Institution of Gas Engineers & Managers
Influences on Hydrogen Production at a Wind Farm
Dec 2022
Publication
If an affordable infrastructure for low-carbon-intensity hydrogen can be developed then hydrogen is expected to become a key factor in decarbonizing the atmosphere. This research focuses on factors an existing wind farm operator would consider when weighing participating in the electricity market the hydrogen market or both. The solutions depend on the state of technology which is changing rapidly the local market structures the local natural resources and the local pre-existing infrastructure. Consequently this investigation used an assessment approach that examined the variation of net present value. The investigation identified profitability conditions under three different scenarios: 1) Make and sell what makes economic sense at the time of production 2) Use electrolyzer and fuel cell to consume power from the grid at times of low net demand and to produce electricity at times of high net demand 3) Same as #2 but also market hydrogen directly when profitable.
Fuzzy Logic-based Energy Management System for Grid-connected Residential DC Microgrids with Multi-stack Fuel Cell Systems: A Multi-objective Approach
Aug 2022
Publication
Hybrid energy storage systems (HESS) are considered for use in renewable residential DC microgrids. This architecture is shown as a technically feasible solution to deal with the stochasticity of renewable energy sources however the complexity of its design and management increases inexorably. To address this problem this paper proposes a fuzzy logic-based energy management system (EMS) for use in grid-connected residential DC microgrids with HESS. It is a hydrogen-based HESS composed of batteries and multi-stack fuel cell system. The proposed EMS is based on a multivariable and multistage fuzzy logic controller specially designed to cope with a multi-objective problem whose solution increases the microgrid performance in terms of efficiency operating costs and lifespan of the HESS. The proposed EMS considers the power balance in the microgrid and its prediction the performance and degradation of its subsystems as well as the main electricity grid costs. This article assesses the performance of the developed EMS with respect to three reference EMSs present in the literature: the widely used dual-band hysteresis and two based on multi-objective model predictive control. Simulation results show an increase in the performance of the microgrid from a technical and economic point of view.
Techno-economic Study of Power-to-Power Renewable Energy Storage Based on the Smart Integration of Battery, Hydrogen, and Micro Gas Turbine Technologies
Mar 2023
Publication
This paper deals with the integration of a Power-to-Power Energy Storage System (P2P-ESS) based on a hydrogen driven micro gas turbine (mGT) for an off-grid application with a continuous demand of 30 kWe for three European cities: Palermo Frankfurt and Newcastle. In the first part of the analysis the results show that the latitude of the location is a very strong driver in determining the size of the system (hence footprint) and the amount of seasonal storage. The rated capacity of the PV plant and electrolyzer are 37%/41% and 58%/64% higher in Frankfurt and Newcastle respectively as compared to the original design for Palermo. And not only this but seasonal storage also increases largely from 3125 kg H2 to 5023 and 5920 kg H2 . As a consequence of this LCOE takes values of 0.86 e/kWh 1.26 e/kWh and 1.5 e/kWh for the three cities respectively whilst round-trip efficiency is approximately 15.7% for the three designs at the 3 cities. Finally with the aim to reduce the footprint and rating of the different systems a final assessment of the system hybridised with battery storage shows a 20% LCOE reduction and a 10% higher round-trip efficiency.
Photocatalytic Hydrogen Evolution from Biomass Conversion
Feb 2021
Publication
Biomass has incredible potential as an alternative to fossil fuels for energy production that is sustainable for the future of humanity. Hydrogen evolution from photocatalytic biomass conversion not only produces valuable carbon-free energy in the form of molecular hydrogen but also provides an avenue of production for industrially relevant biomass products. This photocatalytic conversion can be realized with efficient sustainable reaction materials (biomass) and inexhaustible sunlight as the only energy inputs. Reported herein is a general strategy and mechanism for photocatalytic hydrogen evolution from biomass and biomass-derived substrates (including ethanol glycerol formic acid glucose and polysaccharides). Recent advancements in the synthesis and fundamental physical/mechanistic studies of novel photocatalysts for hydrogen evolution from biomass conversion are summarized. Also summarized are recent advancements in hydrogen evolution efciency regarding biomass and biomass-derived substrates. Special emphasis is given to methods that utilize unprocessed biomass as a substrate or synthetic photocatalyst material as the development of such will incur greater benefts towards a sustainable route for the evolution of hydrogen and production of chemical feedstocks.
