered as critical commercialization drivers. Existing pre-/post-conversion pathways are energy intense (e.g. pyrolysis and hydrogenation) and economically unsustainable thus more efficient process solutions can result in supporting the renewable fuels and green chemicals industry. This study proposes a process including biomass conversion and bio-oil upgrading using mixed fast and slow pyrolysis conversion pathway as well as sono-catalytic transfer hydrogenation (SCTH) treatment process. The proposed SCTH treatment employs ammonium formate as a hydrogen transfer additive and palladium supported on carbon as the catalyst. Utilizing SCTH bio-oil molecular bonds were broken and restructured via the phenomena of cavitation rarefaction and hydrogenation with the resulting product composition investigated using ultimate analysis and spectroscopy. Additionally an in-line characterization approach is proposed using near-infrared spectroscopy calibrated by multivariate analysis and modelling. The results indicate the potentiality of ultrasonic cavitation catalytic transfer hydrogenation and SCTH for incorporating hydrogen into the organic phase of bio-oil. It is concluded that the integration of pyrolysis with SCTH can improve bio-oil for enabling the production of fuel blendstocks and chemical compounds from lignocellulosic biomass.
The Potential of Hydrogen Hydrate as a Future Hydrogen Storage Medium
Dec 2020
Publication
Hydrogen is recognized as the “future fuel” and the most promising alternative of fossil fuels due to its remarkable properties including exceptionally high energy content per unit mass (142 MJ/kg) low mass density and massive environmental and economical upsides. A wide spectrum of methods in H2 production especially carbon-free approaches H2purification and H2storage have been investigated to bring this energy source closer to the technological deployment. Hydrogen hydrates are among the most intriguing material paradigms for H2storage due to their appealing properties such as low energy consumption for charge and discharge safety cost-effectiveness and favorable environmental features. Here we comprehensively discuss the progress in understanding of hydrogen clathrate hydrates with an emphasis on charging/discharging rate of H2 (i.e. hydrate formation and dissociation rates) and the storage capacity. A thorough understanding on phase equilibrium of the hydrates and its variation through different materials is provided. The path toward ambient temperature and pressure hydrogen batteries with high storage capacity is elucidated. We suggest that the charging rate of H2 in this storage medium and long cyclic performance are more immediate challenges than storage capacity for technological translation of this storage medium. This review and provided outlook establish a groundwork for further innovation on hydrogen hydrate systems for promising future of hydrogen fuel.
Sub-second and Ppm-level Optical Sensing of Hydrogen Using Templated Control of Nano-hydride Geometry and Composition
Apr 2021
Publication
The use of hydrogen as a clean and renewable alternative to fossil fuels requires a suite of flammability mitigating technologies particularly robust sensors for hydrogen leak detection and concentration monitoring. To this end we have developed a class of lightweight optical hydrogen sensors based on a metasurface of Pd nano-patchy particle arrays which fulfills the increasing requirements of a safe hydrogen fuel sensing system with no risk of sparking. The structure of the optical sensor is readily nano-engineered to yield extraordinarily rapid response to hydrogen gas (<3 s at 1 mbar H2) with a high degree of accuracy (<5%). By incorporating 20% Ag Au or Co the sensing performances of the Pd-alloy sensor are significantly enhanced especially for the Pd80Co20 sensor whose optical response time at 1 mbar of H2 is just ~0.85 s while preserving the excellent accuracy (<2.5%) limit of detection (2.5 ppm) and robustness against aging temperature and interfering gases. The superior performance of our sensor places it among the fastest and most sensitive optical hydrogen sensors.
Nickel-Based Electrocatalysts for Water Electrolysis
Feb 2022
Publication
Currently hydrogen production is based on the reforming process leading to the emission of pollutants; therefore a substitute production method is imminently required. Water electrolysis is an ideal alternative for large-scale hydrogen production as it does not produce any carbon-based pollutant byproducts. The production of green hydrogen from water electrolysis using intermittent sources (e.g. solar and eolic sources) would facilitate clean energy storage. However the electrocatalysts currently required for water electrolysis are noble metals making this potential option expensive and inaccessible for industrial applications. Therefore there is a need to develop electrocatalysts based on earth-abundant and low-cost metals. Nickel-based electrocatalysts are a fitting alternative because they are economically accessible. Extensive research has focused on developing nickel-based electrocatalysts for hydrogen and oxygen evolution. Theoretical and experimental work have addressed the elucidation of these electrochemical processes and the role of heteroatoms structure and morphology. Even though some works tend to be contradictory they have lit up the path for the development of efficient nickel-based electrocatalysts. For these reasons a review of recent progress is presented herein.
