Institution of Gas Engineers & Managers
Agreement for the Low Carbon Hydrogen Production Business Model
Dec 2022
Publication
The Heads of Terms for the Low Carbon Hydrogen Agreement sets out the government’s proposal for the final hydrogen production business model design. It will form the basis of the Low Carbon Hydrogen Agreement the business model contract between the government appointed counterparty and a low carbon hydrogen producer.<br/>The business model will provide revenue support to hydrogen producers to overcome the operating cost gap between low carbon hydrogen and high carbon fuels. It has been designed to incentivise investment in low carbon hydrogen production and use and in doing so deliver the government’s ambition of up to 10GW of low carbon hydrogen production capacity by 2030.
Optimized Design and Control of an Off Grid solar PV/hydrogen Fuel Cell Power System for Green Buildings
Sep 2017
Publication
Modelling simulation optimization and control strategies are used in this study to design a stand-alone solar PV/Fuel Cell/Battery/Generator hybrid power system to serve the electrical load of a commercial building. The main objective is to design an off grid energy system to meet the desired electric load of the commercial building with high renewable fraction low emissions and low cost of energy. The goal is to manage the energy consumption of the building reduce the associate cost and to switch from grid-tied fossil fuel power system to an off grid renewable and cleaner power system. Energy audit was performed in this study to determine the energy consumption of the building. Hourly simulations modelling and optimization were performed to determine the performance and cost of the hybrid power configurations using different control strategies. The results show that the hybrid off grid solar PV/Fuel Cell/Generator/Battery/Inverter power system offers the best performance for the tested system architectures. From the total energy generated from the off grid hybrid power system 73% is produced from the solar PV 24% from the fuel cell and 3% from the backup Diesel generator. The produced power is used to meet all the AC load of the building without power shortage (<0.1%). The hybrid power system produces 18.2% excess power that can be used to serve the thermal load of the building. The proposed hybrid power system is sustainable economically viable and environmentally friendly: High renewable fraction (66.1%) low levelized cost of energy (92 $/MWh) and low carbon dioxide emissions (24 kg CO2/MWh) are achieved.
Hydrogen Strategy Update to the Market: July 2022
Jul 2022
Publication
Low carbon hydrogen is our new home-grown super-fuel which will be vital for our energy security and to meet our legally binding commitment to achieve net zero by 2050. The UK Hydrogen Strategy published in August 2021 outlined a comprehensive roadmap for the development of a thriving UK hydrogen economy over the coming decade. In the British Energy Security Strategy published in April this year the government doubled the UK’s hydrogen production ambition to up to 10GW by 2030. This increased ambition cements our place firmly at the forefront of the global race to develop hydrogen as a secure low carbon replacement for fossil fuels in the transition to greater energy security and net zero. Since the publication of the UK Hydrogen Strategy we have continued to deliver on our commitments setting out new policy and funding for hydrogen across the value chain and bringing together the international community around shared hydrogen objectives to rapidly develop a global hydrogen economy. Hydrogen was a key component of the Net Zero Strategy COP26 and the British Energy Security Strategy. The Hydrogen Investment Package and opening of the £240 million Net Zero Hydrogen Fund in April marked a major step forward in delivering government support to drive further private investment into hydrogen production in the UK. To keep industry informed on the government’s ongoing work to develop the hydrogen economy we committed in the UK Hydrogen Strategy to producing regular updates to the market as our policy develops. In addition to offering an accessible ‘one stop shop’ of government policy development and support schemes these updates will provide industry and investors with further clarity on the direction of travel of hydrogen policy across the value chain so that government and industry can work together most effectively and with the necessary pace to build a world-leading low carbon hydrogen sector in the UK.
Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies
Mar 2023
Publication
In recent years the problem of environmental pollution especially the emission of greenhouse gases has attracted people’s attention to energy infrastructure. At present the fuel consumed by transportation mainly comes from fossil energy and the strong traffic demand has a great impact on the environment and climate. Fuel cell electric vehicles (FCEVs) use hydrogen energy as a clean alternative to fossil fuels taking into account the dual needs of transportation and environmental protection. However due to the low power density and high manufacturing cost of hydrogen fuel cells their combination with other power supplies is necessary to form a hybrid power system that maximizes the utilization of hydrogen energy and prolongs the service life of hydrogen fuel cells. Therefore the hybrid power system control mode has become a key technology and a current research hotspot. This paper first briefly introduces hydrogen fuel cells then summarizes the existing hybrid power circuit topology categorizes the existing technical solutions and finally looks forward to the future for different scenarios of hydrogen fuel cell hybrid power systems. This paper provides reference and guidance for the future development of renewable hydrogen energy and hydrogen fuel cell hybrid electric vehicles.
Net Hydrogen Consumption Minimization of Fuel Cell Hybrid Trains Using a Time-Based Co-Optimization Model
Apr 2022
Publication
With increasing concerns on transportation decarbonization fuel cell hybrid trains (FCHTs) attract many attentions due to their zero carbon emissions during operation. Since fuel cells alone cannot recover the regenerative braking energy (RBE) energy storage devices (ESDs) are commonly deployed for the recovery of RBE and provide extra traction power to improve the energy efficiency. This paper aims to minimize the net hydrogen consumption (NHC) by co-optimizing both train speed trajectory and onboard energy management using a time-based mixed integer linear programming (MILP) model. In the case with the constraints of speed limits and gradients the NHC of co-optimization reduces by 6.4% compared to the result obtained by the sequential optimization which optimizes train control strategies first and then the energy management. Additionally the relationship between NHC and employed ESD capacity is studied and it is found that with the increase of ESD capacity the NHC can be reduced by up to 30% in a typical route in urban railway transit. The study shows that ESDs play an important role for FCHTs in reducing NHC and the proposed time-based co-optimization model can maximize the energy-saving benefits for such emerging traction systems with hybrid energy sources including both fuel cells and ESD.
Prospects of Fuel Cell Combined Heat and Power Systems
Aug 2020
Publication
Combined heat and power (CHP) in a single and integrated device is concurrent or synchronized production of many sources of usable power typically electric as well as thermal. Integrating combined heat and power systems in today’s energy market will address energy scarcity global warming as well as energy-saving problems. This review highlights the system design for fuel cell CHP technologies. Key among the components discussed was the type of fuel cell stack capable of generating the maximum performance of the entire system. The type of fuel processor used was also noted to influence the systemic performance coupled with its longevity. Other components equally discussed was the power electronics. The thermal and water management was also noted to have an effect on the overall efficiency of the system. Carbon dioxide emission reduction reduction of electricity cost and grid independence were some notable advantages associated with fueling cell combined heat and power systems. Despite these merits the high initial capital cost is a key factor impeding its commercialization. It is therefore imperative that future research activities are geared towards the development of novel and cheap materials for the development of the fuel cell which will transcend into a total reduction of the entire system. Similarly robust systemic designs should equally be an active research direction. Other types of fuel aside hydrogen should equally be explored. Proper risk assessment strategies and documentation will similarly expand and accelerate the commercialization of this novel technology. Finally public sensitization of the technology will also make its acceptance and possible competition with existing forms of energy generation feasible. The work in summary showed that proton exchange membrane fuel cell (PEM fuel cell) operated at a lower temperature-oriented cogeneration has good efficiency and is very reliable. The critical issue pertaining to these systems has to do with the complication associated with water treatment. This implies that the balance of the plant would be significantly affected; likewise the purity of the gas is crucial in the performance of the system. An alternative to these systems is the PEM fuel cell systems operated at higher temperatures.
Place-based Allocation of R&D Funding: Directing the German Innovation System for Hydrogen Technologies in Space
Jul 2024
Publication
The geographical understanding of directionality in the literature on mission-oriented innovation systems is still underdeveloped. Therefore this article reflects on whether the allocation of funding for R&D activities to different places can direct innovation systems in space. A placebased approach to the allocation of funding and its effects on innovation systems is developed to analyze how the German national government allocates funding to the national innovation system for hydrogen technologies. The results show that the allocation of funding considers placebased characteristics and has a range of systemic outcomes encompassing the clustering of research activities the specialization of certain places in certain market segments and the in crease of the spatial reach of the national innovation system by integrating left behind places. However the funding contributes insufficiently to market formation at the local and regional scale and is contested due to existing alternative routes that the innovation system could take.