How to Reduce the Greenhouse Gas Emissions and Air Pollution Caused by Light and Heavy Duty Vehicles with Battery-electric, Fuel Cell-electric and Catenary Trucks
Mar 2021
Publication
The reduction of greenhouse gas emissions is one of the greatest global challenges through 2050. Besides greenhouse gas emissions air pollution such as nitrogen oxide and particulate matter emissions has gained increasing attention in agglomerated areas with transport vehicles being one of the main sources thereof. Alternative fuels that fulfill the greenhouse gas reduction goals also offer the possibility of solving the challenge of rising urban pollution. This work focuses on the electric drive option for heavy and light duty vehicle freight transport. In this study fuel cell-electric vehicles battery-electric vehicles and overhead catenary line trucks were investigated taking a closer look at their potential to reduce greenhouse gas emissions and air pollution and also considering the investment and operating costs of the required infrastructure. This work was conducted using a bottom-up transport model for the federal state of North Rhine-Westphalia in Germany. Two scenarios for reducing these emissions were analyzed at a spatial level. In the first of these selected federal highways with the highest traffic volume were equipped with overhead catenary lines for the operation of diesel-hybrid overhead trucks on them. For the second spatial scenario the representative urban area of the city of Cologne was investigated in terms of air pollution shifting articulated trucks to diesel-hybrid overhead trucks and rigid trucks trailer trucks and light duty vehicles to battery-electric or fuel cell-electric drives. For the economic analysis the building up of a hydrogen infrastructure in the cases of articulated trucks and all heavy duty vehicles were also taken into account. The results showed that diesel-hybrid overhead trucks are only a cost-efficient solution for highways with high traffic volume whereas battery overhead trucks have a high uncertainty in terms of costs and technical feasibility. In general the broad range of costs for battery overhead trucks makes them competitive with fuel cell-electric trucks. Articulated trucks have the highest potential to be operated as overhead trucks. However the results indicated that air pollution is only partially reduced by switching conventional articulated trucks to electric drive models. The overall results show that a comprehensive approach such as fuel cell-electric drives for all trucks would most likely be more beneficial.
Techno-economic Evaluation of Medium Scale Power to Hydrogen to Combined Heat and Power Generation Systems
Jun 2022
Publication
The European Hydrogen Strategy and the new « Fit for 55 » package indicate the urgent need for the alignment of policy with the European Green Deal and European Union (EU) climate law for the decarbonization of the energy system and the use of hydrogen towards 2030 and 2050. The increasing carbon prices in EU Emission Trading System (ETS) as well as the lack of dispatchable thermal power generation as part of the Coal exit are expected to enhance the role of Combined Heat and Power (CHP) in the future energy system. In the present work the use of renewable hydrogen for the decarbonization of CHP plants is investigated for various fossil fuel substitution ratios and the impact of the overall efficiency the reduction of direct emissions and the carbon footprint of heat and power generation are reported. The analysis provides insights on efficient and decarbonized cogeneration linking the power with the heat sector via renewable hydrogen production and use. The levelized cost of hydrogen production as well as the levelized cost of electricity in the power to hydrogen to combined heat and power system are analyzed for various natural gas substitution scenarios as well as current and future projections of EU ETS carbon prices.
