Institution of Gas Engineers & Managers
GT Enclosure Dispersion Analysis with Different CFD Tools
Sep 2023
Publication
A gas turbine is usually installed inside an acoustic enclosure where the fuel gas supply system is also placed. It is common practice using CFD analysis to simulate the accidental fuel gas release inside the enclosure and the consequent dispersion. These numerical studies are used to properly design the gas detection system according to specific safety criteria which are well defined when the fuel gas is a conventional natural gas. Package design is done to prevent that any sparking items and hot surfaces higher than auto-ignition temperature could be a source of ignition in case of leak. Nevertheless it is not possible to exclude that a leakage from a theoretical point of view could be ignited and for this reason a robust design requires that the enclosure structure is able to withstand the overpressure generated by a gas cloud ignition. Moving to hydrogen as fuel gas makes this design constraint much more relevant for its known characteristics of reactiveness large range of flammability maximum burning velocity etc. In such context gas leak and dispersion analysis become even more crucial because a correct prediction of these scenarios can guide the design to a safe configuration. The present work shows a comparison of the dispersion of different leakages inside a gas turbine enclosure carried out with two different CFD tools Ansys CFX and FLACS. This verification is considered essential since dispersion analysis results are used as initial conditions for gas cloud ignition simulations strictly necessary to predict the consequence in term of overpressure without doing experimental tests.
Applicability of Hydrogen Fuel for a Cruise Ship
Jan 2025
Publication
Cruise ships function as a means of transport while simultaneously accommodating thousands of guests providing a holiday experience with various entertainment options. This translates to high energy requirements for propulsion and hotel operations typically covered by the combustion of fossil fuels. The operation of cruise vessels with fossil fuels contributes to carbon dioxide and also local harmful emissions in ports when shore power connections are not available. To enable cleaner and sustainable cruising alternative technologies and fuels must be adopted. The present study evaluated the applicability of hydrogen fuel in combustion engines in a Meraviglia-class cruise ship. The fuel consumption of the ship was based on a real operation in Europe. This study examined how fuel energy in the form of LH2 could be stored on the ship for a European cruise route and concludes that 3700 m3 of storage space would be needed to accommodate the liquid hydrogen. The mass of the LH2 would only be one-third of that of fossil fuels but the weight of the LH2 tanks would most likely increase the total weight of the hydrogen storage. Additional new technologies and combined power production could significantly reduce the amount of LH2 to be stored.
High-pressure Gaseous Hydrogen Permeation Test Method - Property of Polymeric Materials for High-pressure Hydrogen Devices
Aug 2020
Publication
Polymeric materials are widely used in hydrogen energy system such as FCEV and hydrogen refueling stations under high-pressure condition. The permeation property (coefficients of permeation diffusion and solubility) of polymers under high-pressure hydrogen condition should be discussed as parameters to develop those devices. Also the property should be determined to understand influence of the compression by the pressure on polymer materials. A device which can measure gas permeation property of polymer materials accurately in equilibrium state under high-pressure environment is developed and the reliability of the measurements is ensured. High-pressure hydrogen gas permeability characteristics up to 100 MPa are measured for high-density polyethylene. An advantage of the method is discussed comparing with the non-equilibrium state method focusing on the hydrostatic pressure effect. Deterioration of hydrogen permeability is observed along with the decrease of diffusion coefficient which is supposedly affected by hydrostatic compression effect with the increase of environment pressure.
