United States
Decarbonization of Australia’s Energy System: Integrated Modelling of the Transformation of Electricity, Transportation, and Industrial Sectors
Jul 2020
Publication
To achieve the Paris Agreement’s long-term temperature goal current energy systems must be transformed. Australia represents an interesting case for energy system transformation modelling: with a power system dominated by fossil fuels and specifically with a heavy coal component there is at the same time a vast potential for expansion and use of renewables. We used the multi-sectoral Australian Energy Modelling System (AUSeMOSYS) to perform an integrated analysis of implications for the electricity transport and selected industry sectors to the mid-century. The state-level resolution allows representation of regional discrepancies in renewable supply and the quantification of inter-regional grid extensions necessary for the physical integration of variable renewables. We investigated the impacts of different CO2 budgets and selected key factors on energy system transformation. Results indicate that coal-fired generation has to be phased out completely by 2030 and a fully renewable electricity supply achieved in the 2030s according to the cost-optimal pathway implied by the 1.5 °C Paris Agreement-compatible carbon budget. Wind and solar PV can play a dominant role in decarbonizing Australia’s energy system with continuous growth of demand due to the strong electrification of linked energy sectors.
How Green is Blue Hydrogen?
Jul 2021
Publication
Hydrogen is often viewed as an important energy carrier in a future decarbonized world. Currently most hydrogen is produced by steam reforming of methane in natural gas (“gray hydrogen”) with high carbon dioxide emissions. Increasingly many propose using carbon capture and storage to reduce these emissions producing so-called “blue hydrogen” frequently promoted as low emissions. We undertake the first effort in a peer-reviewed paper to examine the lifecycle greenhouse gas emissions of blue hydrogen accounting for emissions of both carbon dioxide and unburned fugitive methane. Far from being low carbon greenhouse gas emissions from the production of blue hydrogen are quite high particularly due to the release of fugitive methane. For our default assumptions (3.5% emission rate of methane from natural gas and a 20-year global warming potential) total carbon dioxide equivalent emissions for blue hydrogen are only 9%-12% less than for gray hydrogen. While carbon dioxide emissions are lower fugitive methane emissions for blue hydrogen are higher than for gray hydrogen because of an increased use of natural gas to power the carbon capture. Perhaps surprisingly the greenhouse gas footprint of blue hydrogen is more than 20% greater than burning natural gas or coal for heat and some 60% greater than burning diesel oil for heat again with our default assumptions. In a sensitivity analysis in which the methane emission rate from natural gas is reduced to a low value of 1.54% greenhouse gas emissions from blue hydrogen are still greater than from simply burning natural gas and are only 18%-25% less than for gray hydrogen. Our analysis assumes that captured carbon dioxide can be stored indefinitely an optimistic and unproven assumption. Even if true though the use of blue hydrogen appears difficult to justify on climate ground
Addressing the Low-carbon Million-gigawatt-hour Energy Storage Challenge
Nov 2021
Publication
The energy system of the United States requires several million gigawatt hours of energy storage to meet variable demand for energy driven by (1) weather (heating and cooling) (2) social patterns (daily and weekday/weekend) of work play and sleep (3) weather-dependent energy production (wind and solar) and (4) industrial requirements. In a low-carbon world four storage options can meet this massive requirement at affordable costs: nuclear fuels heat storage hydrocarbon liquids made from biomass and hydrogen. Because of the different energy sector characteristics (electrical supply transportation commercial and industrial) each of these options must be developed. Capital costs associated with electricity storage at this scale using for example batteries and hydroelectric technologies are measured in hundreds of trillions of dollars for the United States alone and thus are not viable.
Durability of Anion Exchange Membrane Water Electrolyzers
Apr 2021
Publication
Interest in the low-cost production of clean hydrogen is growing. Anion exchange membrane water electrolyzers (AEMWEs) are considered one of the most promising sustainable hydrogen production technologies because of their ability to split water using platinum group metal-free catalysts less expensive anode flow fields and bipolar plates. Critical to the realization of AEMWEs is understanding the durability-limiting factors that restrict the long-term use of these devices. This article presents both durability-limiting factors and mitigation strategies for AEMWEs under three operation modes i.e. pure water-fed (no liquid electrolyte) concentrated KOH-fed and 1 wt% K2CO3-fed operating at a differential pressure of 100 psi. We examine extended-term behaviors of AEMWEs at the single-cell level and connect their behavior with the electrochemical chemical and mechanical instability of single-cell components. Finally we discuss the pros and cons of AEMWEs under these operation modes and provide direction for long-lasting AEMWEs with highly efficient hydrogen production capabilities.
Development of Liquid Hydrogen Leak Frequencies Using a Bayesian Update Process
Sep 2021
Publication
To quantify the risk of an accident in a liquid hydrogen system it is necessary to determine how often a leak may occur. To do this representative component leakage frequencies specific to liquid hydrogen can be determined as a function of the normalized leak size. Subsequently the system characteristics (e.g. system pressure) can be used to calculate accident consequences. Operating data (such as leak frequencies) for liquid hydrogen systems are very limited; rather than selecting a single leak frequency value from a literature source data from different sources can be combined using a Bayesian model. This approach provides leakage rates for different amounts of leakage distributions for leakage rates to propagate through risk assessment models to establish risk result uncertainty and a means for incorporating liquid hydrogen-specific leakage data with leakage frequencies from other fuels. Specifically other cryogenic fluids like liquefied natural gas are used as a baseline for the Bayesian analysis. This Bayesian update process is used to develop leak frequency distributions for different system component types and leak sizes. These leak frequencies can be refined as liquid hydrogen data becomes available and may then inform safety code requirements based on the likelihood of liquid hydrogen release for different systems.
Life-Cycle Greenhouse Gas Emissions Of Biomethane And Hydrogen Pathways In The European Union
Oct 2021
Publication
Gaseous fuels with low life-cycle emissions of greenhouse gases (GHG) play a prominent role in the European Union’s (EU) decarbonization plans. Renewable and low-GHG hydrogen are highlighted in the ambitious goals for a cross-sector hydrogen economy laid out in the European Commission’s Hydrogen Strategy. Renewable hydrogen and biomethane are given strong production incentives in the Commission’s proposed revision to the Renewable Energy Directive (REDII). The EU uses life-cycle analysis (LCA) to determine whether renewable gas pathways meet the GHG reduction thresholds for eligibility in the REDII. This study aims to support European policymakers with a better understanding of the uncertainties regarding gaseous fuels’ roles in meeting climate goals. Life-cycle GHG analysis is complex and differences in methodology as well as data inputs and assumptions can spell the difference between a renewable gas pathway qualifying or not for REDII eligibility at the 50% to 80% GHG reduction level. It is thus important for European policymakers to use robust LCA to ensure that policy only supports gas pathways consistent with a vision of deep decarbonization. For this purpose we conduct sensitivity analysis of the life-cycle GHG emissions of a number of low-GHG gas pathways including biomethane produced from four feedstocks: wastewater sludge manure landfill gas (LFG) and silage maize; and hydrogen produced from eight sources: natural gas combined with carbon capture and storage (CCS) coal with CCS biomass gasification renewable electricity 2030 EU grid electricity wastewater sludge biomethane manure biomethane and LFG biomethane. For each pathway we estimate the life-cycle GHG intensity using a default central case identify key parameters that strongly affect the fuel’s GHG intensity and conduct a sensitivity analysis by changing these key parameters according to the range of possible values collected from the literature. Figure ES1 summarizes the full range of possible GHG intensities for each gaseous pathway we analyzed in this study—biomethane is depicted in the top figure and hydrogen is shown in the bottom. The bars represent the GHG intensity of the central case and vertical error bars indicate the maximum and minimum GHG intensity of each pathway according to our sensitivity analysis. The dotted orange horizontal line illustrates the fossil comparator which is 94 grams of carbon dioxide equivalent per megajoule (gCO2e/MJ) for transport fuels in the REDII. The dotted yellow line represents the GHG intensity of a 65% GHG reduction goal for biomethane used in the transportation sector or 70% GHG reduction for hydrogen. Pathways are situated from left to right in increasing order of GHG intensity of the central case. Comparing the central cases of the four biomethane pathways the waste-based biomethane pathways generally have negative GHG intensity. However considering the uncertainty in these GHG intensities manure biomethane might have more limited carbon reduction potential in the 100-year timeframe if methane leakage from its production process is high. In contrast wastewater sludge biomethane and LFG biomethane even after accounting for uncertainties retain relatively low GHG emissions. On the other hand biomethane produced from silage maize can have much higher emissions; in the central case we find that silage maize biogas only reduces GHG emissions by 30% relative to the fossil comparator—the low carbon reduction potential is due to the significant emissions emerging from direct and indirect land use change involved in growing maize. Taking into account the variation in assumptions silage maize biomethane can be worse for the climate than fossil fuels.