A Comprehensive Study on Production of Methanol from Wind Energy
Apr 2022
Publication
Methanol is a promising new alternative fuel that emits significantly less carbon dioxide than gasoline. Traditionally methanol was produced by gasifying natural gas and coal. Syn-Gas is created by converting coal and natural gas. After that the Syn-Gas is converted to methanol. Alternative renewable energy-to-methanol conversion processes have been extensively researched in recent years due to the traditional methanol production process’s high carbon footprint. Using an electrolysis cell wind energy can electrolyze water to produce hydrogen. Carbon dioxide is a gas that can be captured from the atmosphere and industrial processes. Carbon dioxide and hydrogen are combusted in a reactor to produce methanol and water; the products are then separated using a distillation column. Although this route is promising it has significant cost and efficiency issues due to the low efficiency of the electrolysis cells and high manufacturing costs. Additionally carbon dioxide capture is an expensive process. Despite these constraints it is still preferable to store excess wind energy in the form of methanol rather than sending it directly to the grid. This process is significantly more carbon-efficient and resource-efficient than conventional processes. Researchers have proposed and/or simulated a variety of wind power methods for methanol processes. This paper discusses these processes. The feasibility of wind energy for methanol production and its future potential is also discussed in this paper.
Control of a Three-Phase Current Source Rectifier for H2 Storage Applications in AC Microgrids
Mar 2022
Publication
The share of electrical energy from renewable sources has increased considerably in recent years in an attempt to reduce greenhouse gas emissions. To mitigate the uncertainties of these sources and to balance energy production with consumption an energy storage system (ESS) based on water electrolysis to produce hydrogen is studied. It can be applied to AC microgrids where several renewable energy sources and several loads may be connected which is the focus of the study. When excess electricity production is converted into hydrogen via water electrolysis low DC voltages and high currents are applied which needs specific power converters. The use of a three-phase buck-type current source converter in a single conversion stage allows for an adjustable DC voltage to be obtained at the terminals of the electrolyzer from a three-phase AC microgrid. The voltage control is preferred to the current control in order to improve the durability of the system. The classical control of the buck-type rectifier is generally done using two loops that correspond only to the control of its output variables. The lack of control of the input variables may generate oscillations of the grid current. Our contribution in this article is to propose a new control for the buck-type rectifier that controls both the input and output variables of the converter to avoid these grid current oscillations without the use of active damping methods. The suggested control method is based on an approach using the flatness properties of differential systems: it ensures the large-signal stability of the converter. The proposed control shows better results than the classical control especially in oscillation mitigation and dynamic performances with respect to the rejection of disturbances caused by a load step.
Thermodynamic Analysis of Hydrogen Utilization as Alternative Fuel in Cement Production
Jul 2022
Publication
Growing attention to the environmental aspect has urged the effort to reduce CO2 emission as one of the greenhouse gases. The cement industry is one of the biggest CO2 emitters in this world. Alternative fuel is one of the challenging issues in cement production due to the limited fossil fuel resources and environmental concerns. Meanwhile hydrogen (H2) has been reported as a promising non-carbon fuel with ammonia (NH3) as the main candidate for chemical storage methods. In this work an integrated system of cement production with an alternative H2-based fuel is proposed consisting of the dehydrogenation process of NH3 and the H2 combustion to provide the required thermal energy for clinker production. Different catalysts are employed and evaluated to analyze the specific energy input (SEI). The result shows that the conversion rate strongly determines the SEI with minimum SEI (3829.8 MJ t-clinker-1 ) achieved by Ni-Pt-based catalyst at a reaction temperature of 600 ºC. Compared to the conventional fuel of coal the H2-based integrated cement production system shows a significant decrease of 44% in CO2 emission due to carbon-free combustion using H2 as the fuel. The current study on the proposed integrated system of H2-based cement production also provides an initial thermodynamic analysis and basic observation for the adoption of non-carbon-based H2 including the storage system of NH3 in the cement production process.