Hydrogen Leakage Location Prediction in a Fuel Cell System of Skid-Mounted Hydrogen Refueling Stations
Jan 2025
Publication
Hydrogen safety is a critical issue during the construction and development of the hydrogen energy industry. Hydrogen refueling stations play a pivotal role in the hydrogen energy chain. In the event of an accidental hydrogen leak at a hydrogen refueling station the ability to quickly predict the leakage location is crucial for taking immediate and effective measures to prevent disastrous consequences. Therefore the development of precise and efficient technologies to predict leakage locations is vital for the safe and stable operation of hydrogen refueling stations. This paper studied the localization technology of high-risk leakage locations in the fuel cell system of a skid-mounted hydrogen refueling station. The hydrogen leakage and diffusion processes in the fuel cell system were predicted using CFD simulations and the hydrogen concentration data at various monitoring points were obtained. Then a multilayer feedforward neural network was developed to predict leakage locations using simulated concentration data as training samples. After multiple adjustments to the network structure and hyperparameters a final model with two hidden layers was selected. Each hidden layer consisted of 10 neurons. The hyperparameters included a learning rate of 0.0001 a batch size of 32 and 10-fold cross-validation. The Softmax classifier and Adam optimizer were used with a training set for 1500 epochs. The results show that the algorithm can predict leakage locations not included in the training set. The accuracy achieved by the model was 95%. This approach addresses the limitations of sensor detection in accurately locating leaks and mitigates the risks associated with manual inspections. This paper provides a feasible method for locating hydrogen leakage in hydrogen energy application scenarios.
Reversible Solid Oxide Cells Applications to the Building Sector
Apr 2023
Publication
Hydrogen can manage intermittent Renewable Energy Sources (RES) especially in high-RES share systems. The energy transition calls for mature low cost low space solutions bringing the attention to unitized items such as the reversible Solid Oxide Cell (rSOC). This device made of a single unit can work as an electrolyzer and as fuel cell with high efficiency fuel flexibility and producing combined heat. The objective of this review is to identify and classify rSOC applications to the building sector as an effective solution and to show how much this technology is near to its commercialisation. Research & Development projects were analysed and discussed for a comprehensive overview. Conclusions show an increasing interest in the reversible technology although it is still at pre industrialisation stage with few real applications in the building sector of which the majority is reported commented and compared in this paper for the first time.
Key Influencing Factors on Hydrogen Storage and Transportation Costs: A Systematic Literature Review
Jan 2025
Publication
Cost-effective hydrogen supply chains are crucial for accelerating hydrogen deployment and decarbonizing economies with the storage and transportation sectors representing major challenges. This study presents a systematic literature review of 81 papers to identify and analyze the main influencing factors on hydrogen storage and transportation costs with the aim of improving transparency across the hydrogen supply chain. The review identifies and assesses 25 technical nine economic and two environmental factors highlighting capital expenditure and capacity of storage and transport facilities as the primary drivers of storage and transportation costs. Furthermore transport distance for trucks and ships as well as the discount rate for pipelines are iden tified as additional critical cost-determining factors for the transportation sector.
Water Requirements for Hydrogen Production: Assessing Future Demand and Impacts on Texas Water Resources
Jan 2025
Publication
Hydrogen is emerging as a critical component in the global energy transition providing a low-carbon alternative for sectors such as industry and transportation. This paper aims to comprehensively address water usage in hydrogen production by exploring the water demands of different production methods and their implications for water management particularly in Texas. Key variables influencing water consumption are identified and potential water demands under different hydrogen market scenarios are estimated. Using spatial analysis regions where hydrogen production may stress local water resources are identified alongside policy recommendations for sustainable water use.
A Review of Hydrogen Production Methods and Power Electronics Converter Topologies for Green Hydrogen Applications
Nov 2024
Publication
Hydrogen has been receiving a lot of attention in the last few years since it is seen as a viable yet not thoroughly dissected alternative for addressing climate change issues namely in terms of energy storage and therefore great investments have been made towards research and development in this area. In this context a study about the main options for hydrogen production along with the analysis of a variety of the main power electronics converter topologies for such applications is presented as the purpose of this paper. Much of the analyzed available literature only discusses a few types of hydrogen production methods so it becomes crucial to include an analysis of all known types of methods for producing hydrogen according to their production type along with the color code associated with each type and highlighting the respective contextualization as well as advantages and disadvantages. Regarding the topologies of power electronics converters most suitable for hydrogen production and more specifically for green hydrogen production a list of them was analyzed through the available literature and a discussion of their advantages and disadvantages is presented. These topologies present the advantage of having a low ripple current output which is a requirement for the production of hydrogen.