Road Map to a US Hydrogen Energy: Reducing Emissions and Driving Growth Across the Nation
Oct 2020
Publication
This US Hydrogen Road Map was created through the collaboration of executives and technical industry experts in hydrogen across a broad range of applications and sectors who are committed to improving the understanding of hydrogen and how to increase its adoption across many sectors of the economy. For the first time this coalition of industry leaders has convened to develop a targeted holistic approach for expanding the use of hydrogen as an energy carrier. Due to great variation among national and state policies infrastructure needs and community interests each state and region of the US will likely have its own specific policies and road maps for implementing hydrogen infrastructure. The West Coast for example has traditionally had progressive policies on reducing transportation emissions so it is likely that hydrogen will scale sooner for vehicles in this region especially California. Experts also acknowledge the role that hydrogen in combination with renewables can play in supplying microgrid-type power to communities with the highest risk of shut-offs during seasonal weather-related issues such as high temperatures or wildfire-related power interruptions. Some states have emphasized the need to decarbonize the gas grid so blending hydrogen in natural gas networks and using hydrogen as feedstock may advance more quickly in these regions. Other states are interested in hydrogen as a means to address power grid issues enable the deployment of renewables and support competitive nuclear power. The launch of hydrogen technologies in some states or regions will help to scale hydrogen in various applications across the country laying the foundation for energy security grid resiliency economic growth and the reduction of both greenhouse gas (GHG) emissions and air pollutants. This report outlines the benefits and impact of fuel cell technologies and hydrogen as a viable solution to the energy challenges facing the US through 2030 and beyond. As such it can serve as the latest comprehensive industry-driven national road map to accelerate and scale up hydrogen in the economy across North America
The Future of Clean Hydrogen in the United States: Views from Industry, Market Innovators, and Investors
Sep 2021
Publication
This report The Future of Clean Hydrogen in the United States: Views from Industry Market Innovators and Investors sheds light on the rapidly evolving hydrogen market based on 72 exploratory interviews with organizations across the current and emerging hydrogen value chain. This report is part of a series From Kilograms to Gigatons: Pathways for Hydrogen Market Formation in the United States which will build on this study to evaluate policy opportunities for further hydrogen development in the United States. The goal of the interviews was to provide a snapshot of the clean hydrogen investment environment and better understand organizations’ market outlook investment rationale and areas of interest. This interview approach was supported by traditional research methods to contextualize and enrich the qualitative findings. This report should be understood as input to a more extensive EFI analysis of hydrogen market formation in the United States; the directions that companies are pursuing in hydrogen production transport and storage and end use at this early stage of value chain development will inform subsequent analysis in important ways.
Influence of Cs Promoter on Ethanol Steam-Reforming Selectivity of Pt/m-ZrO2 Catalysts at Low Temperature
Sep 2021
Publication
The decarboxylation pathway in ethanol steam reforming ultimately favors higher selectivity to hydrogen over the decarbonylation mechanism. The addition of an optimized amount of Cs to Pt/m-ZrO2 catalysts increases the basicity and promotes the decarboxylation route converting ethanol to mainly H2 CO2 and CH4 at low temperature with virtually no decarbonylation being detected. This offers the potential to feed the product stream into a conventional methane steam reformer for the production of hydrogen with higher selectivity. DRIFTS and the temperature-programmed reaction of ethanol steam reforming as well as fixed bed catalyst testing revealed that the addition of just 2.9% Cs was able to stave off decarbonylation almost completely by attenuating the metallic function. This occurs with a decrease in ethanol conversion of just 16% relative to the undoped catalyst. In comparison with our previous work with Na this amount is—on an equivalent atomic basis—just 28% of the amount of Na that is required to achieve the same effect. Thus Cs is a much more efficient promoter than Na in facilitating decarboxylation.
Optimization of Component Sizing for a Fuel Cell-Powered Truck to Minimize Ownership Cost
Mar 2019
Publication
In this study we consider fuel cell-powered electric trucks (FCETs) as an alternative to conventional medium- and heavy-duty vehicles. FCETs use a battery combined with onboard hydrogen storage for energy storage. The additional battery provides regenerative braking and better fuel economy but it will also increase the initial cost of the vehicle. Heavier reliance on stored hydrogen might be cheaper initially but operational costs will be higher because hydrogen is more expensive than electricity. Achieving the right tradeoff between these power and energy choices is necessary to reduce the ownership cost of the vehicle. This paper develops an optimum component sizing algorithm for FCETs. The truck vehicle model was developed in Autonomie a platform for modelling vehicle energy consumption and performance. The algorithm optimizes component sizes to minimize overall ownership cost while ensuring that the FCET matches or exceeds the performance and cargo capacity of a conventional vehicle. Class 4 delivery truck and class 8 linehaul trucks are shown as examples. We estimate the ownership cost for various hydrogen costs powertrain components ownership periods and annual vehicle miles travelled.
Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures
Jul 2015
Publication
Here we report direct physical evidence that confinement of molecular hydrogen (H2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H2 at temperatures up to 67 K above the liquid vapor critical temperature of bulk H2. This extreme densification is attributed to confinement of H2 molecules in the optimally sized micropores and occurs at pressures as low as 0.02 MPa. The quantities of contained solid-like H2 increased with pressure and were directly evaluated using in situ inelastic neutron scattering and confirmed by analysis of gas sorption isotherms. The demonstration of the existence of solid-like H2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H2 density. Thus this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.
Nuclear-Renewables Energy System for Hydrogen and Electricity Production
May 2011
Publication
In the future the world may have large stranded resources of low-cost wind and solar electricity. Renewable electricity production does not match demand and production is far from major cities. The coupling of nuclear energy with renewables may enable full utilization of nuclear and renewable facilities to meet local electricity demands and export pipeline hydrogen for liquid fuels fertilizer and metals production. Renewables would produce electricity at full capacity in large quantities. The base-load nuclear plants would match electricity production with demand by varying the steam used for electricity versus hydrogen production. High-temperature electrolysis (HTE) would produce hydrogen from water using (a) steam from nuclear plants and (b) electricity from nuclear plants and renewables. During times of peak electricity demand the HTE cells would operate in reverse fuel cell mode to produce power substituting for gas turbines that are used for very few hours per year and that thus have very high electricity costs. The important net hydrogen production would be shipped by pipeline to customers. Local hydrogen storage would enable full utilization of long-distance pipeline capacity with variable production. The electricity and hydrogen production were simulated with real load and wind data to understand under what conditions such systems are economic. The parametric case study uses a wind-nuclear system in North Dakota with hydrogen exported to the Chicago refinery market. North Dakota has some of the best wind conditions in the United States and thus potentially low-cost wind. The methodology allows assessments with different economic and technical assumptions - including what electrolyzer characteristics are most important for economic viability.
Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect
Aug 2020
Publication
Natural gas (Methane) is currently the primary source of catalytic hydrogen production accounting for three quarters of the annual global dedicated hydrogen production (about 70 M tons). Steam–methane reforming (SMR) is the currently used industrial process for hydrogen production. However the SMR process suffers with insufficient catalytic activity low long-term stability and excessive energy input mostly due to the handling of large amount of CO2 coproduced. With the demand for anticipated hydrogen production to reach 122.5 M tons in 2024 novel and upgraded catalytic processes are desired for more effective utilization of precious natural resources. In this review we summarized the major descriptors of catalyst and reaction engineering of the SMR process and compared the SMR process with its derivative technologies such as dry reforming with CO2 (DRM) partial oxidation with O2 autothermal reforming with H2O and O2. Finally we discussed the new progresses of methane conversion: direct decomposition to hydrogen and solid carbon and selective oxidation in mild conditions to hydrogen containing liquid organics (i.e. methanol formic acid and acetic acid) which serve as alternative hydrogen carriers. We hope this review will help to achieve a whole picture of catalytic hydrogen production from methane.