Carbon Footprint and Energy Transformation Analysis of Steel Produced via a Direct Reduction Plant with an Integrated Electric Melting Unit
Aug 2022
Publication
The production of fat steel products is commonly linked to highly integrated sites which include hot metal generation via the blast furnace basic oxygen furnace (BOF) continuous casting and subsequent hot-rolling. In order to reach carbon neutrality a shift away from traditional carbon-based metallurgy is required within the next decades. Direct reduction (DR) plants are capable to support this transition and allow even a stepwise reduction in CO2 emissions. Nevertheless the implementation of these DR plants into integrated metallurgical plants includes various challenges. Besides metallurgy product quality and logistics special attention is given on future energy demand. On the basis of carbon footprint methodology (ISO 14067:2019) diferent scenarios of a stepwise transition are evaluated and values of possible CO2equivalent (CO2eq) reduction are coupled with the demand of hydrogen electricity natural gas and coal. While the traditional blast furnace—BOF route delivers a surplus of electricity in the range of 0.7 MJ/kg hot-rolled coil; this surplus turns into a defcit of about 17 MJ/ kg hot-rolled coil for a hydrogen-based direct reduction with an integrated electric melting unit. On the other hand while the product carbon footprint of the blast furnace-related production route is 2.1 kg CO2eq/kg hot-rolled coil; this footprint can be reduced to 0.76 kg CO2eq/kg hot-rolled coil for the hydrogen-related route provided that the electricity input is from renewable energies. Thereby the direct impact of the processes of the integrated site can even be reduced to 0.15 kg CO2eq/ kg hot-rolled coil. Yet if the electricity input has a carbon footprint of the current German or European electricity grid mix the respective carbon footprint of hot-rolled coil even increases up to 3.0 kg CO2eq/kg hot-rolled coil. This underlines the importance of the availability of renewable energies.
Optimizing an Integrated Hybrid Energy System with Hydrogen-based Storage to Develop an Off-grid Green Community for Sustainable Development in Bangladesh
Dec 2024
Publication
An integrated renewable system that utilizes solid waste-based biogas is important steps towards the sustainable energy solutions to rural off-grid communities in Bangladesh. In this study a hybrid energy system consisting of photovoltaic modules wind turbines biogas generators fuel cells and electrolyzer-hydrogen tank-based energy storage is optimized using non-dominated sorting genetic algorithm (NSGA-II). The hybrid system is optimized based on the cost of energy and human health damage as objective functions and a fuzzy decision-making technique is employed to determine the optimal solution to the multi-objective approach. Additionally several economic ecological and social indicators are also investigated while meeting a certain load reliability. An energy management strategy has been developed in the MATALB environment to satisfy the community load and the battery-driven electric vehicle load. Results from this comprehensive analysis suggest that the optimal configuration of PV/WT/FC/BG has an energy cost of 0.1634 $/kWh and an ecosystem damage of 0.00098 species.year. The human health damage and the human development index of the optimized system are 0.1732 DALYs and 0.696 DALYs respectively. Additionally the proposed system has a lifecycle emission of 123730 kg CO2-eq/year carbon emission penalties of $1856/year a job creation potential of 30 jobs/MW over the 25 years of project lifetime. The hybrid system oversees solid waste management solutions and provides the community with sustainable energy and vehicle recharge.
Coordinated Volt-Var Control of Reconfigurable Microgrids with Power-to-Hydrogen Systems
Dec 2024
Publication
The integration of electrolyzers and fuel cells can cause voltage fluctuations within microgrids if not properly scheduled. Therefore controlling voltage and reactive power becomes crucial to mitigate the impact of fluctuating voltage levels ensuring system stability and preventing damage to equipment. This paper therefore seeks to enhance voltage and reactive power control within reconfigurable microgrids in the presence of innovative power-to-hydrogen technologies via electrolyzers and hydrogen-to-power through fuel cells. Specifically it focuses on the simultaneous coordination of an electrolyzer hydrogen storage and a fuel cell alongside on-load tap changers smart photovoltaic inverters renewable energy sources diesel generators and electric vehicle aggregation within the microgrid system. Additionally dynamic network reconfiguration is employed to enhance microgrid flexibility and improve the overall system adaptability. Given the inherent unpredictability linked to resources the unscented transformation method is employed to account for these uncertainties in the proposed voltage and reactive power management. Finally the model is formulated as a convex optimization problem and is solved through GUROBI version 11 which leads to having a time-efficient model with high accuracy. To assess the effectiveness of the model it is eventually examined on a modified 33-bus microgrid in several cases. Through the results of the under-study microgrid the developed model is a great remedy for the simultaneous operation of diverse resources in reconfigurable microgrids with a flatter voltage profile across the microgrid.