The UK Hydrogen Innovation Opportunity: Sectors and Scenarios
Sep 2024
Publication
This report explores how hydrogen could be taken up in the UK and how this in turn translates to each sector from both global and UK perspectives to understand the practical implications of global and UK targets and projections on hydrogen innovation opportunities:
♦ Assessing demand for hydrogen sets out the context and the approach taken in the assessment of global and UK sector hydrogen needs including the development of specific UK scenarios for hydrogen deployment and innovation across the energy system and supply chain.
♦ Key insights discusses the insights and an overview of the outputs from the implementation of the UK deployment scenarios in whole energy system modelling.
♦ Hydrogen production storage and distribution and demand explore these areas in more detail setting out the current state and potential trajectories for hydrogen in each sector both globally and in the UK up to 2050.
This report can also be downloaded free on the Hydrogen Innovation Initative website.
♦ Assessing demand for hydrogen sets out the context and the approach taken in the assessment of global and UK sector hydrogen needs including the development of specific UK scenarios for hydrogen deployment and innovation across the energy system and supply chain.
♦ Key insights discusses the insights and an overview of the outputs from the implementation of the UK deployment scenarios in whole energy system modelling.
♦ Hydrogen production storage and distribution and demand explore these areas in more detail setting out the current state and potential trajectories for hydrogen in each sector both globally and in the UK up to 2050.
This report can also be downloaded free on the Hydrogen Innovation Initative website.
Optimization Research on a Novel Community Integrated Energy System Based on Solar Energy Utilization and Energy Storage
Feb 2025
Publication
Integrated energy systems (IESs) are essential for enabling the energy transition in communities and reducing CO2 emissions. This paper proposes a novel IES that combines photovoltaic (PV) and solar thermal energy with coordinated electrical and thermal energy storage to meet the energy demands of residential communities. The system also incorporates hydrogen production for fuel cell vehicles. A dual-objective optimization model was developed minimizing both economic costs and CO2 emissions. The system’s performance was evaluated using data from a case study in Dalian which showed that the IES successfully reduced the annual total cost and CO2 emissions compared to conventional systems. The key findings showed that PV electrolysis for hydrogen production provides both economic and environmental advantages. The system’s integration of solar thermal energy offers higher economic efficiency while PV energy supplies enhance coordination. Additionally carbon trading prices effectively reduce emissions but excessively high prices do not always lead to better emission outcomes. This study introduces a comprehensive multi-energy approach for optimizing the energy supply contributing novel insights to the field of sustainable energy systems.
Spray Characterization of Direct Hydrogen Injection as a Green Fuel with Lower Emissions
May 2024
Publication
A viable green energy source for heavy industries and transportation is hydrogen. The internal combustion engine (ICE) when powered by hydrogen offers an economical and adaptable way to quickly decarbonize the transportation industry. In general two techniques are used to inject hydrogen into the ICE combustion chamber: port injection and direct injection. The present work examined direct injection technology highlighting the need to understand and manage hydrogen mixing within an ICE’s combustion chamber. Before combusting hydrogen it is critical to study its propagation and mixture behavior just immediately before burning. For this purpose the DI-CHG.2 direct injector model by BorgWarner was used. This injector operated at 35 barG and 20 barG as maximum and minimum upstream pressures respectively; a 5.8 g/s flow rate; and a maximum tip nozzle temperature of 250 ◦C. Experiments were performed using a high-pressure and hightemperature visualization vessel available at our facility. The combustion mixture prior to burning (spray) was visually controlled by the single-pass high-speed Schlieren technique. Images were used to study the spray penetration (S) and spray volume (V). Several parameters were considered to perform the experiments such as the injection pressure (Pinj) chamber temperature (Tch) and the injection energizing time (Tinj). With pressure ratio and injection time being the parameters commonly used in jet characterization the addition of temperature formed a more comprehensive group of parameters that should generally aid in the characterization of this type of gas jets as well as the understanding of the combined effect of the rate of injection on the overall outcome. It was observed that the increase in injection pressure (Pinj) increased the spray penetration depth and its calculated volume as well as the amount of mass injected inside the chamber according to the ROI results; furthermore it was also observed that with a pressure difference of 20 bar (the minimum required for the proper functioning of the injector used) cyclic variability increased. The variation in temperature inside the chamber had less of an impact on the spray shape and its penetration; instead it determined the velocity at which the spray reached its maximum length. In addition the injection energizing time had no effect on the spray penetration.