A Combined Chemical-Electrochemical Process to Capture CO2 and Produce Hydrogen and Electricity
Sep 2021
Publication
Several carbon sequestration technologies have been proposed to utilize carbon dioxide (CO2 ) to produce energy and chemical compounds. However feasible technologies have not been adopted due to the low efficiency conversion rate and high-energy requirements. Process intensification increases the process productivity and efficiency by combining chemical reactions and separation operations. In this work we present a model of a chemical-electrochemical cyclical process that can capture carbon dioxide as a bicarbonate salt. The proposed process also produces hydrogen and electrical energy. Carbon capture is enhanced by the reaction at the cathode that displaces the equilibrium into bicarbonate production. Literature data show that the cyclic process can produce stable operation for long times by preserving ionic balance using a suitable ionic membrane that regulates ionic flows between the two half-cells. Numerical simulations have validated the proof of concept. The proposed process could serve as a novel CO2 sequestration technology while producing electrical energy and hydrogen.
Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution
Apr 2014
Publication
Replacement of precious catalyst with cost-effective alternatives would be significantly beneficial for hydrogen production via electrocatalytic hydrogen evolution reaction (HER). All candidates thus far are exclusively metallic catalysts which suffer inherent corrosion and oxidation susceptibility during acidic proton-exchange membrane electrolysis. Herein based on theoretical predictions we designed and synthesized nitrogen (N) and phosphorus (P) dual-doped graphene as a non-metallic electrocatalyst for sustainable and efficient hydrogen production. The N and Phetero-atoms could coactivate the adjacent C atom in the graphene matrix by affecting its valence orbital energy levels to induce a synergistically enhanced reactivity toward HER. As a result the dual-doped graphene showed higher electrocatalytic HER activity than single-doped ones and comparable performance to some of the traditional metallic catalysts.
Spin Pinning Effect to Reconstructed Oxyhydroxide Layer on Ferromagnetic Oxides for Enhanced Water Oxidation
Jun 2021
Publication
Producing hydrogen by water electrolysis suffers from the kinetic barriers in the oxygen evolution reaction (OER) that limits the overall efficiency. With spin-dependent kinetics in OER to manipulate the spin ordering of ferromagnetic OER catalysts (e.g. by magnetization) can reduce the kinetic barrier. However most active OER catalysts are not ferromagnetic which makes the spin manipulation challenging. In this work we report a strategy with spin pinning effect to make the spins in paramagnetic oxyhydroxides more aligned for higher intrinsic OER activity. The spin pinning effect is established in oxideFM/oxyhydroxide interface which is realized by a controlled surface reconstruction of ferromagnetic oxides. Under spin pinning simple magnetization further increases the spin alignment and thus the OER activity which validates the spin effect in rate-limiting OER step. The spin polarization in OER highly relies on oxyl radicals (O∙) created by 1st dehydrogenation to reduce the barrier for subsequent O-O coupling.
Using Additives to Control the Decomposition Temperature of Sodium Borohydride
May 2020
Publication
Hydrogen (H2) shows great promise as zero-carbon emission fuel but there are several challenges to overcome in regards to storage and transportation to make it a more universal energy solution. Gaseous hydrogen requires high pressures and large volume tanks while storage of liquid hydrogen requires cryogenic temperatures; neither option is ideal due to cost and the hazards involved. Storage in the solid state presents an attractive alternative and can meet the U.S. Department of Energy (DOE) constraints to find materials containing > 7 % H2 (gravimetric weight) with a maximum H2 release under 125 °C.
