Institution of Gas Engineers & Managers
Safety of Cryogenic Liquid Hydrogen Bunkering Operations - The Gaps Between Existing Knowhow and Industry Needs
Sep 2023
Publication
Hydrogen plays an important role in the global transition towards Net-Zero emission. While pipelines are a viable option to transport large quantities of compressed hydrogen over long distances it is not always practical in many applications. In such situations a viable option is to transport and deliver large quantities of hydrogen as cryogenic liquid. The liquefaction process cools hydrogen to cryogenic temperatures below its boiling point of -259.2 0C. Such extreme low temperature implies specific hazards and risks which are different from those associated with the relatively well-known compressed gaseous hydrogen. Managing these specific issues brings new challenges for the stakeholders.<br/>Furthermore the transfer of liquid hydrogen (LH2) and its technical handling is relatively well known for industrial gas or space applications. Experience with LH2 in public and populated areas such as truck and aircraft refuelling stations or port bunkering stations for example is limited or non-existent. Safety requirements in these applications which involve or are in proximity of untrained public are different from rocket/aerospace industry.<br/>The manuscript reviews knowhow already gained by the international hydrogen safety community; and on such basis elucidate the gaps which are yet to be filled to meet industry needs to design and operate inherently safe LH2 operations including the implications for regulations codes and standards (RCS). Where relevant the associated gaps in some underpinning sciences will be mentioned; and the need to contextualise the information and safety practices from NASA1/ESA2/JAXA3 to inform risk adoption will be summarised.
Comparative Study of Different Alternative Fuel Options for Shipowners Based on Carbon Intensity Index Model Under the Background of Green Shipping Development
Nov 2024
Publication
The International Maritime Organization (IMO)’s annual operational carbon intensity index (CII) rating requires that from 1 January 2023 all applicable ships meet both technical and operational energy efficiency requirements. In this paper we conduct a comparative study of different alternative fuel options based on a CII model from the perspective of shipowners. The advantages and disadvantages of alternative fuel options such as liquefied natural gas (LNG) methanol ammonia and hydrogen are presented. A numerical example using data from three China Ocean Shipping (Group) shipping lines is analyzed. It was found that the overall attained CII of different ship types showed a decreasing trend with the increase of the ship’s deadweight tonnage. A larger ship size choice can obtain better carbon emission reduction for the carbon emission reduction investment program using alternative fuels. The recommended options of using LNG fuel and zero-carbon fuel (ammonia and hydrogen) on Route 1 and Route 3 during the study period were analyzed for the shipowners. Carbon reduction scenarios using low-carbon fuels (LNG and methanol) and zero-carbon fuels (ammonia and hydrogen) on Route 2 are in line with IMO requirements for CII.
Evaluating the Offshore Wind Business Case and Green Hydrogen Production: A Case Study of a Future North Sea Offshore Grid
Jun 2024
Publication
The European Union aims to increase its climate ambition and achieve climate neutrality by 2050. This necessitates expanding offshore wind energy and green hydrogen production especially for hard-to-abate industrial sectors. A study examines the impact of green hydrogen on offshore wind projects specifically focusing on a potential future North Sea offshore grid. The study utilizes data from the TYNDP 2020 Global Ambition scenario 2040 considering several European countries. It aims to assess new transmission and generation capacity utilization and understand the influencing factors. The findings show that incorporating green hydrogen production increases offshore wind utilization and capture prices. The study estimates that by 2040 the levelized cost of hydrogen could potentially decrease to e1.2-1.6/kg H2 assuming low-cost electricity supply and declining capital costs of electrolysers. These results demonstrate the potential benefits and cost reductions of integrating green hydrogen production into North Sea offshore wind projects.
