Institution of Gas Engineers & Managers
Small-Scale Hybrid and Polygeneration Renewable Energy Systems: Energy Generation and Storage Technologies, Applications, and Analysis Methodology
Dec 2022
Publication
The energy sector is nowadays facing new challenges mainly in the form of a massive shifting towards renewable energy sources as an alternative to fossil fuels and a diffusion of the distributed generation paradigm which involves the application of small-scale energy generation systems. In this scenario systems adopting one or more renewable energy sources and capable of producing several forms of energy along with some useful substances such as fresh water and hydrogen are a particularly interesting solution. A hybrid polygeneration system based on renewable energy sources can overcome operation problems regarding energy systems where only one energy source is used (solar wind biomass) and allows one to use an all-in-one integrated systems in order to match the different loads of a utility. From the point of view of scientific literature medium and large-scale systems are the most investigated; nevertheless more and more attention has also started to be given to small-scale layouts and applications. The growing diffusion of distributed generation applications along with the interest in multipurpose energy systems based on renewables and capable of matching different energy demands create the necessity of developing an overview on the topic of small-scale hybrid and polygeneration systems. Therefore this paper provides a comprehensive review of the technology operation performance and economical aspects of hybrid and polygeneration renewable energy systems in small-scale applications. In particular the review presents the technologies used for energy generation from renewables and the ones that may be adopted for energy storage. A significant focus is also given to the adoption of renewable energy sources in hybrid and polygeneration systems designs/modeling approaches and tools and main methodologies of assessment. The review shows that investigations on the proposed topic have significant potential for expansion from the point of view of system configuration hybridization and applications.
Effect of Flow Speed on Ignition Characteristics of Hydrogen/air Mixtures
Sep 2021
Publication
A fuel cell vehicle has a purging system for exhausting contaminated hydrogen gas. Notwithstanding the allowable hydrogen emissions levels in the purging system are regulated by the GTR a further research on the safety requirement of emissions concentrations is therefore needed for the vehicle design into a more rational system. In the present study the effects of flow speed concentration humidity on ignition characteristics of hydrogen/air mixtures were experimentally investigated. The results demonstrate that the value of Lower Flammable Limit increased with an increase in the velocity of hydrogen/air mixtures and slightly increased with a decrease in oxygen concentration.
Hydrogen Refueling Stations and Carbon Emission Reduction of Coastal Expressways: A Deployment Model and Multi-Scenario Analysis
Jul 2022
Publication
Hydrogen is considered to the ultimate solution to achieve carbon emission reduction due to its wide sources and high calorific value as well as non-polluting renewable and storable advantages. This paper starts from the coastal areas uses offshore wind power hydrogen production as the hydrogen source and focuses on the combination of hydrogen supply chain network design and hydrogen expressway hydrogen refueling station layout optimization. It proposes a comprehensive mathematical model of hydrogen supply chain network based on cost analysis which determined the optimal size and location of hydrogen refueling stations on hydrogen expressways in coastal areas. Under the multi-scenario and multi-case optimization results the location of the hydrogen refueling station can effectively cover the road sections of each case and the unit hydrogen cost of the hydrogen supply chain network is between 11.8 and 15.0 USD/kgH2 . Meanwhile it was found that the transportation distance and the number of hydrogen sources play a decisive role on the cost of hydrogen in the supply chain network and the location of hydrogen sources have a decisive influence on the location of hydrogen refueling stations. In addition carbon emission reduction results of hydrogen supply chain network show that the carbon emission reduction per unit hydrogen production is 15.51 kgCO2/kgH2 at the production side. The CO2 emission can be reduced by 68.3 kgCO2/km and 6.35 kgCO2/kgH2 per unit mileage and per unit hydrogen demand at the application side respectively. The layout planning utilization of hydrogen energy expressway has a positive impact on energy saving and emission reduction.