H2 Transport in Sedimentary Basin
Aug 2025
Publication
Natural hydrogen is generated by fairly deep processes and/or in low-permeability rocks. In such contexts fluids circulate mainly through the network of faults and fractures. However hydrogen flows from these hydrogen-generating layers can reach sedimentary rocks with more typical permeability and porosity allowing H2 flows to spread out rather than be concentrated in fractures. In that case three different H2 transport modes exist: advection (displacement of water carrying dissolved gas) diffusion and free gas Darcy flow. Numerical models have been run to compare the efficiency of these different modes and the pathway they imply for the H2 in a sedimentary basin with active aquifers. The results show the key roles of these aquifers but also the competition between free gas flow and the dissolved gas displacement which can go in opposite directions. Even with a conservative hypothesis on the H2 charge a gaseous phase exists at few kilometers deep as well as free gas accumulation. Gaseous phase displacement could be the faster and diffusion is neglectable. The modeling also allows us to predict where H2 is expected in the soil: in fault zones eventually above accumulations and more likely due to exsolution above shallow aquifers.
Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future
Aug 2024
Publication
In recent years global efforts towards a future with sustainable energy have intensified the development of renewable energy sources (RESs) such as offshore wind solar photovoltaics (PVs) hydro and geothermal. Concurrently green hydrogen produced via water electrolysis using these RESs has been recognized as a promising solution to decarbonizing traditionally hard-to-abate sectors. Furthermore hydrogen storage provides a long-duration energy storage approach to managing the intermittency of RESs which ensures a reliable and stable electricity supply and supports electric grid operations with ancillary services like frequency and voltage regulation. Despite significant progress the hydrogen economy remains nascent with ongoing developments and persistent uncertainties in economic technological and regulatory aspects. This paper provides a comprehensive review of the green hydrogen value chain encompassing production transportation logistics storage methodologies and end-use applications while identifying key research gaps. Particular emphasis is placed on the integration of green hydrogen into both grid-connected and islanded systems with a focus on operational strategies to enhance grid resilience and efficiency over both the long and short terms. Moreover this paper draws on global case studies from pioneering green hydrogen projects to inform strategies that can accelerate the adoption and large-scale deployment of green hydrogen technologies across diverse sectors and geographies.
Low-Carbon Industrial Heating in the EU and UK: Integrating Waste Heat Recovery, High-Temperature Heat Pumps, and Hydrogen Technologies
Aug 2025
Publication
This research introduces a two-stage low-carbon industrial heating process leveraging advanced waste heat recovery (WHR) technologies and exploiting waste heat (WH) to drive decentralised hydrogen production. This study is supported by a data-driven analysis of individual technologies followed by 0D modelling of the integrated system for technical and feasibility assessment. Within 10 years the EU industry will be supported by two main strategies to transition to low-carbon energy: (a) shifting from grid-mix electricity towards fully renewable sources and (b) expanding low-carbon hydrogen infrastructure within industrial clusters. On the demand side process heating in the industrial sector accounts for 70% of total energy consumption in industry. Almost one-fifth of the energy consumed to fulfil the process heat demand is lost as waste. The proposed heating solution is tailored for process heat in industry and stands apart from the dual-mode residential heating system (i.e. heat pump and gas boiler) as it is based on integrated and simultaneous operation to meet industry-level reliability at higher temperatures focusing on WHR and low-carbon hydrogen. The solution uses a cascaded heating approach. Low- and medium-temperature WH are exploited to drive high-temperature heat pumps (HTHPs) followed by hydrogen burners fuelled by hydrogen generated on-site by electrolysers which are powered by advanced WHR technologies. The results revealed that the deployment of the solution at scale could fulfil ~14% of the process heat demand in EU/UK industries by 2035. Moreover with further availability of renewable energy sources and clean hydrogen it could have a higher contribution to the total process heat demand as a low-carbon solution. The economic analysis estimates that adopting the combined heating solution—benefiting from the full capacity of WHR for the HTHP and on-site hydrogen production—would result in a levelised cost of heat of ~EUR 84/MWh which is lower than that of full electrification of industrial heating in 2035.