Advancing Renewable Energy: Strategic Modeling and Optimization of Flywheel and Hydrogen-based Energy System
Sep 2024
Publication
This study introduces a hybrid energy storage system that combines advanced flywheel technology with hydrogen fuel cells and electrolyzers to address the variability inherent in renewable energy sources like solar and wind. Flywheels provide quick energy dispatch to meet peak demand while hydrogen fuel cells offer sustained power over extended periods. The research explores the strategic integration of these technologies within a hybrid photovoltaic (PV)-flywheel‑hydrogen framework aiming to stabilize the power supply. To evaluate the impact of flywheel integration on system sizing and load fluctuations simulations were conducted both before and after the flywheel integration. The inclusion of the flywheel resulted in a more balanced energy production and consumption profile across different seasons notably reducing the required fuel cell capacity from 100 kW to 30 kW. Additionally the integration significantly enhanced system stability enabling the fuel cell and electrolyzer to operate at consistent power during load fluctuations. The system achieved efficiencies of 71.42 % for the PEM electrolyzer and 62.14 % for the PEM fuel cell. However the introduction of the flywheel requires a higher capacity of PV modules and a larger electrolyzer. The overall flywheel's efficiency was impacted by parasitic energy losses resulting in an overall efficiency of 46.41 %. The minimum efficiency observed across various scenarios of the model studied was 3.14 % highlighting the importance of considering these losses in the overall system design. Despite these challenges the hybrid model demonstrated a substantial improvement in the reliability and stability of renewable energy systems effectively bridging short-term and long-term energy storage solutions.
Brief Review of Hydrocarbon-reforming Catalysts Map for Hydrogen Production
Jun 2023
Publication
Hydrogen energy the cleanest fuel presents extensive applications in renewable energy technologies such as fuel cells. However the transition process from carbon-based (fossil fuel) energy to desired hydrogen energy is usually hindered by inevitable scientific technological and economic obstacles which mainly involves complex hydrocarbon reforming reactions. Hence this paper provides a systematic and comprehensive analysis focusing on the hydrocarbon reforming mechanism. Accordingly recent related studies are summarized to clarify the intrinsic difference among the reforming mechanism. Aiming to objectively assess the activated catalyst and deactivation mechanism the rate-determining steps of reforming process have been emphasized summarized and analyzed. Specifically the effect of metals and supports on individual reaction processes is discussed followed by the metalsupport interaction. Current tendency and research map could be established to promote the technology development and expansion of hydrocarbon reforming field. This review could be considered as the guideline for academics and industry designing appropriate catalysts.
Freshwater Supply for Hydrogen Production: An Underestimated Challenges
Jun 2024
Publication
This paper presents a thorough critical literature review aimed at understanding the challenges associated with freshwater supply associated with rapidly growing global hydrogen economies. The review has been prompted by the fact that the hydrogen production projected for 2030 will create at least an additional demand of 2.1 billion cubic meters for freshwater which needs to be addressed to support sustainable development of emerging hydrogen economies. The key solutions explored by this study include seawater and wastewater treatment methods for large-scale freshwater generation along with the newly introduced technique of direct seawater-fed electrolysis. Prior research indicates that desalination technologies including reverse osmosis and membrane distillation also offer promising avenues for large-scale freshwater production at costs comparable to other desalination techniques. Additionally low-temperature desalination methods such as membrane distillation could play a significant role in freshwater production for electrolysis underscoring the importance of exploring waste recovery opportunities within the system (e.g. fuel cell heat recovery). This review also identifies research gaps that need to be addressed to overcome freshwater supply challenges and enhance the sustainability and techno-economic viability of large-scale hydrogen energy systems.