While there are many candidate hydrogen storage materials the vast majority are metal hydrides. Of the hydrides this review focuses solely on sodium borohydride (NaBH4) which is often not covered in other hydride reviews. However as it contains 10.6% (by weight) H2 that can release at 133 ± 3 JK−1mol−1 this inexpensive material has received renewed attention. NaBH4 should decompose to H2g) Na(s) and B(s) and could be recycled into its original form. Unfortunately metal to ligand charge transfer in NaBH4 induces high thermodynamic stability creating a high decomposition temperature of 530 °C. In an effort make H2 more accessible at lower temperatures researchers have incorporated additives to destabilize the structure.
This review highlights metal additives that have successfully reduced the decomposition temperature of NaBH4 with temperatures ranging from 522 °C (titanium (IV) fluoride) to 379 °C (niobium (V) fluoride). We describe synthetic methods employed chemical pathways taken and the challenges of boron derivative formation on H2 cycling. Though no trends can be found across all additives it is our hope that compiling the data here will enable researchers to gain a better understanding of the additives’ influence and to determine how a new system might be designed to make NaBH4 a more viable H2 fuel source.
While there are many candidate hydrogen storage materials the vast majority are metal hydrides. Of the hydrides this review focuses solely on sodium borohydride (NaBH4) which is often not covered in other hydride reviews. However as it contains 10.6% (by weight) H2 that can release at 133 ± 3 JK−1mol−1 this inexpensive material has received renewed attention. NaBH4 should decompose to H2g) Na(s) and B(s) and could be recycled into its original form. Unfortunately metal to ligand charge transfer in NaBH4 induces high thermodynamic stability creating a high decomposition temperature of 530 °C. In an effort make H2 more accessible at lower temperatures researchers have incorporated additives to destabilize the structure.
This review highlights metal additives that have successfully reduced the decomposition temperature of NaBH4 with temperatures ranging from 522 °C (titanium (IV) fluoride) to 379 °C (niobium (V) fluoride). We describe synthetic methods employed chemical pathways taken and the challenges of boron derivative formation on H2 cycling. Though no trends can be found across all additives it is our hope that compiling the data here will enable researchers to gain a better understanding of the additives’ influence and to determine how a new system might be designed to make NaBH4 a more viable H2 fuel source.
Economic Value of Flexible Hydrogen-based Polygeneration Energy Systems
Jan 2016
Publication
Polygeneration energy systems (PES) have the potential to provide a flexible high-efficiency and low-emissions alternative for power generation and chemical synthesis from fossil fuels. This study aims to assess the economic value of fossil-fuel PES which rely on hydrogen as an intermediate product. Our analysis focuses on a representative PES configuration that uses coal as the primary energy input and produces electricity and fertilizer as end-products. We derive a series of propositions that assess the cost competitiveness of the modeled PES under both static and flexible operation modes. The result is a set of metrics that quantify the levelized cost of hydrogen the unit profit-margin of PES and the real option values of ‘diversification’ and ‘flexibility’ embedded in PES. These metrics are subsequently applied to assess the economics of Hydrogen Energy California (HECA) a PES currently under development in California. Under our technical and economic assumptions HECA’s levelized cost of hydrogen is estimated at 1.373 $/kgh. The profitability of HECA as a static PES increases in the share of hydrogen converted to fertilizer rather than electricity. However when configured as a flexible PES HECA almost breaks even on a pre-tax basis. Diversification and flexibility are valuable for HECA when polygeneration is compared to static monogeneration of electricity but these two real options have no value when comparing polygeneration to static monogeneration of fertilizers.
Hydrogen-Based Energy Storage Systems for Large-Scale Data Center Applications
Nov 2021
Publication
Global demand for data and data access has spurred the rapid growth of the data center industry. To meet demands data centers must provide uninterrupted service even during the loss of primary power. Service providers seeking ways to eliminate their carbon footprint are increasingly looking to clean and sustainable energy solutions such as hydrogen technologies as alternatives to traditional backup generators. In this viewpoint a survey of the current state of data centers and hydrogen-based technologies is provided along with a discussion of the hydrogen storage and infrastructure requirements needed for large-scale backup power applications at data centers.