Fuel Cell Products for Sustainable Transportation and Stationary Power Generation: Review on Market Perspective
Mar 2023
Publication
The present day energy supply scenario is unsustainable and the transition towards a more environmentally friendly energy supply system of the future is inevitable. Hydrogen is a potential fuel that is capable of assisting with this transition. Certain technological advancements and design challenges associated with hydrogen generation and fuel cell technologies are discussed in this review. The commercialization of hydrogen-based technologies is closely associated with the development of the fuel cell industry. The evolution of fuel cell electric vehicles and fuel cell-based stationary power generation products in the market are discussed. Furthermore the opportunities and threats associated with the market diffusion of these products certain policy implications and roadmaps of major economies associated with this hydrogen transition are discussed in this review.
Industrial Boilers: Study to Develop Cost and Stock Assumptions for Options to Enable or Require Hydrogen-ready Industrial Boilers
Dec 2022
Publication
This study aims to help the Department for Business Energy and Industrial Strategy (BEIS) determine whether the government should intervene to enable or require hydrogen-ready industrial boiler equipment. It will do this based on information from existing literature along with qualitative and quantitative information from stakeholder engagement. The study draws on evidence gathered through BEIS’ Call for Evidence (CfE) on hydrogen-ready industrial boilers. The assessment will advance the overall understanding of hydrogen-ready industrial boilers based on four outputs: definitions of hydrogen-readiness comparisons of the cost and resource requirement to install and convert hydrogen-ready industrial boiler equipment supply chain capacity for conversion to hydrogen and estimates of the UK industrial boiler population.
Hydrogen Embrittlement Characteristics in Cold-drawn High-strength Stainless Steel Wires
Mar 2023
Publication
Hydrogen uptake and embrittlement characteristics of a cold-drawn austenitic stainless steel wire were investigated. Slow strain rate testing and fracture surface analysis were applied to determine the hydrogen embrittlement resistance providing an apparent decrease in resistance to hydrogen embrittlement for a 50% degree of cold deformation. The hydrogen content was assessed by thermal desorption and laser-induced breakdown spectroscopy establishing a correlation between the total absorbed hydrogen and the intensity of near-surface hydrogen. The sub-surface hydrogen content of the hot-rolled specimen was determined to be 791 wt.ppm.
Spatially-resolved Analysis of the Challenges and Opportunities of Power-to-Gas (PtG) in Baden-Württemberg until 2040
Mar 2017
Publication
The increasing penetration of renewable energies will make new storage technologies indispensable in the future. Power-to-Gas (PtG) is one long-term storage technology that exploits the existing gas infrastructure. However this technology faces technical economic environmental challenges and questions. This contribution presents the final results of a large research project which attempted to address and provide answers to some of these questions for Baden-Württemberg (south west Germany). Three energy scenarios out to 2040 were defined one oriented towards the Integrated Energy and Climate Protection Concept of the Federal State Government and two alternatives. Timely-resolved load profiles for gas and electricity for 2015 2020 2030 and 2040 have been generated at the level of individual municipalities. The profiles include residential and industrial electrical load gas required for heating (conventional and current-controlled CHP) as well as gas and electricity demand for mobility. The installation of rooftop PV-plants and wind power plants is projected based on bottom up cost-potential analyses which account for some social acceptance barriers. Residential load profiles are derived for each municipality. In times with negative residual load the PtG technology could be used to convert electricity into hydrogen or methane. The detailed analysis of four structurally-different model regions delivered quite different results. While in large cities no negative residual load is likely due to the continuously high demand and strong networks rural areas with high potentials for renewables could encounter several thousand hours of negative residual load. A cost-effective operation of PtG would only be possible under favorable conditions including high full load hours a strong reduction in costs and a technical improvement of efficiency. Whilst these conditions are not expected to appear in the short to mid-term but may occur in the long term in energy systems with very high shares of renewable energy sources
Behavior of Barrier Wall under Hydrogen Storage Tank Explosion with Simulation and TNT Equivalent Weight Method
Mar 2023
Publication
Hydrogen gas storage place has been increasing daily because of its consumption. Hydrogen gas is a dream fuel of the future with many social economic and environmental benefits to its credit. However many hydrogen storage tanks exploded accidentally and significantly lost the economy infrastructure and living beings. In this study a protection wall under a worst-case scenario explosion of a hydrogen gas tank was analyzed with commercial software LS-DYNA. TNT equivalent method was used to calculate the weight of TNT for Hydrogen. Reinforced concrete and composite protection wall under TNT explosion was analyzed with a different distance of TNT. The initial dimension of the reinforced concrete protection wall was taken from the Korea gas safety code book (KGS FP217) and studied the various condition. H-beam was used to make the composite protection wall. Arbitrary-Lagrangian-Eulerian (ALE) simulation from LS-DYNA and ConWep pressure had a good agreement. Used of the composite structure had a minimum displacement than a normal reinforced concrete protection wall. During the worst-case scenario explosion of a hydrogen gas 300 kg storage tank the minimum distance between the hydrogen gas tank storage and protection wall should be 3.6 m.