Prospects of Low and Zero-carbon Renewable Fuels in 1.5-degree Net Zero Emission Actualisation by 2050: A Critical Review
Sep 2022
Publication
The Paris Climate Agreement seeks to keep global temperature increases under 2° Celsius ideally 1.5° Celsius. This goal necessitates significant emission reductions. By 2030 emissions are expected to range between 52 and 58 GtCO2e from their 2016 level of approximately 52 GtCO2e. This review paper explores a number of low and zero-carbon renewable fuels such as hydrogen green ammonia green methanol biomethane natural gas and synthetic methane (with natural gas and synthetic methane subject to CCUS both at processing and at final use) as alternative solutions for providing a way to rebalance transition paths in order to achieve the goals of the Paris Agreement while also reaping the benefits of other sustainability targets. The results show renewables will need to account for approximately 90% of total electricity generation by 2050 and approximately 25% of non-electric energy usage in buildings and industry. However low and zero-carbon renewable fuels currently only contributes about 15% to the global energy shares and it will take about 10% more capacity to reach the 2050 goal. The transportation industry will need to take important steps toward energy efficiency and fuel switching in order to achieve the 20% emission reduction. Therefore significant new commitments to efficient low-carbon alternatives will be necessary to make this enormous change. According to this paper investing in energy efficiency and lowcarbon alternative energy must rise by a factor of about five by 2050 in comparison to 2015 levels if the 1.5 °C target is to be realised.
New Flow Simulation Framework for Underground Hydrogen Storage Modelling Considering Microbial and Geochemical Reactions
Jul 2025
Publication
The widespread use of hydrogen as an energy source relies on efficient large-scale storage techniques. Underground Hydrogen Storage (UHS) is a promising solution to balance the gap between renewable energy production and constant energy demand. UHS employs geological structures like salt caverns depleted reservoirs or aquifers for hydrogen storage enabling long-term and scalable storage capacity. Therefore robust and reliable predictive tools are essential to assess the risks associated with geological hydrogen storage. This paper presents a novel reactive transport model called “Underground Gas Flow simulAtions with Coupled bio-geochemical reacTions” or “UGFACT” designed for various gas injection processes accounting for geochemical and microbial reactions. The flow module and geochemical reactions in the UGFACT model were verified against two commercial reservoir simulators E300 and CMG-GEM showing excellent agreement in fluid flow variables and geochemical behaviour. A major step forward of this model is to integrate flow dynamics geochemical reactions and microbial activity. UGFACT was used to conduct a simple storage cycle in a 1D geometry across three different reservoirs each with different mineralogies and water compositions: Bentheimer sandstone Berea sandstone and Grey Berea sandstone under three microbial conditions (“No Reaction” “Moderate Rate” “High Rate”). The findings suggest that Bentheimer sandstone and Berea sandstone sites may experience severe effects from ongoing microbial and geochemical reactions whereas Grey Berea sandstone shows no significant H2 loss. Additionally the model predicts that under the high-rate microbial conditions the hydrogen consumption rate can reach to as much as 11 mmol of H2 per kilogram of water per day (mmol / kg⋅day) driven by methanogenesis and acetogenesis.
Hydrogen Underground Storage in Silica-Clay Shales: Experimental and Density Functional Theory Investigation
Nov 2023
Publication
In the context of reducing the global emissions of greenhouse gaseshydrogen (H2) has become an attractive alternative to substitute the current fossil fuels.However its properties seasonal fluctuations and the lack of extended energy stabilitymade it extremely difficult to be economically and safely stored for a long term in recentyears. Therefore this paper investigated the potential of shale gas reservoirs (rich andlow clay−rich silica minerals) to store hydrogen upon demand. Density functional theorymolecular simulation was employed to explore hydrogen adsorption on the silica−kaolinite interface and the physisorption of hydrogen on the shale surface is revealed.This is supported by low adsorption energies on different adsorption configurations(0.01 to −0.21 eV) and the lack of charge transfer showed by Bader charge analysis.Moreover the experimental investigation was employed to consider the temperature(50−100 °C) and pressure (up to 20 bar) impact on hydrogen uptake on Midra shalespecifically palygorskite (100%) which is rich in silicate clay minerals (58.83% SiO2).The results showed that these formations do not chemically or physically maintainhydrogen; hence hydrogen can be reversibly stored. The results highlight the potential of shale gas reservoirs to store hydrogen asno hydrogen is adsorbed on the shale surface so there will be no hydrogen loss and no adverse effect on the shale’s structuralintegrity and it can be safely stored in shale reservoirs and recovered upon demand.