Greenhouse Gas Emissions of Conventional and Alternative Vehicles: Predictions Based on Energy Policy Analysis in South Korea
Mar 2020
Publication
This paper compares the well-to-wheel (WTW) greenhouse gas (GHG) emissions of representative vehicle types–internal combustion engine vehicle (ICEV) hybrid electric vehicle (HEV) plug-in hybrid electric vehicle (PHEV) battery electric vehicle (BEV) and fuel cell electric vehicle (FCEV)–in the future (2030) based on a WTW analysis for the present (2017) and an analysis of various energy policies that could affect future emissions. South Korea was selected as the target region because it has detailed energy policies related to alternative vehicles. The WTW analysis for the present was performed based on three sets of subordinate analyses: (1) life cycle analyses of eight base fuels; (2) life cycle analyses of electricity and hydrogen; and (3) analyses of the fuel economies of seven vehicle types. From the WTW analysis for the present the national average WTW GHG emissions of ICEV-gasoline ICEV-diesel ICEV-liquefied petroleum gas HEV PHEV BEV and FCEV were calculated as 225 233 201 159 133 109 and 55 g-CO2-eq./km respectively. For calculating the WTW GHG emissions in the future two policies regarding electricity production and three policies regarding hydrogen production were analysed. Three cases with varying the degrees of improvements in fuel economies were considered. Six future scenarios were constructed and each scenario represented the case in which each energy policy is enacted. In the reference scenario for compact car the WTW GHG emissions of ICEVs-gasoline HEV PHEV BEV-200 mile FCEV were analysed as 161 110 97 86 and 91 g-CO2-eq./km respectively. The differences between ICEV/HEV and BEV were predicted to decrease in the future mainly due to larger improvements of ICEV/HEV in fuel economies compared to that of BEV. The future life cycle GHG emissions of electricity and hydrogen were calculated according to energy policy. Both two policies regarding power generation were confirmed to increase the benefits of utilizing BEVs but current energy policy regarding hydrogen production were confirmed to decrease the benefits of utilizing FCEVs. Based on the comprehensive results of this study a framework was proposed to evaluate the impacts of an energy policy regarding electricity and hydrogen production on the benefits of using BEVs and FCEVs compared to using HEVs and ICEVs. This framework can also be utilized in other countries when they assess and establish their energy policies.
Ex Situ Thermo-catalytic Upgrading of Biomass Pyrolysis Vapors Using a Traveling Wave Microwave Reactor
Sep 2016
Publication
Microwave heating offers a number of advantages over conventional heating methods such as rapid and volumetric heating precise temperature control energy efficiency and lower temperature gradient. In this article we demonstrate the use of 2450 MHz microwave traveling wave reactor to heat the catalyst bed for thermo-catalytic upgrading of pyrolysis vapors. HZSM-5 catalyst was tested at three different temperatures (290 330 and 370°C) at a catalyst to biomass ratio of 2. Results were compared with conventional heating and induction heating method of catalyst bed. The yields of aromatic compounds and coke deposition were dependent on temperature and method of heating. Microwave heating yielded higher aromatic compounds and lower coke deposition. Microwave heating was also energy efficient compared to conventional reactors. The rate of catalyst deterioration was lower for catalyst heated in microwave system.
Safety Standard for Hydrogen and Hydrogen Systems Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation
Jan 1997
Publication
The NASA Safety Standard which establishes a uniform process for hydrogen system design materials selection operation storage and transportation is presented. The guidelines include suggestions for safely storing handling and using hydrogen in gaseous (GH2) liquid (LH2) or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards facility design design of components materials compatibility detection and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws explosions blast effects and fragmentation; codes standards and NASA directives; and relief devices along with a list of tables and figures abbreviations a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone but at the same time reference data sources that can provide much more detail if required.
Current Status of Automotive Fuel Cells for Sustainable Transport
May 2019
Publication
Automotive proton-exchange membrane fuel cells (PEMFCs) have finally reached a state of technological readiness where several major automotive companies are commercially leasing and selling fuel cell electric vehicles including Toyota Honda and Hyundai. These now claim vehicle speed and acceleration refueling time driving range and durability that rival conventional internal combustion engines and in most cases outperform battery electric vehicles. The residual challenges and areas of improvement which remain for PEMFCs are performance at high current density durability and cost. These are expected to be resolved over the coming decade while hydrogen infrastructure needs to become widely available. Here we briefly discuss the status of automotive PEMFCs misconceptions about the barriers that platinum usage creates and the remaining hurdles for the technology to become broadly accepted and implemented.