Techno-economic Assessment of Blue and Green Ammonia as Energy Carriers in a Low-carbon Future
Feb 2022
Publication
Ammonia is an industrial chemical and the basic building block for the fertilizer industry. Lately attention has shifted towards using ammonia as a carbon-free energy vector due to the ease of transportation and storage in liquid state at − 33 ◦C and atmospheric pressure. This study evaluates the prospects of blue and green ammonia as future energy carriers; specifically the gas switching reforming (GSR) concept for H2 and N2 co-production from natural gas with inherent CO2 capture (blue) and H2 generation through an optimized value chain of wind and solar power electrolysers cryogenic N2 supply and various options for energy storage (green). These longer term concepts are benchmarked against conventional technologies integrating CO2 capture: the Kellogg Braun & Root (KBR) Purifier process and the Linde Ammonia Concept (LAC). All modelled plants utilize the same ammonia synthesis loop for a consistent comparison. A cash flow analysis showed that the GSR concept achieved an attractive levelized cost of ammonia (LCOA) of 332.1 €/ton relative to 385.1–385.9 €/ton for the conventional plants at European energy prices (6.5 €/GJ natural gas and 60 €/MWh electricity). Optimal technology integration for green ammonia using technology costs representative of 2050 was considerably more expensive: 484.7–772.1 €/ton when varying the location from Saudi Arabia to Germany. Furthermore the LCOA of the GSR technology drops to 192.7 €/ton when benefitting from low Saudi Arabian energy costs (2 €/GJ natural gas and 40 €/MWh electricity). This cost difference between green and blue ammonia remained robust in sensitivity analyses where input energy cost (natural gas or wind/solar power) was the most influential parameter. Given its low production costs and the techno-economic feasibility of international ammonia trade advanced blue ammonia production from GSR offers an attractive pathway for natural gas exporting regions to contribute to global decarbonization.
Underground Hydrogen Storage: Application of Geochemical Modelling in a Case Study in the Molasse Basin, Upper Austria
Feb 2019
Publication
Hydrogen storage in depleted gas fields is a promising option for the large-scale storage of excess renewable energy. In the framework of the hydrogen storage assessment for the “Underground Sun Storage” project we conduct a multi-step geochemical modelling approach to study fluid–rock interactions by means of equilibrium and kinetic batch simulations. With the equilibrium approach we estimate the long-term consequences of hydrogen storage whereas kinetic models are used to investigate the interactions between hydrogen and the formation on the time scales of typical storage cycles. The kinetic approach suggests that reactions of hydrogen with minerals become only relevant over timescales much longer than the considered storage cycles. The final kinetic model considers both mineral reactions and hydrogen dissolution to be kinetically controlled. Interactions among hydrogen and aqueous-phase components seem to be dominant within the storage-relevant time span. Additionally sensitivity analyses of hydrogen dissolution kinetics which we consider to be the controlling parameter of the overall reaction system were performed. Reliable data on the kinetic rates of mineral dissolution and precipitation reactions specifically in the presence of hydrogen are scarce and often not representative of the studied conditions. These uncertainties in the kinetic rates for minerals such as pyrite and pyrrhotite were investigated and are discussed in the present work. The proposed geochemical workflow provides valuable insight into controlling mechanisms and risk evaluation of hydrogen storage projects and may serve as a guideline for future investigations.