Gas Leak Detection Using Acoustics and Artificial Intelligence
Sep 2023
Publication
Gas leak detection on a production site is a major challenge for the safety and health of workers for environmental considerations and from an economic point of view. In addition flammable gas leaks are a safety risk because if ignited they can cause serious fires or explosions. For these reasons Acoem Metravib in collaboration with TotalEnergies One Tech R&D Safety has developed for the past four years a system called AGLED for the early detection localization and classification of such leaks exploiting acoustics and artificial intelligence driven by physics. Numerous tests have been conducted on a theater representative of gas production facilities created by TotalEnergies in Lacq (France) to build a robust learning database of leaks varying in flowrates exhaust diameters and also types (hole nozzle flange...). Moreover to limit the number of false alarms a relearning strategy has been implemented to handle unexpected disturbances (wildlife human activities meteorological events...). The presented paper describes the global architecture of the system from noise acquisition to the gas leak probability and coordinates. It gives a more in-depth look at the relearning algorithm and its performance in various environments. Finally thanks to a complementary collaboration with Air Liquide an example of test campaign in a real industrial environment is presented with an emphasis on the improvement obtained through relearning.
A Review of Electrolyzer-based Systems Providing Grid Ancillary Service: Current Status, Market, Challenges and Future Directions
Feb 2024
Publication
Concerns related to climate change have shifted global attention towards advanced sustainable and decarbonized energy systems. While renewable resources such as wind and solar energy offer environmentally friendly alternatives their inherent variability and intermittency present significant challenges to grid stability and reliability. The integration of renewable energy sources requires innovative solutions to effectively balance supply and demand in the electricity grid. This review explores the critical role of electrolyzer systems in addressing these challenges by providing ancillary services to modern electricity grids. Electrolyzers traditionally used only for hydrogen production have now emerged as versatile tools capable of responding quickly to grid load variations. They can consume electricity during excess periods or when integrated with fuel cells generate electricity during peak demand contributing to grid stability. Therefore electrolyzer systems can fulfill the dual function of producing hydrogen for the end-user and offering grid balancing services ensuring greater economic feasibility. This review paper aims to provide a comprehensive view of the electrolyzer systems’ role in the provision of ancillary services including frequency control voltage control congestion management and black start. The technical aspects market projects challenges and future prospects of using electrolyzers to provide ancillary services in modern energy systems are explored.
Experimental Study on the Ignition of Hydrogen Containing Atmospheres by Mechanical Impacts
Sep 2023
Publication
In international regulations on explosion protection mechanical friction impact or abrasion is usually named as one of 13 ignition sources that must be avoided in hazardous zones with explosive atmospheres. In different studies it is even identified as one of the most frequent ignition sources in practice. The effectiveness of mechanical impacts as ignition source is dependent from several parameters including the minimum ignition energy of the explosive atmosphere the properties of the material pairing the kinetic impact energy or the impact velocity. By now there is no standard procedure to determine the effectiveness of mechanical impacts as ignition source. In some previous works test procedures with poor reproducibility or undefined kinetic impact energy were applied for this purpose. In other works only homogeneous material pairings were considered. In this work the effectiveness of mechanical impacts with defined and reproducible kinetic impact energy as ignition source for hydrogen containing atmospheres was studied systematically in dependence from the inhomogeneous material pairing considering materials with practical relevance like stainless steel low alloy steel concrete and non-iron-metals. It was found that ignition can be avoided if non-iron metals are used in combination with different metallic materials but in combination with concrete even the impact of non-iron-metals can be an effective ignition source if the kinetic impact energy is not further limited. Moreover the consequence of hydrogen admixture to natural gas on the effectiveness of mechanical impacts as ignition source was studied. In many cases ignition of atmospheres containing natural gas by mechanical impacts is rather unlikely. No influence could be observed for admixtures up to 25% hydrogen and even more. The results are mainly relevant in the context of repurposing the natural gas grid or adding hydrogen to the natural gas grid. Based on the test results it can be evaluated under which circumstances the use of tools made of non-iron-metals or other non-sparking materials can be an effective measure to avoid ignition sources in hazardous zones containing hydrogen for example during maintenance work.