The Role of LNG in the Transition Toward Low- and Zero-carbon Shipping
Apr 2021
Publication
Due to its much lower air pollution and potential greenhouse gas (GHG) emissions benefits liquefied natural gas (LNG) is frequently discussed as a fuel pathway towards greener maritime transport. While LNG’s air quality improvements are undeniable there is debate within the sector as to what extent LNG may be able to contribute to decarbonizing shipping. This report “The Role of LNG in the Transition Toward Low- and Zero-Carbon Shipping” considers the potential of LNG to play either a transitional role in which existing LNG infrastructure and vessels could continue to be used with compatible zero-carbon bunker fuels after 2030 or a temporary one in which LNG would be rapidly supplanted by zero-carbon alternatives from 2030. Over concerns about methane leakage which could diminish or even offset any GHG benefits associated with LNG and additional capital expenditures the risk of stranded assets as well as a technology lock-in the report concludes that LNG is unlikely to play a significant role in decarbonizing maritime transport. Instead the research finds that LNG is likely to only be used in niche shipping applications or in its non-liquefied form as a feedstock to kickstart the production of zero-carbon bunker fuels when used in conjunction with carbon capture and storage technology. The research further suggests that new public policy in support of LNG as a bunker fuel should be avoided existing policy support should be reconsidered and methane emissions should be regulated.
Numerical Predictions of a Swirl Combustor Using Complex Chemistry Fueled with Ammonia/Hydrogen Blends
Jan 2020
Publication
Ammonia a chemical that contains high hydrogen quantities has been presented as a candidate for the production of clean power generation and aerospace propulsion. Although ammonia can deliver more hydrogen per unit volume than liquid hydrogen itself the use of ammonia in combustion systems comes with the detrimental production of nitrogen oxides which are emissions that have up to 300 times the greenhouse potential of carbon dioxide. This factor combined with the lower energy density of ammonia makes new studies crucial to enable the use of the molecule through methods that reduce emissions whilst ensuring that enough power is produced to support high-energy intensive applications. Thus this paper presents a numerical study based on the use of novel reaction models employed to characterize ammonia combustion systems. The models are used to obtain Reynolds Averaged Navier-Stokes (RANS) simulations via Star-CCM+ with complex chemistry of a 70%–30% (mol) ammonia–hydrogen blend that is currently under investigations elsewhere. A fixed equivalence ratio (1.2) medium swirl (0.8) and confined conditions are employed to determine the flame and species propagation at various operating atmospheres and temperature inlet values. The study is then expanded to high inlet temperatures high pressures and high flowrates at different confinement boundary conditions. The results denote how the production of NOx emissions remains stable and under 400 ppm whilst higher concentrations of both hydrogen and unreacted ammonia are found in the flue gases under high power conditions. The reduction of heat losses (thus higher temperature boundary conditions) has a crucial impact on further destruction of ammonia post-flame with a raise in hydrogen water and nitrogen through the system thus presenting an opportunity of combustion efficiency improvement of this blend by reducing heat losses. Final discussions are presented as a method to raise power whilst employing ammonia for gas turbine systems.
Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen
Jan 2022
Publication
Effective global decarbonization will require an array of solutions across a portfolio of low-carbon resources. One such solution is developing clean hydrogen. This unique fuel has the potential to minimize climate change impacts helping decarbonize hard-to-abate sectors such as heavy industry and global transport while also promoting energy security sustainable growth and job creation. The authors estimate suggest that hydrogen needs to grow seven-fold to support the global energy transition eventually accounting for ten percent of total energy consumption by 2050. A scaleup of this magnitude will increase demand for materials such as aluminum copper iridium nickel platinum vanadium and zinc to support hydrogen technologies - renewable electricity technologies and the electrolyzers for renewable hydrogen carbon storage for low-carbon hydrogen or fuel cells using hydrogen to power transport. This report a joint product of the World Bank and the Hydrogen Council examines these three critical areas. Using new data on the material intensities of key technologies the report estimates the amount of critical minerals needed to scale clean hydrogen. In addition it shows how incorporating sustainable practices and policies for mining and processing materials can help minimize environmental impacts. Key among these approaches is the use of recycled materials innovations in design in order to reduce material intensities and adoption of policies from the Climate Smart Mining (CSM) Framework to reduce impacts to greenhouse gas emissions and water footprint.
A Compilation of Operability and Emissions Performance of Residential Water Heaters Operated on Blends of Natural Gas and Hydrogen Including Consideration for Reporting Bases
Feb 2023
Publication
The impact of hydrogen added to natural gas on the performance of commercial domestic water heating devices has been discussed in several recent papers in the literature. Much of the work focuses on performance at specific hydrogen levels (by volume) up to 20–30% as a near term blend target. In the current work new data on several commercial devices have been obtained to help quantify upper limits based on flashback limits. In addition results from 39 individual devices are compiled to help generalize observations regarding performance. The emphasis of this work is on emissions performance and especially NOx emissions. It is important to consider the reporting bases of the emissions numbers to avoid any unitended bias. For water heaters the trends associated with both mass per fuel energy input and concentration-based representation are similar For carbon free fuels bases such as 12% CO2 should be avoided. In general the compiled data shows that NOx NO UHC and CO levels decrease with increasing hydrogen percentage. The % decrease in NOx and NO is greater for low NOx devices (meaning certified to NOx <10 ng/J using premixing with excess air) compared to conventional devices (“pancake burners” partial premixing). Further low NOx devices appear to be able to accept greater amounts of hydrogen above 70% hydrogen in some cases without modification while conventional water heaters appear limited to 40–50% hydrogen. Reporting emissions on a mass basis per unit fuel energy input is preferred to the typical dry concentration basis as the greater amount of water produced by hydrogen results in a perceived increase in NOx when hydrogen is used. While this effort summarizes emissions performance with added hydrogen additional work is needed on transient operation higher levels of hydrogen system durability/reliability and heating efficiency.
Transition to a Hydrogen-Based Economy: Possibilities and Challenges
Nov 2022
Publication
Across the globe energy production and usage cause the greatest greenhouse gas (GHG) emissions which are the key driver of climate change. Therefore countries around the world are aggressively striving to convert to a clean energy regime by altering the ways and means of energy production. Hydrogen is a frontrunner in the race to net-zero carbon because it can be produced using a diversity of feedstocks has versatile use cases and can help ensure energy security. While most current hydrogen production is highly carbon-intensive advances in carbon capture renewable energy generation and electrolysis technologies could help drive the production of low-carbon hydrogen. However significant challenges such as the high cost of production a relatively small market size and inadequate infrastructure need to be addressed before the transition to a hydrogen-based economy can be made. This review presents the state of hydrogen demand challenges in scaling up low-carbon hydrogen possible solutions for a speedy transition and a potential course of action for nations.
Hydrogen Liquefaction: A Review of the Fundamental Physics, Engineering Practice and Future Opportunities
Apr 2022
Publication
Hydrogen is emerging as one of the most promising energy carriers for a decarbonised global energy system. Transportation and storage of hydrogen are critical to its large-scale adoption and to these ends liquid hydrogen is being widely considered. The liquefaction and storage processes must however be both safe and efficient for liquid hydrogen to be viable as an energy carrier. Identifying the most promising liquefaction processes and associated transport and storage technologies is therefore crucial; these need to be considered in terms of a range of interconnected parameters ranging from energy consumption and appropriate materials usage to considerations of unique liquid-hydrogen physics (in the form of ortho–para hydrogen conversion) and boil-off gas handling. This study presents the current state of liquid hydrogen technology across the entire value chain whilst detailing both the relevant underpinning science (e.g. the quantum behaviour of hydrogen at cryogenic temperatures) and current liquefaction process routes including relevant unit operation design and efficiency. Cognisant of the challenges associated with a projected hydrogen liquefaction plant capacity scale-up from the current 32 tonnes per day to greater than 100 tonnes per day to meet projected hydrogen demand this study also reflects on the next-generation of liquid-hydrogen technologies and the scientific research and development priorities needed to enable them.