Hydrogen Embrittlement of a Boiler Water Wall Tube in a District Heating System
Jul 2022
Publication
A district heating system is an eco-friendly power generation facility with high energy efficiency. The boiler water wall tube used in the district heating system is exposed to extremely harsh conditions and unexpected fractures often occur during operation. In this study a corrosion failure analysis of the boiler water wall tube was performed to elucidate the failure mechanisms. The study revealed that overheating by flames was the cause of the failure of the boiler water wall tube. With an increase in temperature in a localized region the microstructure not only changed from ferrite/pearlite to martensite/bainite which made it more susceptible to brittleness but it also developed tensile residual stresses in the water-facing side by generating cavities or microcracks along the grain boundaries inside the tube. High-temperature hydrogen embrittlement combined with stress corrosion cracking initiated many microcracks inside the tube and created an intergranular fracture.
Ammonia as Green Fuel in Internal Combustion Engines: State-of-the-Art and Future Perspectives
Jul 2022
Publication
Ammonia (NH3) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural sector. In recent years it has sparked interest in the possibility of working as a high-quality energy carrier and as a carbon-free fuel in internal combustion engines (ICEs). This review aimed to provide an overview of the research on the use of green ammonia as an alternative fuel for ICEs with a look to the future on possible applications and practical solutions to related problems. First of all the ammonia production process is discussed. Present ammonia production is not a “green” process; the synthesis occurs starting from gaseous hydrogen currently produced from hydrocarbons. Some ways to produce green ammonia are reviewed and discussed. Then the chemical and physical properties of ammonia as a fuel are described and explained in order to identify the main pros and cons of its use in combustion systems. Then the most viable solutions for fueling internal combustion engines with ammonia are discussed. When using pure ammonia high boost pressure and compression ratio are required to compensate for the low ammonia flame speed. In spark-ignition engines adding hydrogen to ammonia helps in speeding up the flame front propagation and stabilizing the combustion. In compression-ignition engines ammonia can be successfully used in dual-fuel mode with diesel. On the contrary an increase in NOx and the unburned NH3 at the exhaust require the installation of apposite aftertreatment systems. Therefore the use of ammonia seems to be more practicable for marine or stationary engine application where space constraints are not a problem. In conclusion this review points out that ammonia has excellent potential to play a significant role as a sustainable fuel for the future in both retrofitted and new engines. However significant further research and development activities are required before being able to consider large-scale industrial production of green ammonia. Moreover uncertainties remain about ammonia safe and effective use and some technical issues need to be addressed to overcome poor combustion properties for utilization as a direct substitute for standard fuels.
Energy Assessment of an Integrated Hydrogen Production System
Dec 2022
Publication
Hydrogen is believed to be the future energy carrier that will reduce environmental pollution and solve the current energy crisis especially when produced from a renewable energy source. Solar energy is a renewable source that has been commonly utilized in the production process of hydrogen for years because it is inexhaustible clean and free. Generally hydrogen is produced by means of a water splitting process mainly electrolysis which requires energy input provided by harvesting solar energy. The proposed model integrates the solar harvesting system into a conventional Rankine cycle producing electrical and thermal power used in domestic applications and hydrogen by high temperature electrolysis (HTE) using a solid oxide steam electrolyzer (SOSE). The model is divided into three subsystems: the solar collector(s) the steam cycle and an electrolysis subsystem where the performance of each subsystem and their effect on the overall efficiency is evaluated thermodynamically using first and second laws. A parametric study investigating the hydrogen production rate upon varying system operating conditions (e.g. solar flux and area of solar collector) is conducted on both parabolic troughs and heliostat fields as potential solar energy harvesters. Results have shown that heliostat-based systems were able to attain optimum performance with an overall thermal efficiency of 27% and a hydrogen production rate of 0.411 kg/s whereas parabolic trough-based systems attained an overall thermal efficiency of 25.35% and produced 0.332 kg/s of hydrogen.