Hydrogen UK Manifesto
Jul 2024
Publication
Hydrogen presents the UK with a substantial opportunity to drive economic growth and secure skilled jobs by leveraging our natural geological and geographical advantages robust supply chain and existing energy expertise. Hydrogen UK’s most recent Economic Impact Assessment estimates that the hydrogen sector in the UK could support approximately 30000 direct jobs and contribute more than £7 billion gross value added annually by 2030. On a global scale the hydrogen market is projected to be worth $2.5 trillion by 2050.
With international competition increasing the UK must act now to capitalise on this potential. These projections are supported by a recognition that hydrogen is one of the key solutions to decarbonising the UK economy complementing other low-carbon solutions such as electrification carbon capture biofuels and energy efficiency. Additionally hydrogen will play a vital role in enhancing the UK’s energy security by storing domestically produced energy to balance intermittent renewable sources like wind and solar. As a critical component of the clean energy transition hydrogen is indispensable to achieving net zero.
As it stands the UK is well placed to capitalise on the hydrogen opportunity and emerge as a global leader. We have made early strides in establishing a framework for hydrogen development with various pilot projects and strategic investments already underway. However the next five years will be critical for the sector as we move from strategy and planning to development and delivery. It is imperative to get the first lowcarbon production projects over the line and into construction as a matter of urgency and then deliver substantial infrastructure development regulatory clarity and sustained financial support to scale-up production and distribution. A new Government presents an opportunity for policymakers to solidify commitments and accelerate the deployment of hydrogen technology ensuring the UK remains competitive in the global race.
Our manifesto outlines policy recommendations for the new UK Government to take across production distribution and storage infrastructure end use applications trade and beyond which will support a thriving British industrial base that creates jobs and growth for British people. To achieve this the UK hydrogen industry calls on policymakers to speed up the deployment of hydrogen through the recommendations set out in this Manifesto.
This report can be found on Hydrogen UK's website.
With international competition increasing the UK must act now to capitalise on this potential. These projections are supported by a recognition that hydrogen is one of the key solutions to decarbonising the UK economy complementing other low-carbon solutions such as electrification carbon capture biofuels and energy efficiency. Additionally hydrogen will play a vital role in enhancing the UK’s energy security by storing domestically produced energy to balance intermittent renewable sources like wind and solar. As a critical component of the clean energy transition hydrogen is indispensable to achieving net zero.
As it stands the UK is well placed to capitalise on the hydrogen opportunity and emerge as a global leader. We have made early strides in establishing a framework for hydrogen development with various pilot projects and strategic investments already underway. However the next five years will be critical for the sector as we move from strategy and planning to development and delivery. It is imperative to get the first lowcarbon production projects over the line and into construction as a matter of urgency and then deliver substantial infrastructure development regulatory clarity and sustained financial support to scale-up production and distribution. A new Government presents an opportunity for policymakers to solidify commitments and accelerate the deployment of hydrogen technology ensuring the UK remains competitive in the global race.
Our manifesto outlines policy recommendations for the new UK Government to take across production distribution and storage infrastructure end use applications trade and beyond which will support a thriving British industrial base that creates jobs and growth for British people. To achieve this the UK hydrogen industry calls on policymakers to speed up the deployment of hydrogen through the recommendations set out in this Manifesto.
This report can be found on Hydrogen UK's website.