A Design Guide to Tapered Conformable Pressure Tanks for Liquid Hydrogen Storage
Feb 2025
Publication
Liquid hydrogen has the potential to significantly reduce in-flight carbon emissions in the aviation industry. Among the most promising aircraft configurations for future hydrogen-powered aviation are the blended wing body and the pure flying wing configurations. However their tapered and flattened airframe designs pose a challenge in accommodating liquid hydrogen storage tanks. This paper presents a design guide to tapered conformable pressure tanks for liquid hydrogen storage. The proposed tank configurations feature a multi-bubble layout and are subject to low internal differential pressure. The objective is to provide tank designers with simple geometric rules and practical guidelines to simplify the design process of tapered multi-bubble pressure tanks. Various tank configurations are discussed starting with a simple tapered two-bubble tank and advancing to more complex tapered configurations with a multi-segment and multi-bubble layout. A comprehensive design methodology is established providing tank designers with a step-by-step design procedure and highlighting the practical guidelines in each step of the design process.
Investigating PEM Fuel Cells as an Alternative Power Source for Electric UAVs: Modeling, Optimization, and Performance Analysis
Sep 2024
Publication
Unmanned aerial vehicles (UAVs) have become an integral part of modern life serving both civilian and military applications across various sectors. However existing power supply systems such as batteries often fail to provide stable long-duration flights limiting their applications. Previous studies have primarily focused on battery-based power which offers limited flight endurance due to lower energy densities and higher system mass. Proton exchange membrane (PEM) fuel cells present a promising alternative providing high power and efficiency without noise vibrations or greenhouse gas emissions. Due to hydrogen’s high specific energy which is substantially higher than that of combustion engines and battery-based alternatives UAV operational time can be significantly extended. This paper investigates the potential of PEM fuel cells as an alternative power source for electric propulsion in UAVs. This study introduces an adaptive fully functioning PEM fuel cell model developed using a reduced-order modeling approach and optimized for UAV applications. This research demonstrates that PEM fuel cells can effectively double the flight endurance of UAVs compared to traditional battery systems achieving energy densities of around 1700 Wh/kg versus 150–250 Wh/kg for batteries. Despite a slight increase in system mass fuel cells enable significantly longer UAV operations. The scope of this study encompasses the comparison of battery-based and fuel cell-based propulsion systems in terms of power mass and flight endurance. This paper identifies the limitations and optimal applications for fuel cells providing strong evidence for their use in UAVs where extended flight time and efficiency are critical.