Multi-Time Scale Optimal Scheduling Model of Wind and Hydrogen Integrated Energy System Based on Carbon Trading
Jan 2023
Publication
In the context of carbon trading energy conservation and emissions reduction are the development directions of integrated energy systems. In order to meet the development requirements of energy conservation and emissions reduction in the power grid considering the different responses of the system in different time periods a wind-hydrogen integrated multi-time scale energy scheduling model was established to optimize the energy-consumption scheduling problem of the system. As the scheduling model is a multiobjective nonlinear problem the artificial fish swarm algorithm–shuffled frog leaping algorithm (AFS-SFLA) was used to solve the scheduling model to achieve system optimization. In the experimental test process the Griewank benchmark function and the Rosenbrock function were selected to test the performance of the proposed AFS-SFL algorithm. In the Griewank environment compared to the SFLA algorithm the AFS-SFL algorithm was able to find a feasible solution at an early stage and tended to converge after 110 iterations. The optimal solution was −4.83. In the test of total electric power deviation results at different time scales the maximum deviation of early dispatching was 14.58 MW and the minimum deviation was 0.56 MW. The overall deviation of real-time scheduling was the minimum and the minimum deviation was 0 and the maximum deviation was 1.89 WM. The integrated energy system adopted real-time scale dispatching with good system stability and low-energy consumption. Power system dispatching optimization belongs to the objective optimization problem. The artificial fish swarm algorithm and frog algorithm were innovatively combined to solve the dispatching model which improved the accuracy of power grid dispatching. The research content provides an effective reference for the efficient use of clean and renewable energy.
Exploring the Complexity of Hydrogen Perception and Acceptance Among Key Stakeholders in Norway
Nov 2022
Publication
This article explores the complexity of factors or mechanisms that can influence hydrogen stakeholder perception and acceptance in Norway. We systematically analyze 16 semi-structured in-depth interviews with industry stakeholders at local municipal regional and national levels of interest and authority in Norway. Four empirical dimensions are identified that highlight the need for whole system approaches in hydrogen technology research: (1) several challenges incentives and synergy effects influence the hydrogen transition; (2) transport preferences are influenced by combined needs and limitations; (3) levels of knowledge and societal trust determinant to perceptions of risk and acceptance; and (4) national and international hydrogen stakeholders are crucial to building incentives and securing commitment among key actors. Our findings imply that project management planners engineers and policymakers need to apply a whole system perspective and work across local regional and national levels before proceeding with large-scale development and implementation of the hydrogen supply chain.
Safe Ventilation Methods against Leaks in Hydrogen Fuel Cell Rooms in Homes
Jul 2022
Publication
Hydrogen which has a high energy density and does not emit pollutants is considered an alternative energy source to replace fossil fuels. Herein we report an experimental study on hydrogen leaks and ventilation methods for preventing damage caused by leaks from hydrogen fuel cell rooms in homes among various uses of hydrogen. This experiment was conducted in a temporary space with a volume of 11.484 m3 . The supplied pressure leak-hole size and leakage amount were adjusted as the experimental conditions. The resulting hydrogen concentrations which changed according to the operation of the ventilation openings ventilation fan and supplied shutoff valve were measured. The experimental results showed that the reductions in the hydrogen concentration due to the shutoff valve were the most significant. The maximum hydrogen concentration could be reduced by 80% or more if it is 100 times that of the leakage volume or higher. The shutoff valve ventilation fan and ventilation openings were required to reduce the concentrations of the fuel cell room hydrogen in a spatially uniform manner. Although the hydrogen concentration in a small hydrogen fuel cell room for home use can rapidly increase a rapid reduction in the concentration of hydrogen with an appropriate ventilation system has been experimentally proven.
Clean Hydrogen Is a Challenge for Enterprises in the Era of Low-Emission and Zero-Emission Economy
Jan 2023
Publication
Hydrogen can be considered an innovative fuel that will revolutionize the energy sector and enable even more complete use of the potential of renewable sources. The aim of the paper is to present the challenges faced by companies and economies that will produce and use hydrogen. Thanks to the use of hydrogen in the energy transport and construction sectors it will be possible to achieve climate neutrality by 2050. By 2050 global demand for hydrogen will increase to 614 million metric tons a year and thanks to the use of hydrogen in energy transport and construction it will be possible to achieve climate neutrality. Depending on the method of hydrogen production the processes used and the final effects several groups can be distinguished marked with different colors. It is in this area of obtaining friendly hydrogen that innovative possibilities for its production open up. The costs of hydrogen production are also affected by network fees national tax systems availability and prices of carbon capture utilization and storage installations energy consumption rates by electrolyzers and transport methods. It is planned that 1 kg of hydrogen will cost USD 1. The study used the desk research method which made it possible to analyze a huge amount of descriptive data and numerical data.