Availability Assessment of an Offshore PEM Seawater Electrolysis: A System-level Approach
Jun 2025
Publication
Green hydrogen is gaining prominence as a sustainable fuel to decarbonize hard-to-electrify industries and complement renewable energy growth. Among clean hydrogen production technologies seawater-based PEM electrolysis systems hold substantial promise. However implementing offshore PEM electrolysis systems faces significant challenges in ensuring long-term availability due to technological infancy and harsh environmental conditions. Ensuring safe and reliable operation is therefore critical to advancing global sustainability goals. While existing research has primarily focused on component-level techno-economic feasibility limited attention has been given to system-level safety and availability analysis particularly for offshore renewable-powered seawater-based PEM electrolysis systems. This study addresses this gap by conducting a comprehensive availability analysis of containerized plug-and-play PEM systems in offshore environments. A Bayesian Network model is employed incorporating Fault Tree Analysis and Reliability Block Diagram approaches for failure and availability analysis at the system level. A maintenance decision support tool using Influence diagram is developed to analyse different maintenance planning strategies impact on system availability improvement. A case study incorporating industrial modular PEM model is utilised to analyse the developed model effectiveness. The study identifies 81 availability states with the hydrogen generation subsystem being the most critical to system performance. Comparative analysis shows that applying redundancy across all subsystems improves availability by 18.54% but reduces Expected Utility by 4.94%. The optimal strategy involves redundancy for seawater purification cooling and monitoring subsystems with preventive maintenance for hydrogen generation achieving a maximum EU of 5.29 × 106. This framework supports decision-makers in evaluating system availability under uncertain offshore conditions optimizing maintenance strategies and ensuring resilience for large-scale H2 production.
Geothermal Energy Prospect for Decarbonization, EWF Nexus and Energy Poverty Mitigation in East Africa; The Role of Hydrogen Production
Aug 2023
Publication
The affordability and availability of water and energy have a huge impact on food production. Research has shown that there exists a direct and indirect link between power production and clean water generation. Hence the inclusion/importance given to the energy-water-food (EWF) nexus in the United Nations’ sustainable development goals. Acknowledging the importance of decarbonization to the global future there exists a gap in literature on the development of models that can enhance the EWF nexus reduce energy poverty and achieve 100% renewable energy in the electricity sector. Therefore the technical and economic prospect of geothermal energy for bridging the aforementioned gaps in existing works of literature is presented in this study. The energy poverty/wealthy status of a country has been confirmed to have a significant impact on economic development as economic development is largely reflected in the food-water availability. Ditto this study is focused on the interconnectivity of the EWF nexus while incorporating global decarbonization targets. Geothermal energy is of the utmost significance in East Africa due to its abundant potential and distinctive geological features. Located in the Great Rift Valley the region has an abundance of geothermal reservoirs making it an ideal location for geothermal power generation. This study is novel as a comprehensive assessment framework for energy poverty is developed and innovative models utilizing primarily the geothermal resource in the East African region to mitigate this problem are proposed and analyzed. The role of hydrogen generation from critical excess electricity production is also analyzed. The East Africa region is considered the case study for implementing the models developed. A central renewable energy grid is proposed/modelled to meet the energy demand for seven East African countries namely; Ethiopia Tanzania Uganda Djibouti Comoros Eritrea and Rwanda. This study considers 2030 2040 and 2050 as the timestamp for the implementation of the proposed models. The hybrid mix of the biomass power plant solar photovoltaic (PV) pumped hydro storage system and onshore wind power is considered to furthermore show the potency of renewable energy resources in this region. Results showed that the use of geothermal energy to meet energy demands in the case study will mitigate energy poverty and enhance the region’s EWF.
Enhancing Flexibility in Wind-powered Hydrogen Production Systems through Coordinated Electrolyzer Operation
Jun 2025
Publication
Wind-powered water electrolysis for hydrogen production is a sustainable and environmentally friendly energy technology. However the inherent intermittency and variability of wind power significantly damage the stability and efficiency of the hydrogen production system. To enhance the operational flexibility and system efficiency a novel wind-hydrogen production system is proposed which integrates a new coordination of the conventional alkaline electrolyzers (AEL) and proton exchange membrane electrolyzers (PEMEL) for optimizing the dynamic operation of the system under fluctuating wind power. The developed approach employs variational mode decomposition to classify wind power fluctuations into different frequency components which are then allocated to suitable type of electrolyzers. The configurations of the developed system are optimized using the non-dominated sorting genetic algorithm and the operating scenarios are dynamically analyzed through clustering techniques. Compared to the AEL-only system the proposed system demonstrates significant enhancements with energy efficiency and internal rate of return increased by 5.78% and 10.65% respectively. Meanwhile the coordinated operation extends the continuous operating time of the AEL by 7.08%. The proposed approach enhances the economic viability and operational stability of wind-powered hydrogen production providing a valuable reference for industrial green hydrogen applications.