Economic Analysis of a High-pressure Urban Pipeline Concept (HyLine) for Delivering Hydrogen to Retail Fueling Stations
Nov 2019
Publication
Reducing the cost of delivering hydrogen to fuelling stations and dispensing it into fuel cell electric vehicles (FCEVs) is one critical element of efforts to increase the cost-competitiveness of FCEVs. Today hydrogen is primarily delivered to stations by trucks. Pipeline delivery is much rarer: one urban U.S. station has been supplied with 800-psi hydrogen from an industrial hydrogen pipeline since 2011 and a German station on the edge of an industrial park has been supplied with 13000-psi hydrogen from a pipeline since 2006. This article compares the economics of existing U.S. hydrogen delivery methods with the economics of a high-pressure scalable intra-city pipeline system referred to here as the “HyLine” system. In the HyLine system hydrogen would be produced at urban industrial or commercial sites compressed to 15000 psi stored at centralized facilities delivered via high-pressure pipeline to retail stations and dispensed directly into FCEVs. Our analysis of retail fuelling station economics in Los Angeles suggests that as FCEV demand for hydrogen in an area becomes sufficiently dense pipeline hydrogen delivery gains an economic advantage over truck delivery. The HyLine approach would also enable cheaper dispensed hydrogen compared with lower-pressure pipeline delivery owing to economies of scale associated with integrated compression and storage. In the largest-scale fuelling scenario analyzed (a network of 24 stations with capacities of 1500 kg/d each and hydrogen produced via steam methane reforming) HyLine could potentially achieve a profited hydrogen cost of $5.3/kg which is approximately equivalent to a gasoline cost of $2.7/gal (assuming FCEVs offer twice the fuel economy of internal combustion engine vehicles and vehicle cost is competitive). It is important to note that significant effort would be required to develop technical knowledge codes and standards that would enable a HyLine system to be viable. However our preliminary analysis suggests that the HyLine approach merits further consideration based on its potential economic advantages. These advantages could also include the value of minimizing retail space used by hydrogen compression and storage sited at fuelling stations which is not reflected in our analysis.
Great Expectations: Asia, Australia and Europe Leading Emerging Green Hydrogen Economy, but Project Delays Likely
Aug 2020
Publication
In July 2020 the European Union unveiled its new Hydrogen Strategy a visionary plan to accelerate the adoption of green hydrogen to meet the EU’s net-zero emissions goal by 2050. Combined with smaller-scale plans in South Korea and Japan IEEFA believes this could form the beginnings of a global green hydrogen economy.
Green hydrogen produced exclusively with renewable energy has been acclaimed for decades but ever lower solar electricity costs mean this time really is different.
We expect the EU’s initiative to find strong support as the proposed investment of €430bn by 2030 places it in pole position to develop a world-class green energy manufacturing industry and provides a vital bridge for energy transition by repurposing existing ‘natural’ gas pipelines and fossil-fuel dependent ports.
In the past year numerous green hydrogen projects have been proposed primarily in Asia Europe Australia.
We estimate there are 50 viable projects globally announced in the past year with a total hydrogen production capacity of 4 million tons per annum and renewable power capacity of 50 gigawatts (GW) requiring capex of US$75bn.
The paper can be download on the IEEFA website
Green hydrogen produced exclusively with renewable energy has been acclaimed for decades but ever lower solar electricity costs mean this time really is different.
We expect the EU’s initiative to find strong support as the proposed investment of €430bn by 2030 places it in pole position to develop a world-class green energy manufacturing industry and provides a vital bridge for energy transition by repurposing existing ‘natural’ gas pipelines and fossil-fuel dependent ports.
In the past year numerous green hydrogen projects have been proposed primarily in Asia Europe Australia.
We estimate there are 50 viable projects globally announced in the past year with a total hydrogen production capacity of 4 million tons per annum and renewable power capacity of 50 gigawatts (GW) requiring capex of US$75bn.