Extended Design Philosophy of Hydrogen Transport Pipelines
Oct 2024
Publication
This paper examines some specific design issues associated with hydrogen transportation via pipelines based on recent field development study of high-throughput hydrogen pipelines. A mechanical design review is undertaken and the current design practices and challenge are examined first. An array of key parameters considered to have significant bearing on the hydrogen pipeline general mechanical design are considered and assessed including OOR imperfections combined stress and design factors thermal gradients joint mismatch and fabrication fatigue assessment installation specifications and material consideration. Some of these are typically ignored for the conventional pipeline design but open to rationalization for hydrogen charged pipeline systems subject to material embrittlement risk arising from hydrogen absorption. Complementary to the current design standards and as a spur to discussion on the hydrogen pipeline design analysis special considerations and recommendations are proposed on materials specification additional design criteria and construction assessments and their rationale to mitigate material embrittlement with a view to improving hydrogen pipeline design reliability and integrity management potentially leading to some tangible cost saving.
Mapping Local Green Hydrogen Cost-potentials by a Multidisciplinary Approach
Sep 2024
Publication
S. Ishmam,
Heidi Heinrichs,
C. Winkler,
B. Bayat,
Amin Lahnaoui,
Solomon Nwabueze Agbo,
E.U. Pena Sanchez,
David Franzmann,
N. Oijeabou,
C. Koerner,
Y. Michael,
B. Oloruntoba,
C. Montzka,
H. Vereecken,
H. Hendricks Franssen,
J. Brendt,
S. Brauner,
S. Venghaus,
Daouda Kone,
Bruno Korgo,
Kehinde Olufunso Ogunjobi,
V. Chiteculo,
Jane Olwoch,
Z. Getenga,
Jochen Linßen,
Detlef Stolten and
Wilhelm Kuckshinrichs
For fast-tracking climate change response green hydrogen is key for achieving greenhouse gas neutral energy systems. Especially Sub-Saharan Africa can benefit from it enabling an increased access to clean energy through utilizing its beneficial conditions for renewable energies. However developing green hydrogen strategies for Sub-Saharan Africa requires highly detailed and consistent information ranging from technical environmental economic and social dimensions which is currently lacking in literature. Therefore this paper provides a comprehensive novel approach embedding the required range of disciplines to analyze green hydrogen costpotentials in Sub-Saharan Africa. This approach stretches from a dedicated land eligibility based on local preferences a location specific renewable energy simulation locally derived sustainable groundwater limitations under climate change an optimization of local hydrogen energy systems and a socio-economic indicator-based impact analysis. The capability of the approach is shown for case study regions in Sub-Saharan Africa highlighting the need for a unified interdisciplinary approach.
Determining the Spanish Public’s Intention to Adopt Hydrogen Fuel-Cell Vehicles
Aug 2025
Publication
Understanding what people think about hydrogen energy and how this influences their acceptance of the associated technology is a critical area of research. The public’s willingness to adopt practical applications of hydrogen energy such as hydrogen fuel-cell vehicles (HFCVs) is a key factor in their deployment. To analyse the direct and indirect effects of key attitudinal variables that could influence the intention to use HFCVs in Spain an online questionnaire was administered to a representative sample of the Spanish population (N = 1000). A path analysis Structural Equation Model (SEM) was applied to determine the effect of different attitudinal variables. A high intention to adopt HFCVs in Spain was found (3.8 out of 5) assuming their wider availability in the future. The path analysis results indicated that general acceptance of hydrogen technology and perception of its benefits had the greatest effect on the public’s intention to adopt HFCVs. Regarding indirect effects the role of trust in hydrogen technology was notable having significant mediating effects not only through general acceptance of hydrogen energy and local acceptance of hydrogen refuelling stations (HRS) but also through positive and negative emotions and benefits perception. The findings will assist in focusing the future hydrogen communication strategies of both the government and the private (business) sector.