Economic Impact Assessment for the Hydrogen Sector to 2030
Apr 2024
Publication
Hydrogen is one of the key solutions to decarbonising the UK economy along with other carbon abatement solutions such as electrification CCUS biofuels and energy efficiency. It provides a low carbon alternative to fossil fuels that has many of the same desirable features such as burning with a high temperature flame without producing carbon emissions during combustion. Hydrogen will be particularly valuable in hard-to-decarbonise sectors that have few cost-effective alternatives including elements of industry heavy transport and dispatchable power generation. However it’s use could be much more widespread depending on how costs preferences and policy for different low carbon solutions develop. The Government’s Hydrogen Strategy estimates that based on analysis from the Climate Change Committee (CCC) in 2050 between 20% and 35% of the UK’s final energy demand could be met with low carbon hydrogen1 . While hydrogen provides a promising solution to reducing emissions current deployment of low carbon hydrogen is low with almost all hydrogen in the UK produced from unabated fossil fuels resulting in high emissions. In the UK hydrogen production must meet the Low Carbon Hydrogen Standard (LCHS) to access government support. This is currently set at 20g CO2 e/MJ(LHV) and will ensure that future deployment will deliver significant emissions reductions when switching from fossil fuels2. The period to 2030 will be a critical time for the UK to seize the economic opportunity presented by low carbon hydrogen sector. Internationally increasing attention has been placed on hydrogen as a solution to global emissions. In the USA the Inflation Reduction Act (IRA) has provided fixed rate tax credits of up to $3/kg (£2.4/kgII) for clean hydrogen production3. Closer to home the EU is targeting 10 million tonnes of domestic electrolytic production and an additional 10 million tonnes of electrolytic hydrogen imports by 20304. This will be achieved through a variety of policy levers including an auction for fixed price subsidy support for electrolytic production with a ceiling of €4.5/kg5 (£3.84/kgIII). In the UK Government have set an ambitious target of up to 10 GW of low carbon hydrogen production by 2030 with at least half of this from electrolytic sources6. This will be supported by the Hydrogen Production Business Model (HPBM) a two-way variable CfD which could potentially provide hydrogen for a price as low as the natural gas price7 . As global supply chains investment and skills are in international competition the UK must continue its ambitious hydrogen aspirations to ensure the decarbonisation and economic opportunity presented by low carbon hydrogen is captured. This study estimates the economic impact of the low carbon hydrogen sector in the UK by 2030. The impact is assessed by estimating the costs of hydrogen deployment and applying employment and GVA multipliers to these costs based on historic economic activity. These estimates are broken down by different forms of low carbon hydrogen production and end use as well as the enabling infrastructure required to connect production and demand namely hydrogen networks and storage. Both the employment and GVA are estimated for each of these value chain elements for every year between 2024 and 2030. Employment and economic growth from the hydrogen sector will be created across the UK with many benefits arising in regions that have faced historic underinvestment such as the industrial clusters and Scotland. Beyond the high-level economic benefits estimated in this study the hydrogen sector creates an opportunity for the hundreds of thousands oil and gas sector jobs in the UK to transition to a low carbon alternative.
This report can be found on Hydrogen UK's website.
This report can be found on Hydrogen UK's website.