Numerical Simulation of Leaking Hydrogen Dispersion Behavior
Sep 2021
Publication
As one kind of clean zero carbon and sustainable energy hydrogen energy has been regarded as the most potential secondary energy. Recently hydrogen refueling station gradually becomes one of important distribution infrastructures that provides hydrogen sources for transport vehicles and other distribution devices. However the highly combustible nature of hydrogen may bring great hazards to environment and human. The safety design of hydrogen usage has been brought to public too. This paper is mainly focused on the hydrogen leakage and dispersion process. A new solver for gaseous buoyancy dispersion process is developed based on OpenFOAM [1]. Thermodynamic and transport properties of gases are updated by library Mutation ++ [2]. For validation two tests of hydrogen dispersion in partially opened space and closed space are presented. Numerical simulation of hydrogen dispersion behavior in hydrogen refueling station is carried out in this paper as well. From the results three phases of injection dispersion and buoyancy can be seen clearly. The profile of hydrogen concentration is tend to be Gaussian in dispersion region. Subsonic H2 jet in stagnant environment is calculated for refueling station the relationship between H2 concentration decay and velocity along the jet trajectory is obtained.
Towards Net-zero Compatible Hydrogen from Steam Reformation - Techno-economic Analysis of Process Design Options
Dec 2022
Publication
Increased consumption of low-carbon hydrogen is prominent in the decarbonisation strategies of many jurisdictions. Yet prior studies assessing the current most prevalent production method steam reformation of natural gas (SRNG) have not sufficiently evaluated how process design decisions affect life cycle greenhouse gas (GHG) emissions. This techno-economic case study assesses cradle-to-gate emissions of hydrogen produced from SRNG with CO2 capture and storage (CCS) in British Columbia Canada. Four process configurations with amine-based CCS using existing technology and novel process designs are evaluated. We find that cradle-to-gate GHG emission intensity ranges from 0.7 to 2.7 kgCO2e/kgH2 – significantly lower than previous studies of SRNG with CCS and similar to the range of published estimates for hydrogen produced from renewable-powered electrolysis. The levelized cost of hydrogen (LCOH) in this study (US$1.1–1.3/kgH2) is significantly lower than published estimates for renewable-powered electrolysis.
Optimal Design and Operation of Dual-Ejector PEMFC Hydrogen Supply and Circulation System
Jul 2022
Publication
A proton exchange membrane fuel cell (PEMFC) system requires an adequate hydrogen supply and circulation to achieve its expected performance and operating life. An ejector-based hydrogen circulation system can reduce the operating and maintenance costs noise and parasitic power consumption by eliminating the recirculation pump. However the ejector’s hydrogen entrainment capability restricted by its geometric parameters and flow control variability can only operate properly within a relatively narrow range of fuel cell output power. This research introduced the optimal design and operation control methods of a dual-ejector hydrogen supply/circulation system to support the full range of PEMFC system operations. The technique was demonstrated on a 70 kW PEMFC stack with an effective hydrogen entrainment ratio covering 8% to 100% of its output power. The optimal geometry design ensured each ejector covered a specific output power range with maximized entrainment capability. Furthermore the optimal control of hydrogen flow and the two ejectors’ opening and closing times minimized the anode gas pressure fluctuation and reduced the potential harm to the PEMFC’s operation life. The optimizations were based on dedicated computational fluid dynamics (CFD) and system dynamics models and simulations. Bench tests of the resulting ejector-based hydrogen supply/circulation system verified the simulation and optimization results.