Renewable Energy Transport via Hydrogen Pipelines and HVDC Transmission Lines
May 2021
Publication
The majority penetration of Variable Renewable Energy (VRE) will challenge the stability of electrical transmission grids due to unpredictable peaks and troughs of VRE generation. With renewable generation located further from high demand urban cores there will be a need to develop new transmission pathways to deliver the power. This paper compares the transport and storage of VRE through a hydrogen pipeline to the transport of VRE through a High Voltage Direct Current (HVDC) transmission line. The analysis found a hydrogen pipeline can offer a cost-competitive method for VRE transmission compared to a HVDC transmission line on a life-cycle cost basis normalized by energy flows for distances at 1000 miles with 2030 technology. This finding has implications for policy makers project developers and system operators for the future development of transmission infrastructure projects given the additionality which hydrogen pipelines can provide in terms of energy storage.
Everything About Hydrogen Podcast: Plotting the Course for a Decarbonized Global Maritime Industry
Jan 2023
Publication
On this episode of EAH we sat down with Dr. Bo Cerup-Simonsen Chief Executive Officer of the Maersk Mc-Kinney Møller Center for Zero Carbon Shipping. Bo holds a PHD in Naval Architecture and Mechanical Engineering and spent seven years as a research engineer at MIT.
Bo explains the Center's work and we discuss decarbonization of shipping using hydrogen derived green fuels.
The podcast can be found on their website.
Bo explains the Center's work and we discuss decarbonization of shipping using hydrogen derived green fuels.
The podcast can be found on their website.
Everything About Hydrogen Podcast: Manufacturing the Components of a Hydrogen Economy
Dec 2022
Publication
On today’s episode Alicia Chris and Patrick are chatting with Vonjy Rakajoba UK Managing Director at Robert Bosch. The Bosch Group is a leading global supplier of technology and services and employs roughly 402600 associates worldwide. Its operations are divided into four business sectors: Mobility Solutions Industrial Technology Consumer Goods and Energy and Building Technology. Bosch believes that hydrogen has a bright future as an energy carrier and is making considerable upfront investments in this area. From 2021 to 2024 the company plans to invest around 600 million euros in mobile fuel-cell applications and a further 400 million euros in stationary ones for the generation of electricity and heat. Vonjy is here with us to discuss more about what Bosch’s expansion into the hydrogen energy sector will look like and how the company expects the market to grow moving forward.
The podcast can be found on their website.
The podcast can be found on their website.
Techno-Economic Analysis of Solid Oxide Fuel Cell-Gas Turbine Hybrid Systems for Stationary Power Applications Using Renewable Hydrogen
Jun 2023
Publication
Solid oxide fuel cell (SOFC)–gas turbine (GT) hybrid systems can produce power at high electrical efficiencies while emitting virtually zero criteria pollutants (e.g. ozone carbon monoxide oxides of nitrogen and sulfur and particulate matters). This study presents new insights into renewable hydrogen (RH2 )-powered SOFC–GT hybrid systems with respect to their system configuration and techno-economic analysis motivated by the need for clean on-demand power. First three system configurations are thermodynamically assessed: (I) a reference case with no SOFC off-gas recirculation (II) a case with cathode off-gas recirculation and (III) a case with anode off-gas recirculation. While these configurations have been studied in isolation here we provide a detailed performance comparison. Moreover a techno-economic analysis is conducted to study the economic competitiveness of RH2 -fueled hybrid systems and the economies of scale by offering a comparison to natural gas (NG)-fueled systems. Results show that the case with anode off-gas recirculation with 68.50%-lower heating value (LHV) at a 10 MW scale has the highest efficiency among the studied scenarios. When moving from 10 MW to 50 MW the efficiency increases to 70.22%-LHV. These high efficiency values make SOFC–GT hybrid systems highly attractive in the context of a circular economy as they outcompete most other power generation technologies. The cost-of-electricity (COE) is reduced by about 10% when moving from 10 MW to 50 MW from USD 1976/kW to USD 1668/kW respectively. Renewable H2 is expected to be economically competitive with NG by 2030 when the U.S. Department of Energy’s target of USD 1/kg RH2 is reached.
Evaluation of Hydrogen Blend Stability in Low-Pressure Gas Distribution
Apr 2023
Publication
Natural gas distribution companies are developing ambitious plans to decarbonize the services that they provide in an affordable manner and are accelerating plans for the strategic integration of renewable natural gas and the blending of green hydrogen produced by electrolysis powered with renewable electricity being developed from large new commitments by states such as New York and Massachusetts. The demonstration and deployment of hydrogen blending have been proposed broadly at 20% of hydrogen by volume. The safe distribution of hydrogen blends in existing networks requires hydrogen blends to exhibit similar behavior as current supplies which are also mixtures of several hydrocarbons and inert gases. There has been limited research on the properties of blended hydrogen in low-pressure natural gas distribution systems. Current natural gas mixtures are known to be sufficiently stable in terms of a lack of chemical reaction between constituents and to remain homogeneous through compression and distribution. Homogeneous mixtures are required both to ensure safe operation of customer-owned equipment and for safety operations such as leak detection. To evaluate the stability of mixtures of hydrogen and natural gas National Grid experimentally tested a simulated distribution natural gas pipeline with blends containing hydrogen at up to 50% by volume. The pipeline was outfitted with ports to extract samples from the top and bottom of the pipe at intervals of 20 feet. Samples were analyzed for composition and the effectiveness of odorant was also evaluated. The new results conclusively demonstrate that hydrogen gas mixtures do not significantly separate or react under typical distribution pipeline conditions and gas velocity profiles. In addition the odorant retained its integrity in the blended gas during the experiments and demonstrated that it remains an effective method of leak detection.
Everything About Hydrogen Podcast: Policy Simplicity & Certainty
Mar 2023
Publication
On this episode of Everything About Hydrogen we have Daria Nochevnik the Director of Policy and Partnerships for Hydrogen Council.
The podcast can be found on their website.
The podcast can be found on their website.
Deep Decarbonisation Pathways of the Energy System in Times of Unprecedented Uncertainty in the Energy Sector
May 2023
Publication
Unprecedented investments in clean energy technology are required for a net-zero carbon energy system before temperatures breach the Paris Agreement goals. By performing a Monte-Carlo Analysis with the detailed ETSAPTIAM Integrated Assessment Model and by generating 4000 scenarios of the world’s energy system climate and economy we find that the uncertainty surrounding technology costs resource potentials climate sensitivity and the level of decoupling between energy demands and economic growth influence the efficiency of climate policies and accentuate investment risks in clean energy technologies. Contrary to other studies relying on exploring the uncertainty space via model intercomparison we find that the CO2 emissions and CO2 prices vary convexly and nonlinearly with the discount rate and climate sensitivity over time. Accounting for this uncertainty is important for designing climate policies and carbon prices to accelerate the transition. In 70% of the scenarios a 1.5 ◦C temperature overshoot was within this decade calling for immediate policy action. Delaying this action by ten years may result in 2 ◦C mitigation costs being similar to those required to reach the 1.5 ◦C target if started today with an immediate peak in emissions a larger uncertainty in the medium-term horizon and a higher effort for net-zero emissions.
Green Hydrogen in Developing Countries
Aug 2020
Publication
In the future green hydrogen—hydrogen produced with renewable energy resources—could provide developing countries with a zero-carbon energy carrier to support national sustainable energy objectives and it needs further consideration by policy makers and investors. Developing countries with good renewable energy resources could produce green hydrogen locally generating economic opportunities and increasing energy security by reducing exposure to oil price volatility and supply disruptions. Support from development finance institutions and concessional funds could play an important role in deploying first-of-a-kind green hydrogen projects accelerating the uptake of green hydrogen in developing countries and increasing capacity and creating the necessary policy and regulatory enabling environment.