Technical Failures in Green Hydrogen Production and Reliability Engineering Responses: Insights from Database Analysis and a Literature Review
Nov 2024
Publication
Green hydrogen represents a promising solution for renewable energy application and carbon footprint reduc tion. However its production through renewable energy powered water electrolysis is hindered by significant cost arising from repair maintenance and economic losses due to unexpected downtimes. Although reliability engineering is highly effective in addressing such issues there is limited research on its application in the hydrogen field. To present the state-of-the-art research this study aims to explore the potential of reducing these events through reliability engineering a widely adopted approach in various industries. For this purpose it examines past accidents occurred in water electrolysis plants from the hydrogen incident and accident database (HIAD 2.1). Besides a literature review is performed to analyze the state-of-the-art application of reliability engineering techniques such as failure analysis reliability assessment and reliability-centered maintenance in the hydrogen sector and similar industries. The study highlights the contributions and potentials of reliability engineering for efficient and stable green hydrogen production while also discussing the gaps in applying this approach. The unique challenges posed by hydrogen’s physical properties and innovative technologies in water electrolysis plants necessitate advancement and specialized approaches for reliability engineering.
Two-stage Operation Optimization Strategy of Park Integrated Energy System Cluster Coupled with Hydrogen Energy Storage
Jan 2025
Publication
In response to the issues of insufficient flexibility in the operation of hydrogen storage and hydrogen production equipment with poor economic viability when operated independently in the park firstly a comprehensive energy system model for hydrogen storage and power generation which considering the multi-operational conditions of alkaline electrolyzers (ELE) is constructed. This model is integrated into the comprehensive en ergy system of the park as a multi-energy supply device. Multiple park comprehensive energy systems are then interconnected to form a park comprehensive energy system cluster through the sharing of electric energy. Subsequently an operational optimization strategy is proposed to address the issues of electric energy sharing and profit settlement in the park cluster system. This strategy consists of two stages. In the first stage the alternating direction method of multipliers with dynamic step size (DSS-ADMM) is employed to solve the electric energy transaction volume among parks. In the second stage based on the operating costs of the park cluster system under different degrees of electric energy sharing the Shapley value method from cooperative game theory is used to settle park profits. Finally the results indicate that the operational mode of hydrogen storage which considering the multi-operational conditions of alkaline ELE effectively enhances the flexibility in pre paring hydrogen during electrolysis meeting various energy supply needs within the park. The sharing of electric energy among parks promotes the reduction of park operating costs resulting in a 6.05 % decrease in the total cost of the park cluster system. Meanwhile the Shapley value method effectively settles park profits with in dividual parks receiving profits of 1652.9583 ¥ 404.2334 ¥ and 734.7739 ¥ respectively
Decarbonization of Natural Gas Systems in the EU - Costs, Barriers, and Constraints of Hydrogen Production with a Case Study in Portugal
Jul 2022
Publication
The European Union (EU) imports a large amount of natural gas and the injection of renewable hydrogen (H2) into the natural gas systems could help decarbonize the sector. The new geopolitical and energy market situation demands urgent actions in the clean energy transition and energy independence from fossil fuels. This paper aims to investigate techno-economic analysis barriers and constraints in the EU policies/frameworks that affect natural gas decarbonization. First the study examines the levelized cost of hydrogen production (LCOH). The LCOH is evaluated for blue and grey hydrogen i.e. Steam Methane Reforming (SMR) natural gas as the feed stock with and without carbon capture and green hydrogen (three type electrolyzers with electricity from the grid solar and wind) for the years 2020 2030 and 2050. Second the study evaluates the current policies and framework based on a SWOT (Strength Weakness Opportunities and Weakness) analysis which includes a PEST (Political Economic Social and Technological) macro-economic factor assessment with a case study in Portugal. The results show that the cheapest production costs continue to be dominated by grey hydrogen (1.33 €/kg.H2) and blue hydrogen (1.68 €/kg.H2) in comparison to green hydrogen (4.65 €/kg.H2 and 3.54 €/kg.H2) from grid electricity and solar power in the PEM - Polymer Electrolyte Membrane for the year 2020 respectively. The costs are expected to decrease to 4.03 €/kg.H2 (grid-electricity) and 2.49 €/kg.H2 (solar – electricity) in 2030. The LCOH of the green grid-electricity and solar/wind-powered Alkaline Electrolyzer (ALK) and Solid Oxide Electrolyzer Cell (SOEC) are also expected to decrease in the time-span from 2020 to 2050. A sensitivity analysis shows that investments costs electricity price the efficiency of electrolyzers and carbon tax (for SMR) could play a key role in reducing LCOH thereby making the economic competitiveness of hydrogen production. The key barriers are costs amendments in rules/regulations institutions and market creation public perception provisions of incentives and constraints in creating market demand.