Opportunities for Flexible Electricity Loads such as Hydrogen Production from Curtailed Generation
Jun 2021
Publication
Variable low-cost low-carbon electricity that would otherwise be curtailed may provide a substantial economic opportunity for entities that can flexibly adapt their electricity consumption. We used historical hourly weather data over the contiguous U.S. to model the characteristics of least-cost electricity systems dominated by variable renewable generation that powered firm and flexible electricity demands (loads). Scenarios evaluated included variable wind and solar power battery storage and dispatchable natural gas with carbon capture and storage with electrolytic hydrogen representing a prototypical flexible load. When flexible loads were small excess generation capacity was available during most hours allowing flexible loads to operate at high capacity factors. Expanding the flexible loads allowed the least-cost systems to more fully utilize the generation capacity built to supply firm loads and thus reduced the average cost of delivered electricity. The macro-scale energy model indicated that variable renewable electricity systems optimized to supply firm loads at current costs could supply 25% or more additional flexible load with minimal capacity expansion while resulting in reduced average electricity costs (10% or less capacity expansion and 10% to 20% reduction in costs in our modeled scenarios). These results indicate that adding flexible loads to electricity systems will likely allow more full utilization of generation assets across a wide range of system architectures thus providing new energy services with infrastructure that is already needed to supply firm electricity loads.
Sustainability Assessment and Engineering of Emerging Aircraft Technologies—Challenges, Methods and Tools
Jul 2020
Publication
Driven by concerns regarding the sustainability of aviation and the continued growth of air traffic increasing interest is given to emerging aircraft technologies. Although new technologies such as battery-electric propulsion systems have the potential to minimise in-flight emissions and noise environmental burdens are possibly shifted to other stages of the aircraft’s life cycle and new socio-economic challenges may arise. Therefore a life-cycle-oriented sustainability assessment is required to identify these hotspots and problem shifts and to derive recommendations for action for aircraft development at an early stage. This paper proposes a framework for the modelling and assessment of future aircraft technologies and provides an overview of the challenges and available methods and tools in this field. A structured search and screening process is used to determine which aspects of the proposed framework are already addressed in the scientific literature and in which areas research is still needed. For this purpose a total of 66 related articles are identified and systematically analysed. Firstly an overview of statistics of papers dealing with life-cycle-oriented analysis of conventional and emerging aircraft propulsion systems is given classifying them according to the technologies considered the sustainability dimensions and indicators investigated and the assessment methods applied. Secondly a detailed analysis of the articles is conducted to derive answers to the defined research questions. It illustrates that the assessment of environmental aspects of alternative fuels is a dominating research theme while novel approaches that integrate socio-economic aspects and broaden the scope to battery-powered fuel-cell-based or hybrid-electric aircraft are emerging. It also provides insights by what extent future aviation technologies can contribute to more sustainable and energy-efficient aviation. The findings underline the need to harmonise existing methods into an integrated modelling and assessment approach that considers the specifics of upcoming technological developments in aviation.
Towards a Low-Carbon Society via Hydrogen and Carbon Capture and Storage: Social Acceptance from a Stakeholder Perspective
Apr 2020
Publication
Transformation concepts towards a low-carbon society often require new technology and infrastructure that evoke protests in the population. Therefore it is crucial to understand positions and conflicts in society to achieve social acceptance. This paper analyses these positions using the example of implementing hydrogen and carbon capture and storage infrastructure to decarbonise the German energy system. The empirical basis of the study are explorative stakeholder interviews which were conducted with experts from politics economics civil society and science and analysed within a discursive and attitudinal framework using qualitative content analysis. These stakeholder positions are assumed to represent dominant social perceptions and reflect chances and risks for acceptance. The results indicate different positions while pursuing the common goal of addressing climate change. The general conflict concerns strategies towards a low-carbon society especially the speed of phasing-out fossil energies. Regarding the combination of hydrogen and carbon capture and storage as instrument in the context of the energy transition the stakeholder interviews indicate controversial as well as consensual perceptions. The assessments range from rejection to deeming it absolutely necessary. Controversial argumentations refer to security of supply competitiveness and environmental protection. In contrast consensus can be reached by balancing ecological and economic arguments e.g. by linking hydrogen technologies with renewable and fossil energy sources or by limiting the use of carbon capture and storage only to certain applications (industry bioenergy). In further decisions this balancing of arguments combined with openness of technology transparency of information and citizen participation need to be considered to achieve broad acceptance.
No more items...