The paper can be download on the IEEFA website
Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle
Apr 2016
Publication
The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based) step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar) step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH) is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle) and solar-to-fuel energy conversion efficiency (ηsolar´to´fuel) attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar´to´fuel both increase with decreasing TH due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance in the case where TH = 2280 K ηcycle = 24.4% and ηsolar´to´fuel = 29.5% (without heat recuperation) while ηcycle = 31.3% and ηsolar´to´fuel = 37.8% (with 40% heat recuperation).
Utilization and Recycling of End of Life Plastics for Sustainable and Clean Industrial Processes Including the Iron and Steel Industry
Aug 2019
Publication
About 400 million tonnes of plastics are produced per annum worldwide. End-of-life of plastics disposal contaminates the waterways aquifers and limits the landfill areas. Options for recycling plastic wastes include feedstock recycling mechanical /material recycling industrial energy recovery municipal solid waste incineration. Incineration of plastics containing E-Wastes releases noxious odours harmful gases dioxins HBr polybrominated diphenylethers and other hydrocarbons. This study focusses on recycling options in particular feedstock recycling of plastics in high-temperature materials processing for a sustainable solution to the plastic wastes not suitable for recycling. Of the 7% CO2 emissions attributed to the iron and steel industry worldwide ∼30% of the carbon footprint is reduced using the waste plastics compared to other carbon sources in addition to energy savings. Plastics have higher H2 content than the coal. Hydrogen evolved from the plastics acts as the reductant alongside the carbon monoxide. Hydrogen reduction of iron ore in presence of plastics increases the reaction rates due to higher diffusion of H2 compared to CO. Plastic replacement reduces the process temperature by at least 100–200 °C due to the reducing gases (hydrogen) which enhance the energy efficiency of the process. Similarly plastics greatly reduce the emissions in other high carbon footprint process such as magnesia production while contributing to energy.
Overview of Biomass Conversion to Electricity and Hydrogen and Recent Developments in Low-Temperature Electrochemical Approaches
Nov 2020
Publication
Biomass is plant or animal material that stores both chemical and solar energies and that is widely used for heat production and various industrial processes. Biomass contains a large amount of the element hydrogen so it is an excellent source for hydrogen production. Therefore biomass is a sustainable source for electricity or hydrogen production. Although biomass power plants and reforming plants have been commercialized it remains a difficult challenge to develop more effective and economic technologies to further improve the conversion efficiency and reduce the environmental impacts in the conversion process. The use of biomass-based flow fuel cell technology to directly convert biomass to electricity and the use of electrolysis technology to convert biomass into hydrogen at a low temperature are two new research areas that have recently attracted interest. This paper first briefly introduces traditional technologies related to the conversion of biomass to electricity and hydrogen and then reviews the new developments in flow biomass fuel cells (FBFCs) and biomass electrolysis for hydrogen production (BEHP) in detail. Further challenges in these areas are discussed.
Development of a Turnkey Hydrogen Fuelling Station
Jul 2010
Publication
The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fuelling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive turnkey stand-alone commercial hydrogen fuelling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses fleet vehicles and ultimately personal vehicles. Air Products partnering with the U.S. Department of Energy (DOE) The Pennsylvania State University Harvest Energy Technology and QuestAir developed a turnkey hydrogen fuelling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency 82% PSA (pressure swing adsorption) efficiency and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fuelling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation compression storage and gas dispensing. In the second phase Air Products designed the components chosen from the technologies examined. Finally phase three entailed a several-month period of data collection full-scale operation maintenance of the station and optimization of system reliability and performance. Based on field data analysis it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The station’s efficiency was measured to be 65.1% and the PSA was tested and ran at an efficiency of 82.1% thus meeting the project targets. From the study it was determined that more research was needed in the area of hydrogen fuelling. The overall cost of the hydrogen energy station when combined with the required plot size for scaled-up hydrogen demands demonstrated that a station using steam methane reforming technology as a means to produce on–site hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies such as liquid or pipeline delivery to a refuelling station need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refuelling station configuration and commercialization pathway can be determined.