Green Hydrogen Supply Chain Risk Analysis: A European Hard-to-abate Sectors Perspective
May 2023
Publication
Green hydrogen is a tentative solution for the decarbonisation of hard-to-abate sectors such as steel chemical cement and refinery industries. Green hydrogen is a form of hydrogen gas that is produced using renewable energy sources such as wind or solar power through a process called electrolysis. The green hydrogen supply chain includes several interconnected entities such as renewable energy providers electrolysers distribution facilities and consumers. Although there have been many studies about green hydrogen little attention has been devoted to green hydrogen supply chain risk identification and analysis especially for hard-to-abate sectors in Europe. This research contributes to existing knowledge by identifying and analysing the European region’s green hydrogen supply chain risk factors. Using a Delphi method 7 categories and 43 risk factors are identified based on the green hydrogen supply chain experts’ opinions. The best-worst method is utilised to determine the importance weights of the risk categories and risk factors. High investment of capital for hydrogen production and delivery technology was the highest-ranked risk factor followed by the lack of enough capacity for electrolyser and policy & regulation development. Several mitigation strategies and policy recommendations are proposed for high-importance risk factors. This study provides novelty in the form of an integrated approach resulting in a scientific ranking of the risk factors for the green hydrogen supply chain. The results of this study provide empirical evidence which corroborates with previous studies that European countries should endeavour to create comprehensive and supportive standards and regulations for green hydrogen supply chain implementation.
Everything About Hydrogen Podcast: A Green Future for Oman
Feb 2023
Publication
On this episode of Everything About Hydrogen we are speaking with Nashwa Al Rawahy Director of HMR Environmental Consultants based in Muscat Oman with regional offices in the United Arab Emirates.
We are excited to have an expert like Nashwa join us to discuss environmental and social impact studies their value to the communities and projects and the importance of building long term In Country Value (ICV).
The podcast can be found on their website.
We are excited to have an expert like Nashwa join us to discuss environmental and social impact studies their value to the communities and projects and the importance of building long term In Country Value (ICV).
The podcast can be found on their website.
Performance, Emissions, and Combustion Characteristics of a Hydrogen-Fueled Spark-Ignited Engine at Different Compression Ratios: Experimental and Numerical Investigation
Jul 2023
Publication
This paper investigates the performance of hydrogen-fueled spark-ignited single-cylinder Cooperative Fuel Research using experimental and numerical approaches. This study examines the effect of the air–fuel ratio on engine performance emissions and knock behaviour across different compression ratios. The results indicate that λ significantly affects both engine performance and emissions with a λ value of 2 yielding the highest efficiency and lowest emissions for all the tested compression ratios. Combustion analysis reveals normal combustion at λ ≥ 2 while knocking combustion occurs at λ < 2 irrespective of the tested compression ratios. The Livenwood–Wu integral approach was evaluated to assess the likelihood of end-gas autoignition based on fuel reactivity demonstrating that both normal and knocking combustion possibilities are consistent with experimental investigations. Combustion analysis at the ignition timing for maximum brake torque conditions demonstrates knock-free stable combustion up to λ = 3 with increased end-gas autoignition at lower λ values. To achieve knock-free combustion at those low λs the spark timings are significantly retarded to after top dead center crank angle position. Engine-out NOx emissions consistently increase in trend with a decrease in the air–fuel ratio of up to λ = 3 after which a distinct variation in NOx is observed with an increase in the compression ratio.
Reduction in Greenhouse Gas and Other Emissions from Ship Engines: Current Trends and Future Options
Nov 2022
Publication
The impact of ship emission reductions can be maximised by considering climate health and environmental effects simultaneously and using solutions fitting into existing marine engines and infrastructure. Several options available enable selecting optimum solutions for different ships routes and regions. Carbon-neutral fuels including low-carbon and carbon-negative fuels from biogenic or non-biogenic origin (biomass waste renewable hydrogen) could resemble current marine fuels (diesel-type methane and methanol). The carbon-neutrality of fuels depends on their Well-to-Wake (WtW) emissions of greenhouse gases (GHG) including carbon dioxide (CO2) methane (CH4) and nitrous oxide emissions (N2O). Additionally non-gaseous black carbon (BC) emissions have high global warming potential (GWP). Exhaust emissions which are harmful to health or the environment need to be equally removed using emission control achieved by fuel engine or exhaust aftertreatment technologies. Harmful emission species include nitrogen oxides (NOx) sulphur oxides (SOx) ammonia (NH3) formaldehyde particle mass (PM) and number emissions (PN). Particles may carry polyaromatic hydrocarbons (PAHs) and heavy metals which cause serious adverse health issues. Carbon-neutral fuels are typically sulphur-free enabling negligible SOx emissions and efficient exhaust aftertreatment technologies such as particle filtration. The combinations of carbon-neutral drop-in fuels and efficient emission control technologies would enable (near-)zero-emission shipping and these could be adaptable in the short- to mid-term. Substantial savings in external costs on society caused by ship emissions give arguments for regulations policies and investments needed to support this development.
Minimizing Emissions from Grid-based Hydrogen Production in the United States
Jan 2023
Publication
Low-carbon hydrogen could be an important component of a net-zero carbon economy helping to mitigate emissions in a number of hard-to-abate sectors. The United States recently introduced an escalating production tax credit (PTC) to incentivize production of hydrogen meeting increasingly stringent embodied emissions thresholds. Hydrogen produced via electrolysis can qualify for the full subsidy under current federal accounting standards if the input electricity is generated by carbon-free resources but may fail to do so if emitting resources are present in the generation mix. While use of behind-the-meter carbon-free electricity inputs can guarantee compliance with this standard the PTC could also be structured to allow producers using grid-supplied electricity to qualify subject to certain clean energy procurement requirements. Herein we use electricity system capacity expansion modeling to quantitatively assess the impact of grid-connected electrolysis on the evolution of the power sector in the western United States through 2030 under multiple possible implementations of the clean hydrogen PTC. We find that subsidized grid-connected hydrogen production has the potential to induce additional emissions at effective rates worse than those of conventional fossil-based hydrogen production pathways. Emissions can be minimized by requiring grid-based hydrogen producers to match 100% of their electricity consumption on an hourly basis with physically deliverable ‘additional’ clean generation which ensures effective emissions rates equivalent to electrolysis exclusively supplied by behind-the-meter carbon-free generation. While these requirements cannot eliminate indirect emissions caused by competition for limited clean resources which we find to be a persistent result of large hydrogen production subsidies they consistently outperform alternative approaches relying on relaxed time matching or marginal emissions accounting. Added hydrogen production costs from enforcing an hourly matching requirement rather than no requirements are less than $1 kg−1 and can be near zero if clean firm electricity resources are available for procurement.