Recent Development of Fuel Cell Core Components and Key Materials: A Review
Feb 2023
Publication
Fuel cells as key carriers for hydrogen energy development and utilization provide a vital opportunity to achieve zero-emission energy use and have thus attracted considerable attention from fundamental research to industrial application levels. Considering the current status of fuel cell technology and the industry this paper presents a systematic elaboration of progress and development trends in fuel cell core components and key materials such as stacks bipolar plates membrane electrodes proton exchange membranes catalysts gas diffusion layers air compressors and hydrogen circulation systems. In addition some proposals for the development of fuel cell vehicles in China are presented based on the analysis of current supporting policies standards and regulations along with manufacturing costs in China. The fuel cell industry of China is still in the budding stage of development and thus suffers some challenges such as lagging fundamental systems imperfect standards and regulations high product costs and uncertain technical safety and stability levels. Therefore to accelerate the development of the hydrogen energy and fuel cell vehicle industry it is an urgent need to establish a complete supporting policy system accelerate technical breakthroughs transformations and applications of key materials and core components and reduce the cost of hydrogen use.
Jet Zero Strategy: Delivering Net Zero Aviation by 2050
Jul 2022
Publication
The Jet Zero strategy sets out how we will achieve net zero aviation by 2050.<br/>It focuses on the rapid development of technologies in a way that maintains the benefits of air travel whilst maximising the opportunities that decarbonisation can bring to the UK.<br/>The Jet Zero strategy includes a 5-year delivery plan setting out the actions that will need to be taken in the coming years to support the delivery of net zero aviation by 2050. We will be monitoring progress and reviewing and updating our strategy every 5 years.<br/>The strategy is informed by over 1500 responses to the Jet Zero consultation and the Jet Zero further technical consultation to which we have issued a summary of responses and government response.<br/>The Jet Zero investment flightpath is part of a series of roadmaps to be published over the course of 2022 for each sector of the Prime Minister’s Ten point plan for a green industrial revolution.<br/>It showcases the UK’s leading role in the development and commercialisation of new low and zero emission aviation technologies. It also highlights investment opportunities across systems efficiencies sustainable aviation fuels and zero emission aircraft.
HydroGenerally - Episode 5: Hydrogen for Glass Production
May 2022
Publication
In this fifth episode Steffan Eldred and Neelam Mughal from Innovate UK KTN discuss how the glass industry is driving new hydrogen developments and research and explore the hydrogen transition opportunities and challenges in this sector alongside their special guest Rob Ireson Innovation and Partnerships Manager at Glass Futures Ltd.
The podcast can be found on their website
The podcast can be found on their website
Assessment of Hydrogen Flame Length Full Bore Pipeline Rupture
Sep 2021
Publication
The study aims at the development of a safety engineering methodology for the assessment of flame length after full-bore rupture of hydrogen pipeline. The methodology is validated using experimental data on hydrogen jet flame from full-bore pipeline rupture by Acton et al. (2010). The experimental pressure dynamics in the hydrogen pipeline system is simulated using previously developed adiabatic and “isothermal” blowdown models. The hydrogen release area is taken as equal similar to the experiment to doubled pipeline cross-section as hydrogen was coming out from both sides of the ruptured pipe. The agreement with the experimental pressure decay in the piping system was achieved using discharge coefficient CD=0.26 and CD=0.21 for adiabatic and “isothermal” blowdown model respectively that indicates significant friction and minor pressure losses. The hydrogen flame length was calculated using the dimensionless correlation by Molkov and Saffers (2013). The correlation relies on the density of hydrogen in the choked flow at the pipe exit. The maximum experimental flame length between 92 m and 111 m was recorded at 6 s after the pipe rupture under the ground. The calculated by the dimensionless correlation flame length is 110 m and 120 m for the “isothermal” and adiabatic blowdown model respectively. This is an acceptable accuracy for such a large-scale experiment. It is concluded that the methodology can be applied as an engineering tool to assess flame length resulting from ruptured hydrogen pipelines.