Hydrogen Refuelling Reference Station Lot Size Analysis for Urban Sites
Mar 2020
Publication
Hydrogen Fuelling Infrastructure Research and Station Technology (H2FIRST) is a project initiated by the DOE in 2015 and executed by Sandia National Laboratories and the National Renewable Energy Laboratory to address R&D barriers to the deployment of hydrogen fuelling infrastructure. One key barrier to the deployment of fuelling stations is the land area they require (i.e. ""footprint""). Space is particularly a constraint in dense urban areas where hydrogen demand is high but space for fuelling stations is limited. This work presents current fire code requirements that inform station footprint then identifies and quantifies opportunities to reduce footprint without altering the safety profile of fuelling stations. Opportunities analyzed include potential new methods of hydrogen delivery as well as alternative placements of station technologies (i.e. rooftop/underground fuel storage). As interest in heavy-duty fuelling stations and other markets for hydrogen grows this study can inform techniques to reduce the footprint of heavy-duty stations as well.
This work characterizes generic designs for stations with a capacity of 600 kg/day hydrogen dispensed and 4 dispenser hoses. Three base case designs (delivered gas delivered liquid and on-site electrolysis production) have been modified in 5 different ways to study the impacts of recently released fire code changes colocation with gasoline refuelling alternate delivery assumptions underground storage of hydrogen and rooftop storage of hydrogen resulting in a total of 32 different station designs. The footprints of the base case stations range from 13000 to 21000 ft2.
A significant focus of this study is the NFPA 2 requirements especially the prescribed setback distances for bulk gaseous or liquid hydrogen storage. While the prescribed distances are large in some cases these setback distances are found to have a nuanced impact on station lot size; considerations of the delivery truck path traffic flow parking and convenience store location are also important. Station designs that utilize underground and rooftop storage can reduce footprint but may not be practical or economical. For example burying hydrogen storage tanks underground can reduce footprint but the cost savings they enable depend on the cost of burial and the cost land. Siting and economic analysis of station lot sizes illustrate the benefit of smaller station footprints in the flexibility and cost savings they can provide. This study can be used as a reference that provides examples of the key design differences that fuelling stations can incorporate the approximate sizes of generic station lots and considerations that might be unique to particular designs.
This work characterizes generic designs for stations with a capacity of 600 kg/day hydrogen dispensed and 4 dispenser hoses. Three base case designs (delivered gas delivered liquid and on-site electrolysis production) have been modified in 5 different ways to study the impacts of recently released fire code changes colocation with gasoline refuelling alternate delivery assumptions underground storage of hydrogen and rooftop storage of hydrogen resulting in a total of 32 different station designs. The footprints of the base case stations range from 13000 to 21000 ft2.
A significant focus of this study is the NFPA 2 requirements especially the prescribed setback distances for bulk gaseous or liquid hydrogen storage. While the prescribed distances are large in some cases these setback distances are found to have a nuanced impact on station lot size; considerations of the delivery truck path traffic flow parking and convenience store location are also important. Station designs that utilize underground and rooftop storage can reduce footprint but may not be practical or economical. For example burying hydrogen storage tanks underground can reduce footprint but the cost savings they enable depend on the cost of burial and the cost land. Siting and economic analysis of station lot sizes illustrate the benefit of smaller station footprints in the flexibility and cost savings they can provide. This study can be used as a reference that provides examples of the key design differences that fuelling stations can incorporate the approximate sizes of generic station lots and considerations that might be unique to particular designs.