Renewable-power-assisted Production of Hydrogen and Liquid Hydrocarbons from Natural Gas: Techno-economic Analysis
Jun 2022
Publication
The declining cost of renewable power has engendered growing interest in leveraging this power for the production of chemicals and synthetic fuels. Here renewable power is added to the gas-to-liquid (GTL) process through Fischer–Tropsch (FT) synthesis in order to increase process efficiency and reduce CO2 emissions. Accordingly two realistic configurations are considered which differ primarily in the syngas preparation step. In the first configuration solid oxide steam electrolysis cells (SOEC) in combination with an autothermal reformer (ATR) are used to produce synthesis gas with the right composition while in the second configuration an electrically-heated steam methane reformer (E-SMR) is utilized for syngas production. The results support the idea of adding power to the GTL process mainly by increased process efficiencies and reduced process emissions. Assuming renewable power is available the process emissions would be 200 and 400 gCO2 L1 syncrude for the first and second configurations respectively. Configuration 1 and 2 show 8 and 4 times less emission per liter syncrude produced respectively compared to a GTL plant without H2 addition with a process emission of 1570 gCO2 L1 syncrude. By studying the two designs based on FT production carbon efficiency and FT catalyst volume a better alternative is to add renewable power to the SOEC (configuration 1) rather than using it in an E-SMR (configuration 2). Given an electricity price of $100/MW h and natural gas price of 5 $ per GJ FT syncrude and H2 can be produced at a cost between $15/MW h and $16/MW h. These designs are considered to better utilize the available carbon resources and thus expedite the transition to a low-carbon economy
Accelerating the Green Hydrogen Revolution: A Comprehensive Analysis of Technological Advancements and Policy Interventions
Apr 2024
Publication
Promoting green hydrogen has emerged as a pivotal discourse in the contemporary energy landscape driven by pressing environmental concerns and the quest for sustainable energy solutions. This paper delves into the multifaceted domain of C-Suite issues about green hydrogen encompassing both technological advancements and policy considerations. The question of whether green hydrogen is poised to become the focal point of the upcoming energy race is explored through an extensive analysis of its potential as a clean and versatile energy carrier. The transition from conventional fossil fuels to green hydrogen is considered a fundamental shift in energy paradigms with far-reaching implications for global energy markets. The paper provides a comprehensive overview of state-of-the-art green hydrogen technologies including fuel cells photocatalysts photo electrocatalysts and hydrogen panels. In tandem with technological advancements the role of policy and strategy in fostering the development of green hydrogen energy assumes paramount significance. The paper elucidates the critical interplay between government policies market dynamics and corporate strategies in shaping the green hydrogen landscape. It delves into policy mechanisms such as subsidies carbon pricing and renewable energy mandates shedding light on their potential to incentivize the production and adoption of green hydrogen. This paper offers a nuanced exploration of C-Suite issues surrounding green hydrogen painting a comprehensive picture of the technological and policy considerations that underpin its emergence as a transformative energy source. As the global community grapples with the imperatives of climate change mitigation and the pursuit of sustainable energy solutions understanding these issues becomes imperative for executives policymakers and stakeholders alike.
Model to Inform the Expansion of Hydrogen Distribution Infrastructure
Jul 2023
Publication
A growing hydrogen economy requires new hydrogen distribution infrastructure to link geographically distributed hubs of supply and demand. The Hydrogen Optimization with Deployment of Infrastructure (HOwDI) Model helps meet this requirement. The model is a spatially resolved optimization framework that determines location-specific hydrogen production and distribution infrastructure to cost-optimally meet a specified location-based demand. While these results are useful in understanding hydrogen infrastructure development there is uncertainty in some costs that the model uses for inputs. Thus the project team took the modeling effort a step further and developed a Monte Carlo methodology to help manage uncertainties. Seven scenarios were run using existing infrastructure and new demand in Texas exploring different policy and tax approaches. The inclusion of tax credits increased the percentage of runs that could deliver hydrogen at <$4/kg from 31% to 77% and decreased the average dispensed cost from $4.35/kg to $3.55/kg. However even with tax credits there are still some runs where unabated SMR is deployed to meet new demand as the low-carbon production options are not competitive. Every scenario except for the zero-carbon scenario (without tax credits) resulted in at least 20% of the runs meeting the $4/kg dispensed fuel cost target. This indicates that multiple pathways exist to deliver $4/kg hydrogen.
Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review
Sep 2021
Publication
The path to the mitigation of global climate change and global carbon dioxide emissions avoidance leads to the large-scale substitution of fossil fuels for the generation of electricity with renewable energy sources. The transition to renewables necessitates the development of large-scale energy storage systems that will satisfy the hourly demand of the consumers. This paper offers an overview of the energy storage systems that are available to assist with the transition to renewable energy. The systems are classified as mechanical (PHS CAES flywheels springs) electromagnetic (capacitors electric and magnetic fields) electrochemical (batteries including flow batteries) hydrogen and thermal energy storage systems. Emphasis is placed on the magnitude of energy storage each system is able to achieve the thermodynamic characteristics the particular applications the systems are suitable for the pertinent figures of merit and the energy dissipation during the charging and discharging of the systems.
Fuel Cell Electric Vehicles (FCEV): Policy Advances to Enhance Commercial Success
May 2021
Publication
Many initiatives and policies attempt to make our air cleaner by reducing the carbon foot imprint on our planet. Most of the existing and planned initiatives have as their objectives the reduction of carbon dependency and the enhancement of newer or better technologies in the near future. However numerous policies exist for electric vehicles (EVs) and only some policies address specific issues related to fuel cell electric vehicles (FCEV). The lack of a distinction between the policies for EVs and FCEVs provides obstacles for the advancement of FCEV-related technologies that may otherwise be successful and competitive in the attempt to create a cleaner planet. Unfortunately the lack of this distinction is not always based on intellectual or scientific evidence. Therefore governments may need to introduce clearer policy distinctions in order to directly address FCEV-related challenges that may not pertain to other EVs. Unfortunately lobbyism continues to exist that supports the maintenance of the status quo as new technologies may threaten traditional less sustainable approaches to provide opportunities for a better environment. This lobbyism has partially succeeded in hindering the advancement of new technologies partially because the development of new technologies may reduce profit and business opportunities for traditionalists. However these challenges are slowly overcome as the demand for cleaner air and lower carbon emissions has increased and a stronger movement toward newer and cleaner technologies has gained momentum. This paper will look at policies that have been either implemented or are in the process of being implemented to address the challenge of overcoming traditional obstacles with respect to the automobile industry. The paper reviewed synthesized and discussed policies in the USA Japan and the European Union that helped implement new technologies with a focus on FCEVs for larger mass markets. These regions were the focus of this paper because of their particular challenges. South Korea and China were not included in this discussion as these countries already have equal or even more advanced policies and initiatives in place.
Everything About Hydrogen Podcast: Improving PEM Efficiency
Jan 2023
Publication
On this episode of EAH we sat down with Alejandro Oyarce Barnett Chief Technology Officer and Co-Founder at Hystar. Hystar is a technology-focused company specializing in PEM electrolysers for hydrogen production using renewable energy. The company got its start as a spin-off from SINTEF one of Europe’s largest independent research organizations and has raised private funding so the company can focus on production of its high-efficiency PEM units and keep pace with demand for hydrogen generation capacity. Hystar announced on January 11 2023 that the company has closed a Series B funding round of USD 26mn to rapidly scale-up to full commercial operations with an automated GW-capacity production line by 2025. Alejandro joined us to discuss in more detail the origins of Hystar its technology and the mission at the core of the company.
The podcast can be found on their website.
The podcast can be found on their website.
Blind-prediction: Estimating the Consequences of Vented Hydrogen Deflagrations for Homogeneous Mixtures in a 20-foot ISO Container
Sep 2017
Publication
Trygve Skjold,
Helene Hisken,
Sunil Lakshmipathy,
Gordon Atanga,
Marco Carcassi,
Martino Schiavetti,
James R. Stewart,
A. Newton,
James R. Hoyes,
Ilias C. Tolias,
Alexandros G. Venetsanos,
Olav Roald Hansen,
J. Geng,
Asmund Huser,
Sjur Helland,
Romain Jambut,
Ke Ren,
Alexei Kotchourko,
Thomas Jordan,
Jérome Daubech,
Guillaume Lecocq,
Arve Grønsund Hanssen,
Chenthil Kumar,
Laurent Krumenacker,
Simon Jallais,
D. Miller and
Carl Regis Bauwens
This paper summarises the results from a blind-prediction study for models developed for estimating the consequences of vented hydrogen deflagrations. The work is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The scenarios selected for the blind-prediction entailed vented explosions with homogeneous hydrogen-air mixtures in a 20-foot ISO container. The test program included two configurations and six experiments i.e. three repeated tests for each scenario. The comparison between experimental results and model predictions reveals reasonable agreement for some of the models and significant discrepancies for others. It is foreseen that the first blind-prediction study in the HySEA project will motivate developers to improve their models and to update guidelines for users of the models.