Wettability of Shale–brine–H2 System and H2-brine Interfacial Tension for Assessment of the Sealing Capacities of Shale Formations During Underground Hydrogen Storage
Jul 2022
Publication
Replacement of fossil fuels with clean hydrogen has been recognized as the most feasible approach of implementing CO2-free hydrogen economy globally. However large-scale storage of hydrogen is a critical component of hydrogen economy value chain because hydrogen is the lightest molecule and has moderately low volumetric energy content. To achieve successful storage of buoyant hydrogen at the subsurface and convenient withdrawal during the period of critical energy demand the integrity of the underground storage rock and overlying seal (caprock) must be assured. Presently there is paucity of information on hydrogen wettability of shale and the interfacial properties of H2/brine system. In this research contact angles of shale/H2/brine system and hydrogen/brine interfacial tension (IFT) were measured using Krüss drop shape analyzer (DSA 100) at 50 ◦C and varying pressure (14.7–1000 psi). A modified form of sessile drop approach was used for the contact angles measurement whereas the H2- brine IFT was measured through the pendant drop method. H2-brine IFT values decreased slightly with increasing pressure ranging between 63.68◦ at 14.7 psia and 51.29◦ at 1000 psia. The Eagle-ford shale with moderate total organic carbon (TOC) of 3.83% attained fully hydrogen-wet (contact angle of 99.9◦ ) and intermediate-wet condition (contact angle of 89.7◦ ) at 14.7 psi and 200 psi respectively. Likewise the Wolf-camp shale with low TOC (0.30%) attained weakly water-wet conditions with contact angles of 58.8◦ and 62.9◦ at 14.7 psi and 200 psi respectively. The maximum height of hydrogen that can be securely trapped by the Wolf-camp shale was approximately 325 meters whereas the value was merely 100 meters for the Eagle-ford shale. Results of this study will aid in assessment of hydrogen storage capacity of organic-rich shale (adsorption trapping) as well as evaluation of the sealing potentials of low TOC shale (caprock) during underground hydrogen storage.
A Multi-objective Optimization Approach in Defining the Decarbonization Strategy of a Refinery
Mar 2022
Publication
Nowadays nearly one quarter of global carbon dioxide emissions are attributable to energy use in industry making this an important target for emission reductions. The scope of this study is hence that to define a cost-optimized decarbonization strategy for an energy and carbon intensive industry using an Italian refinery as a case study. The methodology involves the coupling of EnergyPLAN with a Multi-Objective Evolutionary Algorithm (MOEA) considering the minimization of annual cost and CO2 emissions as two potentially conflicting objectives and the energy technologies’ capacities as decision variables. For the target year 2025 EnergyPLAN+MOEA has allowed to model a range of 0-100 % decarbonization solutions characterized by optimal penetration mix of 22 technologies in the electrical thermal hydrogen feedstock and transport demand. A set of nine scenarios with different land use availabilities and implementable technologies each consisting of 100 optimal systems out of 10000 simulated ones has been evaluated. The results show on the one hand the possibility of achieving medium-high decarbonization solutions at costs close to current ones on the other how the decarbonization pathways strongly depend on the available land for solar thermal photovoltaic and wind as well as the presence of a biomass supply chain in the region.