The Technical and Economic Potential of the H2@Scale Concept within the United States
Oct 2020
Publication
The U.S. energy system is evolving as society and technologies change. Renewable electricity generation—especially from wind and solar—is growing rapidly and alternative energy sources are being developed and implemented across the residential commercial transportation and industrial sectors to take advantage of their cost security and health benefits. Systemic changes present numerous challenges to grid resiliency and energy affordability creating a need for synergistic solutions that satisfy multiple applications while yielding system-wide cost and emissions benefits. One such solution is an integrated hydrogen energy system (Figure ES-1). This is the focus of H2@Scale—a U.S. Department of Energy (DOE) initiative led by the Office of Energy Efficiency and Renewable Energy’s Hydrogen and Fuel Technologies Office. H2@Scale brings together stakeholders to advance affordable hydrogen production transport storage and utilization in multiple energy sectors. The H2@Scale concept involves hydrogen as an energy intermediate. Hydrogen can be produced from various conventional and renewable energy sources including as a responsive load on the electric grid. Hydrogen has many current applications and many more potential applications such as energy for transportation—used directly in fuel cell electric vehicles (FCEVs) as a feedstock for synthetic fuels and to upgrade oil and biomass—feedstock for industry (e.g. for ammonia production metals refining and other end uses) heat for industry and buildings and electricity storage. Owing to its flexibility and fungibility a hydrogen intermediate could link energy sources that have surplus availability to markets that require energy or chemical feedstocks benefiting both. This document builds upon a growing body of analyses of hydrogen as an energy intermediate by reporting the results from our initial analysis of the potential impacts of the H2@Scale vision by the mid-21st century for the 48 contiguous U.S. states. Previous estimates have been based on expert elicitation and focused on hydrogen demands. We build upon them first by estimating hydrogen’s serviceable consumption potential for possible hydrogen applications and the technical potential for producing hydrogen from various resources. We define the serviceable consumption potential as the quantity of hydrogen that would be consumed to serve the portion of the market that could be captured without considering economics (i.e. if the price of hydrogen were $0/kg over an extended period); thus it can be considered an upper bound for the size of the market. We define the technical potential as the resource potential constrained by real-world geography and system performance but not by economics. We then compare the cumulative serviceable consumption potential with the technical potential of a number of possible sources. Second we estimate economic potential: the quantity of hydrogen at an equilibrium price at which suppliers are willing to sell and consumers are willing to buy the same quantity of hydrogen. We believe this method provides a deeper understanding than was available in the previous analyses. We develop economic potentials for multiple scenarios across various market and technology-advancement assumptions.
Corrosion Mechanisms of High-Mn Twinning-Induced Plasticity (TWIP) Steels: A Critical Review
Feb 2021
Publication
Twinning-induced plasticity (TWIP) steels have higher strength and ductility than conventional steels. Deformation mechanisms producing twins that prevent gliding and stacking of dislocations cause a higher ductility than that of steel grades with the same strength. TWIP steels are considered to be within the new generation of advanced high-strength steels (AHSS). However some aspects such as the corrosion resistance and performance in service of TWIP steel materials need more research. Application of TWIP steels in the automotive industry requires a proper investigation of corrosion behavior and corrosion mechanisms which would indicate the optimum degree of protection and the possible decrease in costs. In general Fe−Mn-based TWIP steel alloys can passivate in oxidizing acid neutral and basic solutions however they cannot passivate in reducing acid or active chloride solutions. TWIP steels have become as a potential material of interest for automotive applications due to their effectiveness impact resistance and negligible harm to the environment. The mechanical and corrosion performance of TWIP steels is subjected to the manufacturing and processing steps like forging and casting elemental composition and thermo-mechanical treatment. Corrosion of TWIP steels caused by both intrinsic and extrinsic factors has posed a serious problem for their use. Passivity breakdown caused by pitting and galvanic corrosion due to phase segregation are widely described and their critical mechanisms examined. Numerous studies have been performed to study corrosion behaviour and passivation of TWIP steel. Despite the large number of articles on corrosion few comprehensive reports have been published on this topic. The current trend for development of corrosion resistance TWIP steel is thoroughly studied and represented showing the key mechanisms and factors influencing corrosion processes and its consequences on TWIP steel. In addition suggestions for future works and gaps in the literature are considered.
Evaluation of Selectivity and Resistance to Poisons of Commercial Hydrogen Sensors
Sep 2013
Publication
The development of reliable hydrogen sensors is crucial for the safe use of hydrogen. One of the main concerns of end-users is sensor reliability in the presence of species other than the target gas which can lead to false alarms or undetected harmful situations. In order to assess the selectivity of commercial of the shelf (COTS) hydrogen sensors a number of sensors of different technology types were exposed to various interferent gas species. Cross-sensitivity tests were performed in accordance to the recommendations of ISO 26142:2010 using the hydrogen sensor testing facilities of NREL and JRC-IET. The results and conclusions arising from this study are presented.
No more items...