Diffusible Hydrogen Behavior and Delayed Fracture of Cold Rolled Martensitic Steel in Consideration of Automotive Manufacturing Process and Vehicle Service Environment
Oct 2020
Publication
This study aims to elucidate the behavior of diffusible hydrogen and delayed fracture in martensitic steel with 1500 MPa strength during automotive painting process and under vehicle service conditions. A sequential process of automotive pretreatment line and vehicle service environment is simulated to evaluate the hydrogen pick up in each process. In case of the automotive painting line the absorption of hydrogen is within the common range in the process of phosphating treatment and electrodeposition. The baking process plays an effective role for desorbing the diffusible hydrogen absorbed during the automotive pre-treatment such as zinc-phosphating and electrodeposition process. In case of the corrosion environment under the automotive driving conditions hydrogen induced delayed fracture is accelerated as the exposure time increases. Further it is clarified that severe plastic deformation are the significant factors for hydrogen induced delayed fracture under with low pH value and present of chloride ion in a chemical solution parameter. In summary hydrogen is transported constantly during electrodeposition sequential line process of automobile manufacturing below the hydrogen content of 0.5 ppm which is not critical value for leading to hydrogen delayed fracture based on results of slow strain rate tensile tests. However exposure to extreme conditions under service environment of vehicle such as acidic solution and chloride chemistry solution that result in high level of hydrogen absorption severe plastic deformation in the sheared edge and constantly applied internal or external stresses can cause the hydrogen induced delayed fracture in the fully martensitic steels.
Essentials of Hydrogen Storage and Power Systems for Green Shipping
Jan 2025
Publication
This paper establishes a framework of boundary conditions for implementing hydrogen energy systems in ships identifying what is feasible within maritime constraints. To support a comprehensive understanding of hydrogen systems onboard vessels an extensive technical review of hydrogen storage and power systems is provided covering the entire power value chain. Key aspects include equipment arrangement integration of fuel cell powertrain and presentation of the complete storage system in compliance with regulations. Engineering considerations such as material selection and insulation equipment specifications (e.g. pressure relief valves and hydrogen purity) and system configurations are analysed. Key findings reveal that fuel cells must achieve operational lifespans exceeding 46000 h to be viable for maritime applications. Additionally reliance solely on volumetric energy density underestimates storage needs necessitating provisions for cofferdams ullage space tank heels and hydrogen conditioning areas. Regulatory gaps are identified including inadequate safety provisions and inappropriate material guidelines.
A Perspective on Low-Temperature Water Electrolysis - Challenges in Alkaline and Acidic Technology
Dec 2017
Publication
Water electrolysis is considered as an important technology for an increased renewable energy penetration. This perspective on low-temperature water electrolysis joins the dots between the interdisciplinary fields of fundamental science describing physicochemical processes engineering for the targeted design of cell components and the development of operation strategies. Within this aim the mechanisms of ion conduction gas diffusion corrosion and electrocatalysis are reviewed and their influence on the optimum design of separators electrocatalysts electrodes and other cell components are discussed. Electrocatalysts for the water splitting reactions and metals for system components are critically accessed towards their stability and functionality. On the basis of the broad scientific analysis provided challenges for the design of water electrolyzers are elucidated with special regard to the alkaline or acidic media of the electrolyte.
Great Britain's Hydrogen Infrastructure Development - Investment Priorities and Locational Flexibility
Aug 2024
Publication
Future pathways for Great Britain’s energy system decarbonization have highlighted the importance of lowcarbon hydrogen as an energy carrier and demand flexibility support. However the potential application within various sectors (heating industry transport) and production capacity through different technologies (methane reformation with carbon capture biomass gasification electrolysis) is highly varying introducing substantial uncertainties for hydrogen infrastructure development. This study sets out infrastructure priorities and identifies locational flexibility for hydrogen supply and demand options. Advances on limitations of previous research are made by developing an open-source model of the hydrogen system of Great Britain based on three Net Zero scenarios set out by National Grid in their Future Energy Scenarios in high temporal and spatial resolution. The model comprehensively covers demand sectors and supply options in addition to extending the locational considerations of the Future Energy Scenarios. This study recommends prioritizing the establishment of green hydrogen hubs in the near-term aligning with demands for synthetic fuels production industry and power which can facilitate the subsequent roll out of up to 10GW of hydrogen production capacity by 2050. The analysis quantifies a high proportion of hydrogen supply and demand which can be located flexibly.
No more items...