Experimental and Numerical Analysis of Low-density Gas Dispersion Characteristics in Semi-confined Environments
Oct 2023
Publication
Hydrogen as a clean fuel offers a practical pathway to achieve net-zero targets. However due to its physical and chemical characteristics there are some safety concerns for large-scale hydrogen utilisation particularly in process safety management. Leakage of gaseous hydrogen especially in semi-confined spaces such as tunnels can lead to catastrophic outcomes including uncontrolled fire and explosion. The current paper describes the outcome of an experimental and numerical study that aims to understand the dispersion of leaked light gas in a semi-confined space to support the adoption of hydrogen. A dispersion chamber with dimensions of 4m × 0.3m × 0.3m was constructed to investigate a baseline gas leakage scenario. To reduce the risk of the experiment in the laboratory helium is utilised as a surrogate for hydrogen. Computational fluid dynamics simulations are con ducted using FLACS-CFD to model the dispersion of leaked gas in different scenarios focusing on the impact of the ventilation velocity leakage rate and slope. The results from comprehensive numerical simulations show that ventilation is a critical safety management measure that can significantly reduce the growth of flammable clouds and mitigate the fire and explosion risk. Even with the lowest ventilation velocity of 0.25 m/s an improvement in the gas concentration level of 29.34% can be achieved in the downstream chamber. The current results will help to further enhance the understanding of hydrogen safety aspects.
A Critical Analysis of Morocco’s Green Hydrogen Roadmap: A Modelling Approach to Assess Country Readiness from the Energy Trilemma Perspective
Apr 2024
Publication
Morocco despite its heavy reliance on imported fossil fuels which made up 68% of electricity generation in 2020 has recognised its significant renewable energy potential. The Nationally Determined Contribution (NDC) commitment is to reduce emissions by 45.5% from baseline levels with international assistance and abstain from constructing new coal plants. Moreover the Green Hydrogen Roadmap aims to export 10 TWh of green hydrogen by 2030 as well as use it for local electricity storage. This paper critically analyses this Roadmap and Morocco’s readiness to reach its ambitious targets focusing specifically on an energy trilemma perspective and using OSeMOSYS (Open-Source energy Modelling System) for energy modelling. The results reveal that the NDC scenario is only marginally more expensive than the least-cost scenario at around 1.3% (approximately USD 375 million) and facilitates a 23.32% emission reduction by 2050. An important note is the continued reliance on existing coal power plants across all scenarios which challenges both energy security and emissions. The assessment of the Green Hydrogen Scenarios highlights that it could be too costly for the Moroccan government to fund the Green Hydrogen Roadmap at this scale which leads to increased imports of polluting fossil fuels for cost reduction. In fact the emission levels are 39% higher in the green hydrogen exports scenario than in the least-cost scenario. Given these findings it is recommended that the Green Hydrogen Roadmap be re-evaluated with a suggestion for a postponement and reduction in scope.
No more items...