Dispersion of Cryogenic Hydrogen Through High-aspect Ratio Nozzles
Sep 2019
Publication
Liquid hydrogen is increasingly being used as a delivery and storage medium for stations that provide compressed gaseous hydrogen for fuel cell electric vehicles. In efforts to provide scientific justification for separation distances for liquid hydrogen infrastructure in fire codes the dispersion characteristics of cryogenic hydrogen jets (50–64 K) from high aspect ratio nozzles have been measured at 3 and 5 barabs stagnation pressures. These nozzles are more characteristic of unintended leaks which would be expected to be cracks rather than conventional round nozzles. Spontaneous Raman scattering was used to measure the concentration and temperature field along the major and minor axes. Within the field of interrogation the axis-switching phenomena was not observed but rather a self-similar Gaussian-profile flow regime similar to room temperature or cryogenic hydrogen releases through round nozzles. The concentration decay rate and half-widths for the planar cryogenic jets were found to be nominally equivalent to that of round nozzle cryogenic hydrogen jets indicating a similar flammable envelope. The results from these experiments will be used to validate models for cryogenic hydrogen dispersion that will be used for simulations of alternative scenarios and quantitative risk assessment
Significantly Enhanced Electrocatalytic Activity of Copper for Hydrogen Evolution Reaction Through Femtosecond Laser Blackening
Jan 2021
Publication
In this work we report on the creation of a black copper via femtosecond laser processing and its application as a novel electrode material. We show that the black copper exhibits an excellent electrocatalytic activity for hydrogen evolution reaction (HER) in alkaline solution. The laser processing results in a unique microstructure: microparticles covered by finer nanoparticles on top. Electrochemical measurements demonstrate that the kinetics of the HER is significantly accelerated after bare copper is treated and turned black. At −0.325 V (v.s. RHE) in 1 M KOH aqueous solution the calculated area-specific charge transfer resistance of the electrode decreases sharply from 159 Ω cm2 for the untreated copper to 1 Ω cm2 for the black copper. The electrochemical surface area of the black copper is measured to be only 2.4 times that of the untreated copper and therefore the significantly enhanced electrocatalytic activity of the black copper for HER is mostly a result of its unique microstructure that favors the formation and enrichment of protons on the surface of copper. This work provides a new strategy for developing high-efficient electrodes for hydrogen generation.
Opportunities and Challenges of Low-Carbon Hydrogen via Metallic Membranes
Jun 2020
Publication
Today electricity & heat generation transportation and industrial sectors together produce more than 80% of energy-related CO2 emissions. Hydrogen may be used as an energy carrier and an alternative fuel in the industrial residential and transportation sectors for either heating energy production from fuel cells or direct fueling of vehicles. In particular the use of hydrogen fuel cell vehicles (HFCVs) has the potential to virtually eliminate CO2 emissions from tailpipes and considerably reduce overall emissions from the transportation sector. Although steam methane reforming (SMR) is the dominant industrial process for hydrogen production environmental concerns associated with CO2 emissions along with the process intensification and energy optimization are areas that still require improvement. Metallic membrane reactors (MRs) have the potential to address both challenges. MRs operate at significantly lower pressures and temperatures compared with the conventional reactors. Hence the capital and operating expenses could be considerably lower compared with the conventional reactors. Moreover metallic membranes specifically Pd and its alloys inherently allow for only hydrogen permeation making it possible to produce a stream of up to 99.999+% purity.
For smaller and emerging hydrogen markets such as the semiconductor and fuel cell industries Pd-based membranes may be an appropriate technology based on the scales and purity requirements. In particular at lower hydrogen production rates in small-scale plants MRs with CCUS could be competitive compared to centralized H2 production. On-site hydrogen production would also provide a self-sufficient supply and further circumvent delivery delays as well as issues with storage safety. In addition hydrogen-producing MRs are a potential avenue to alleviate carbon emissions. However material availability Pd cost and scale-up potential on the order of 1.5 million m3/day may be limiting factors preventing wider application of Pd-based membranes.
Regarding the economic production of hydrogen the benchmark by the year 2020 has been determined and set in place by the U.S. DOE at less than $2.00 per kg of produced hydrogen. While the established SMR process can easily meet the set limit by DOE other carbon-free processes such as water electrolysis electron beam radiolysis and gliding arc technologies do not presently meet this requirement. In particular it is expected that the cost of hydrogen produced from natural gas without CCUS will remain the lowest among all of the technologies while the hydrogen cost produced from an SMR plant with solvent-based carbon capture could be twice as expensive as the conventional SMR without carbon capture. Pd-based MRs have the potential to produce hydrogen at competitive prices with SMR plants equipped with carbon capture.
Despite the significant improvements in the electrolysis technologies the cost of hydrogen produced by electrolysis may remain significantly higher in most geographical locations compared with the hydrogen produced from fossil fuels. The cost of hydrogen via electrolysis may vary up to a factor of ten depending on the location and the electricity source. Nevertheless due to its modular nature the electrolysis process will likely play a significant role in the hydrogen economy when implemented in suitable geographical locations and powered by renewable electricity.
This review provides a critical overview of the opportunities and challenges associated with the use of the MRs to produce high-purity hydrogen with low carbon emissions. Moreover a technoeconomic review of the potential methods for hydrogen production is provided and the drawbacks and advantages of each method are presented and discussed.
For smaller and emerging hydrogen markets such as the semiconductor and fuel cell industries Pd-based membranes may be an appropriate technology based on the scales and purity requirements. In particular at lower hydrogen production rates in small-scale plants MRs with CCUS could be competitive compared to centralized H2 production. On-site hydrogen production would also provide a self-sufficient supply and further circumvent delivery delays as well as issues with storage safety. In addition hydrogen-producing MRs are a potential avenue to alleviate carbon emissions. However material availability Pd cost and scale-up potential on the order of 1.5 million m3/day may be limiting factors preventing wider application of Pd-based membranes.
Regarding the economic production of hydrogen the benchmark by the year 2020 has been determined and set in place by the U.S. DOE at less than $2.00 per kg of produced hydrogen. While the established SMR process can easily meet the set limit by DOE other carbon-free processes such as water electrolysis electron beam radiolysis and gliding arc technologies do not presently meet this requirement. In particular it is expected that the cost of hydrogen produced from natural gas without CCUS will remain the lowest among all of the technologies while the hydrogen cost produced from an SMR plant with solvent-based carbon capture could be twice as expensive as the conventional SMR without carbon capture. Pd-based MRs have the potential to produce hydrogen at competitive prices with SMR plants equipped with carbon capture.
Despite the significant improvements in the electrolysis technologies the cost of hydrogen produced by electrolysis may remain significantly higher in most geographical locations compared with the hydrogen produced from fossil fuels. The cost of hydrogen via electrolysis may vary up to a factor of ten depending on the location and the electricity source. Nevertheless due to its modular nature the electrolysis process will likely play a significant role in the hydrogen economy when implemented in suitable geographical locations and powered by renewable electricity.
This review provides a critical overview of the opportunities and challenges associated with the use of the MRs to produce high-purity hydrogen with low carbon emissions. Moreover a technoeconomic review of the potential methods for hydrogen production is provided and the drawbacks and advantages of each method are presented and discussed.
Test Methodologies for Hydrogen Sensor Performance Assessment: Chamber vs. Flow-through Test Apparatus
Sep 2017
Publication
Certification of hydrogen sensors to meet standards often prescribes using large-volume test chambers. However feedback from stakeholders such as sensor manufacturers and end-users indicates that chamber test methods are often viewed as too slow and expensive for routine assessment. Flow-through test methods are potentially an efficient and cost-effective alternative for sensor performance assessment. A large number of sensors can be simultaneously tested in series or in parallel with an appropriate flow-through test fixture. The recent development of sensors with response times of less than 1s mandates improvements in equipment and methodology to properly capture the performance of this new generation of fast sensors; flow methods are a viable approach for accurate response and recovery time determinations but there are potential drawbacks. According to ISO 26142 flow-through test methods may not properly simulate ambient applications. In chamber test methods gas transport to the sensor is dominated by diffusion which is viewed by some users as mimicking deployment in rooms and other confined spaces. Conversely in flow-through methods forced flow transports the gas to the sensing element. The advective flow dynamics may induce changes in the sensor behaviour relative to the quasi-quiescent condition that may prevail in chamber test methods. The aim of the current activity in the JRC and NREL sensor laboratories is to develop a validated flow-through apparatus and methods for hydrogen sensor performance testing. In addition to minimizing the impact on sensor behaviour induced by differences in flow dynamics challenges associated with flow-through methods include the ability to control environmental parameters (humidity pressure and temperature) during the test and changes in the test gas composition induced by chemical reactions with upstream sensors. Guidelines on flow-through test apparatus design and protocols for the evaluation of hydrogen sensor performance have been developed. Various commercial sensor platforms (e.g. thermal conductivity catalytic and metal semiconductor) were used to demonstrate the advantages and issues with the flow-through methodology.