Conceptual Design and Aerostructural Trade-Offs in HydrogenPowered Strut-Braced Wing Aircraft: Insights into Dry and Wet Ultra-High Aspect Ratio Wings
Jan 2025
Publication
Stringent sustainability goals are set for the next generation of aircraft. A promising novel airframe concept is the ultra-high aspect ratio Strut-Braced Wing (SBW) aircraft. Hydrogen-based concepts are active contenders for sustainable propulsion. The study compares a medium-range Liquid Hydrogen (LH2) to a kerosene-based SBW aircraft designed with the same top-level requirements. For both concepts overall design operating costs and emissions are evaluated using the tool SUAVE. Furthermore aerostructural optimizations are performed for the wing mass of SBW aircraft with and without wing-based fuel tanks. Results show that the main difference in the design point definition results from a higher zero-lift drag due to an extended fuselage housing the LH2 tanks with a small reduction in the required wing loading. Structural mass increases of the LH2 aircraft due to additional tanks and fuselage structure are mostly offset by fuel mass savings. While the fuel mass accounts for nearly 25% of the kerosene design’s Maximum Take-Off Mass (MTOM) this reduces to 10% for the LH2 design. The LH2 aircraft has 16% higher operating costs with emission levels reduced to 57–82% of the kerosene aircraft depending on the LH2 production method. For static loads the absence of fuel acting as bending moment relief in the wing results in an increase in wing structural mass. However the inclusion of roll rate requirements causes large wing mass increases for both concepts significantly outweighing dry wing penalties.
The Case of Renewable Methane by and with Green Hydrogen as the Storage and Transport Medium for Intermittent Wind and Solar PV Energy
May 2024
Publication
Long-duration energy storage is the key challenge facing renewable energy transition in the future of well over 50% and up to 75% of primary energy supply with intermittent solar and wind electricity while up to 25% would come from biomass which requires traditional type storage. To this end chemical energy storage at grid scale in the form of fuel appears to be the ideal option for wind and solar power. Renewable hydrogen is a much-considered fuel along with ammonia. However these fuels are not only difficult to transport over long distances but they would also require totally new and prohibitively expensive infrastructure. On the other hand the existing natural gas pipeline infrastructure in developed economies can not only transmit a mixture of methane with up to 20% hydrogen without modification but it also has more than adequate long-duration storage capacity. This is confirmed by analyzing the energy economies of the USA and Germany both possessing well-developed natural gas transmission and storage systems. It is envisioned that renewable methane will be produced via well-established biological and/or chemical processes reacting green hydrogen with carbon dioxide the latter to be separated ideally from biogas generated via the biological conversion of biomass to biomethane. At the point of utilization of the methane to generate power and a variety of chemicals the released carbon dioxide would be also sequestered. An essentially net zero carbon energy system would be then become operational. The current conversion efficiency of power to hydrogen/methane to power on the order of 40% would limit the penetration of wind and solar power. Conversion efficiencies of over 75% can be attained with the on-going commercialization of solid oxide electrolysis and fuel cells for up to 75% penetration of intermittent renewable power. The proposed hydrogen/methane system would then be widely adopted because it is practical affordable and sustainable.
Two-Stage Anaerobic Digestion for Green Energy Production: A Review
Jan 2025
Publication
Anaerobic digestion (AD) is a biotechnological process in which the microorganisms degrade complex organic matter to simpler components under anaerobic conditions to produce biogas and fertilizer. This process has many environmental benefits such as green energy production organic waste treatment environmental protection and greenhouse gas emissions reduction. It has long been known that the two main species (acidogenic bacteria and methanogenic archaea) in the community of microorganisms in AD differ in many aspects and the optimal conditions for their growth and development are different. Therefore if AD is performed in a single bioreactor (single-phase process) the optimal conditions are selected taking into account the slow-growing methanogens at the expense of fast-growing acidogens affecting the efficiency of the whole process. This has led to the development of two-stage AD (TSAD) in recent years where the processes are divided into a cascade of two separate bioreactors (BRs). It is known that such division of the processes into two consecutive BRs leads to significantly higher energy yields for the two-phase system (H2 + CH4) compared to the traditional single-stage CH4 production process. This review presents the state of the art advantages and disadvantages and some perspectives (based on more than 210 references from 2002 to 2024 and our own studies) including all aspects of TSAD—different parameters’ influences types of bioreactors microbiology mathematical modeling automatic control and energetical considerations on TSAD processes.
No more items...