Machine Learning-based Energy Optimization for On-site SMR Hydrogen Production
Jun 2021
Publication
The production and application of hydrogen an environmentally friendly energy source have been attracting increasing interest of late. Although steam methane reforming (SMR) method is used to produce hydrogen it is difficult to build a high-fidelity model because the existing equation-oriented theoretical model cannot be used to clearly understand the heat-transfer phenomenon of a complicated reforming reactor. Herein we developed an artificial neural network (ANN)-based data-driven model using 485710 actual operation datasets for optimizing the SMR process. Data preprocessing including outlier removal and noise filtering was performed to improve the data quality. A model with high accuracy (average R2 = 0.9987) was developed which can predict six variables through hyperparameter tuning of a neural network model as follows: syngas flow rate; CO CO2 CH4 and H2 compositions; and steam temperature. During optimization the search spaces for nine operating variables namely the natural gas flow rate for the feed and fuel hydrogen flow rate for desulfurization water flow rate and temperature air flow rate SMR inlet temperature and pressure and low-temperature shift (LTS) inlet temperature were defined and applied to the developed model for predicting the thermal efficiencies for 387420489 cases. Subsequently five constraints were established to consider the feasibility of the process and the decision variables with the highest process thermal efficiency were determined. The process operating conditions showed a thermal efficiency of 85.6%.
Analysis of a Large Balloon Explosion Incident
Sep 2021
Publication
On December 19 2017 a large balloon containing about 22 thousand cubic meters of hydrogen was deliberately torn open to initiate deflation at the completion of a filling test. An inadvertent ignition occurred after about two seconds and caused an explosion that produced extensive light damage to a large building near the balloon test pad. The analysis described here includes an estimate of the buoyancy induced mixing into the torn balloon and the blast wave produced by assumed constant flame speed combustion of the 55% to 65% hydrogen-in-air mixture. Comparisons of calculated blast wave pressures are consistent with estimates of the pressure needed to cause the observed building damage for flame speeds in the range 85 m/s to about 100 m/s.
Optimising Fuel Supply Chains within Planetary Boundaries: A Case Study of Hydrogen for Road Transport in the UK
Jul 2020
Publication
The world-wide sustainability implications of transport technologies remain unclear because their assessment often relies on metrics that are hard to interpret from a global perspective. To contribute to filling this gap here we apply the concept of planetary boundaries (PBs) i.e. a set of biophysical limits critical for operating the planet safely to address the optimal design of sustainable fuel supply chains (SCs) focusing on hydrogen for vehicle use. By incorporating PBs into a mixed-integer linear programming model (MILP) we identify SC configurations that satisfy a given transport demand while minimising the PBs transgression level i.e. while reducing the risk of surpassing the ecological capacity of the Earth. On applying this methodology to the UK we find that the current fossil-based sector is unsustainable as it transgresses the energy imbalance CO2 concentration and ocean acidification PBs heavily i.e. five to 55-fold depending on the downscale principle. The move to hydrogen would help to reduce current transgression levels substantially i.e. reductions of 9–86% depending on the case. However it would be insufficient to operate entirely within all the PBs concurrently. The minimum impact SCs would produce hydrogen via water electrolysis powered by wind and nuclear energy and store it in compressed form followed by distribution via rail which would require as much as 37 TWh of electricity per year. Our work unfolds new avenues for the incorporation of PBs in the assessment and optimisation of energy systems to arrive at sustainable solutions that are entirely consistent with the carrying capacity of the planet.
Effect of Hydrogen-blended Natural Gas on Combustion Stability and Emission of Water Heater Burner
Jun 2022
Publication
To study the effect of hydrogen-blended natural gas on the combustion stability and emission of domestic gas water heater a test system is built in this paper taking a unit of the partial premixed burner commonly used in water heaters as the object. Under the heat load of 0.7~2.3kW the changes of flame shape burner temperature and pollutant emission of natural gas with hydrogen volume ratio of 0~40% are studied with independent control of primary air supply and mixing. The results show that: with the increase of hydrogen blending ratio the inner flame height increases firstly and then reduces while the change of burner temperature is opposite. The maximum inner flame height and the minimum temperature of the burner both appear at the hydrogen blending ratio of 10~20%. It can be seen that the limit of hydrogen blending ratio which can maintain the burner operate safely and stably under rated heat load is 40% through the maximum temperature distribution on the burner surface. The CO emission in the flue gas gradually decreases with the increase of hydrogen blending ratio while the NOx emission fluctuates slightly when the hydrogen blending ratio is less than 20% but then decreases gradually.
No more items...