Hydrogen Wide Area Monitoring of LH2 Releases at HSE for the PRESLHY Project
Sep 2021
Publication
The characterization of liquid hydrogen (LH2) releases has been identified as an international research priority to facilitate the safe use of hydrogen as an energy carrier. Empirical field measurements such as those afforded by Hydrogen Wide Area Monitoring can elucidate the behavior of LH2 releases which can then be used to support and validate dispersion models. Hydrogen Wide Area Monitoring can be defined as the quantitative three-dimensional spatial and temporal profiling of planned or unintentional hydrogen releases. The NREL Sensor Laboratory developed a Hydrogen Wide Area Monitor (HyWAM) based upon a distributed array of hydrogen sensors. The NREL Sensor Laboratory and the Health and Safety Executive (HSE) formally committed to collaborate on profiling GH2 and LH2 releases which allowed for the integration of the NREL HyWAM into the HSE LH2 release behavior investigation supported by the FCH JU Prenormative Research for the Safe Use of Liquid Hydrogen (PRESLHY) program. A HyWAM system was deployed consisting of 32 hydrogen measurement points and co-located temperature sensors distributed downstream of the LH2 release apparatus developed by HSE. In addition the HyWAM deployment was supported by proximal wind and weather monitors. In a separate presentation at this conference “HSE Experimental Summary for the Characterisation Dispersion and Electrostatic Hazards of LH2 for the PRESLHY Project” HSE researchers summarize the experimental apparatus and protocols utilized in the HSE LH2 releases that were performed under the auspices of PRESLHY. As a supplement to the HSE presentation this presentation will focus on the spatial and temporal behavior LH2 releases as measured by the NREL HyWAM. Correlations to ambient conditions such as wind speed and direction plume temperature and hydrogen concentrations will be discussed in addition to the design and performance of the NREL HyWAM and its potential for improving hydrogen facility safety.
Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State
Jun 2021
Publication
Public attention to climate change challenges our locked-in fossil fuel-dependent energy sector. Natural gas is replacing other fossil fuels in our energy mix. One way to reduce the greenhouse gas (GHG) impact of fossil natural gas is to replace it with renewable natural gas (RNG). The benefits of utilizing RNG are that it has no climate change impact when combusted and utilized in the same applications as fossil natural gas. RNG can be injected into the gas grid used as a transportation fuel or used for heating and electricity generation. Less common applications include utilizing RNG to produce chemicals such as methanol dimethyl ether and ammonia. The GHG impact should be quantified before committing to RNG. This study quantifies the potential production of biogas (i.e. the precursor to RNG) and RNG from agricultural and waste sources in New York State (NYS). It is unique because it is the first study to provide this analysis. The results showed that only about 10% of the state’s resources are used to generate biogas of which a small fraction is processed to RNG on the only two operational RNG facilities in the state. The impact of incorporating a second renewable substitute for fossil natural gas “green” hydrogen is also analyzed. It revealed that injecting RNG and “green” hydrogen gas into the pipeline system can reduce up to 20% of the state’s carbon emissions resulting from fossil natural gas usage which is a significant GHG reduction. Policy analysis for NYS shows that several state and federal policies support RNG production. However the value of RNG can be increased 10-fold by applying a similar incentive policy to California’s Low Carbon Fuel Standard (LCFS).
Clean Energy and Fuel Storage
Aug 2019
Publication
Clean energy and fuel storage is often required for both stationary and automotive applications. Some of the clean energy and fuel storage technologies currently under extensive research and development are hydrogen storage direct electric storage mechanical energy storage solar-thermal energy storage electrochemical (batteries and supercapacitors) and thermochemical storage. The gravimetric and volumetric storage capacity energy storage density power output operating temperature and pressure cycle life recyclability and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and on-board vehicular transportation. This Special Issue thus serves the need to promote exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to a practical and sustainable infrastructure.
Understanding Composition–property Relationships in Ti–Cr–V–Mo Alloys for Optimisation of Hydrogen Storage in Pressurised Tanks
Jun 2014
Publication
The location of hydrogen within Ti–Cr–V–Mo alloys has been investigated during hydrogen absorption and desorption using in situ neutron powder diffraction and inelastic neutron scattering. Neutron powder diffraction identifies a low hydrogen equilibration pressure body-centred tetragonal phase that undergoes a martensitic phase transition to a face-centred cubic phase at high hydrogen equilibration pressures. The average location of the hydrogen in each phase has been identified from the neutron powder diffraction data although inelastic neutron scattering combined with density functional theory calculations show that the local structure is more complex than it appears from the average structure. Furthermore the origin of the change in dissociation pressure and hydrogen trapping on cycling in Ti–Cr–V–Mo alloys is discussed.
Dual Z-scheme Charge Transfer in TiO2–Ag–Cu2O Composite for Enhanced Photocatalytic Hydrogen Generation
Apr 2015
Publication
Photocatalytic hydrogen generation is one of the most promising solutions to convert solar power into green chemical energy. In this work a multi-component TiO2–Ag–Cu2O composite was obtained through simple impregnation-calcination of Cu2O and subsequent photodeposition of Ag onto electrospun TiO2 nanotubes. The resulting TiO2–Ag–Cu2O photocatalyst exhibits excellent photocatalytic H2 evolution activity due to the synergetic effect of Ag and Cu2O on electrospun TiO2nanotubes. A dual Z-scheme charge transfer pathway for photocatalytic reactions over TiO2–Ag–Cu2O composite was proposed and discussed. This work provides a prototype for designing Z-scheme photocatalyst with Ag as an electron mediator.
Nickel Sulfides Supported by Carbon Spheres as Efficient Catalysts for Hydrogen Evolution Reaction
Jun 2021
Publication
Ni3S2 and NiS supported on carbon spheres are successfully synthesized by a facile hydrothermal method. And then a series of physical characterizations included XRD (X-ray diffraction) EDS (energy dispersive spectroscopy) FESEM (field emission scanning electron microscopy) and XPS (X-ray photo-electron spectroscopy) were used to analyze the samples. XRD was used to confirm that NiNi3S2 S2 and NiS were successfully fabricated. FESEM indicated that Ni3S2 and NiS disperse well on carbon spheres. Electrochemical tests showed that nickel sulfides supported by carbon spheres exhibited excellent hydrogen evolution performance. The excellent catalytic activity is attributed to the synergistic effect of carbon spheres and transition metal sulfides of which the carbon spheres act to enhance the electrical conductivity and the dispersion of Ni3S2 and NiS thus providing more active sites for the hydrogen evolution reaction.
Resource Assessment for Hydrogen Production
Jul 2020
Publication
This analysis was conducted in support of the U.S. Department of Energy's H2@Scale initiative and this report examines the resources required to meet demand for an additional 10 million metric tonnes (MMT) of hydrogen in 2040. The technical potential of hydrogen production from fossil nuclear and renewable energy resources is presented. Updated maps describe the geographical distribution of hydrogen production potential from renewable energy resources. The results conclude that the technical resource availability of domestic energy resources is sufficient to meet an additional 10 MMT of hydrogen demand in 2040 without placing significant pressure on existing resources. While this level of hydrogen demand could result in a significant increase in renewable energy consumption in particular the technical potential of each resource is estimated to be sufficient to meet the demand. Future research to enable the large-scale integration of hydrogen in the U.S. energy and other sectors will include analyzing the geographic distribution of resources in relation to hydrogen demand for a variety of applications. Additional techno-economic analysis is also needed to understand the economic potential of hydrogen in other industries beyond transportation; such analysis is currently being undertaken by a multi-lab project initiated by DOE in 2016. Finally information from techno-economic analyses should be used to continually update and inform R&D targets for energy production hydrogen production and hydrogen utilization technologies.
No more items...