Publications
Power Converters for Green Hydrogen: State of the Art and Perspectives
Nov 2024
Publication
This paper provides a comprehensive review and outlook on power converters devised for supplying polymer electrolyte membrane (PEM) electrolyzers from photovoltaic sources. The produced hydrogen known as green hydrogen is a promising solution to mitigate the dependence on fossil fuels. The main topologies of power conversion systems are discussed and classified; a loss analysis emphasizes the issues concerning the electrolyzer supply. The attention is focused on power converters of rated power up to a tenth of a kW since it is a promising field for a short-term solution implementing green hydrogen production as a decentralized. It is also encouraged by the proliferation of relatively cheap photovoltaic low-power plants. The main converters proposed by the literature in the last few years and realized for practical applications are analyzed highlighting their key characteristics and focusing on the parameters useful for designers. Future perspectives are addressed concerning the availability of new wide-bandgap devices and hard-to-abate sectors with reference to the whole conversion chain.
Dynamic Simulation Optimization of the Hydrogen Liquefaction Process
Jan 2025
Publication
Liquid hydrogen has attracted much attention due to its high energy storage density and suitability for long-distance transportation. An efficient hydrogen liquefaction process is the key to obtaining liquid hydrogen. In an effort to determine the parameter optimization of the hydrogen liquefaction process this paper employed process simulation software Aspen HYSYS to simulate the hydrogen liquefaction process. By establishing a dynamic model of the unit module this study carried out dynamic simulation optimization based on the steady-state process and process parameters of the hydrogen liquefaction process and analyzed the dynamic characteristics of the process. Based on the pressure drop characteristic experiment an equation for the pressure drop in the heat exchanger was proposed. The heat transfer of hydrogen conversion was simulated and analyzed and its accuracy was verified by comparison with the literature. The dynamic simulation of a plate-fin heat exchanger was carried out by coupling heat transfer simulation and the pressure drop experiment. The results show that the increase in inlet temperature (5 C and 10 C) leads to an increase in specific energy consumption (0.65 % and 1.29 % respectively) and a decrease in hydrogen liquefaction rate (0.63 % and 2.88 % respectively). When the inlet pressure decreases by 28.57 % the hydrogen temperature of the whole liquefaction process decreases and the specific energy consumption increases by 52.94 %. The research results are of great significance for improving the operating efficiency of the refrigeration cycle and guiding the actual liquid hydrogen production.
Diverse Decarbonization Pathways under Near Cost-optimal Futures
Sep 2024
Publication
Energy system optimization models offer insights into energy and emissions futures through least-cost optimization. However real-world energy systems often deviate from deterministic scenarios necessitating rigorous uncertainty exploration in macro-energy system modeling. This study uses modeling techniques to generate diverse near cost-optimal net-zero CO2 pathways for the United States’ energy system. Our findings reveal consistent trends across these pathways including rapid expansion of solar and wind power generation substantial petroleum use reductions near elimination of coal combustion and increased end-use electrification. We also observe varying deployment levels for natural gas hydrogen direct air capture of CO2 and synthetic fuels. Notably carbon-captured coal and synthetic fuels exhibit high adoption rates but only in select decarbonization pathways. By analyzing technology adoption correlations we uncover interconnected technologies. These results demonstrate that diverse pathways for decarbonization exist at comparable system-level costs and provide insights into technology portfolios that enable near cost-optimal net-zero CO2 futures.
Optimization of Renewable Energy Supply Chain for Sustainable Hydrogen Energy Production from Plastic Waste
Dec 2023
Publication
Disposing of plastic waste through burial or burning leads to air pollution issues while also contributing to gas emissions and plastic waste spreading underground into seas via springs. Henceforth this research aims at reducing plastic waste volume while simultaneously generating clean energy. Hydrogen energy is a promising fuel source that holds great value for humanity. However achieving clean hydrogen energy poses challenges including high costs and complex production processes especially on a national scale. This research focuses on Iran as a country capable of producing this energy examining the production process along with related challenges and the general supply chain. These challenges encompass selecting appropriate raw materials based on chosen technologies factory capacities storage methods and transportation flow among different provinces of the country. To deal with these challenges a mixed-integer linear programming model is developed to optimize the hydrogen supply chain and make optimal decisions about the mentioned problems. The supply chain model estimates an average cost—IRR 4 million (approximately USD 8)—per kilogram of hydrogen energy that is available in syngas during the initial period; however subsequent periods may see costs decrease to IRR 1 million (approximately USD 2) factoring in return-on-investment rates.
Economic Evaluation and Technoeconomic Resilience Analysis of Two Routes for Hydrogen Production via Indirect Gasification in North Colombia
Nov 2023
Publication
Hydrogen has become a prospective energy carrier for a cleaner more sustainable economy offering carbon-free energy to reduce reliance on fossil fuels and address climate change challenges. However hydrogen production faces significant technological and economic hurdles that must be overcome to reveal its highest potential. This study focused on evaluating the economics and technoeconomic resilience of two large-scale hydrogen production routes from African palm empty fruit bunches (EFB) by indirect gasification. Computer-aided process engineering (CAPE) assessed multiple scenarios to identify bottlenecks and optimize economic performance indicators like gross profits including depreciation after-tax profitability payback period and net present value. Resilience for each route was also assessed considering raw material costs and the market price of hydrogen in relation to gross profits and after-tax profitability. Route 1 achieved a gross profit (DGP) of USD 47.12 million and a profit after taxes (PAT) of USD 28.74 million while Route 2 achieved a DGP of USD 46.53 million and a PAT of USD 28.38 million. The results indicated that Route 2 involving hydrogen production through an indirect gasification reactor with a Selexol solvent unit for carbon dioxide removal demonstrated greater resilience in terms of raw material costs and product selling price.
Modelling the Non-adiabatic Blowdown of Pressurised Cryogenic Hydrogen Storage Tank
Sep 2023
Publication
This paper describes a model of hydrogen blowdown dynamics for storage tanks needed for hydrogen safety engineering to accurately represent incident scenarios. Heat transfer through a tank wall affects the temperature and pressure dynamics inside the storage vessel and therefore the characteristics of the resulting hydrogen jet in case of loss of containment. Available non-adiabatic blowdown models are validated only against experiments on hydrogen storages at ambient temperature. Effect of heat transfer for cryo-compressed hydrogen can be more significant due to a larger temperature difference between the stored hydrogen and surrounding atmosphere especially in case of failure of equipment insulation. Previous work by the authors demonstrated that the heat transfer through a discharge pipe wall can significantly affect the mass flow rate of cryogenic hydrogen releases. To the authors’ knowledge thoroughly validated models of non-adiabatic blowdown dynamics for cryo-compressed hydrogen are currently missing. The present work further develops the non-adiabatic blowdown model at ambient temperature using the under-expanded jet theory developed at Ulster University to expand it to cryo-compressed hydrogen storages. The non-ideal behaviour of cryo-compressed hydrogen is accounted through the high-accuracy Helmholtz energy formulations. The developed model includes effect of heat transfer at both the tank and discharge pipe wall. The model is thoroughly validated against sixteen tests performed by Pro-Science on blowdown of hydrogen storage tanks with initial pressure 0.5-20 MPa and temperature 80-310 K through release nozzle of diameter 0.5-4.0 mm. The model well reproduces the experimental pressure and temperature dynamics during the entire blowdown duration.
Design and Analysis of Hydrogen Storage Tank with Different Materials by Ansys
Dec 2019
Publication
Pressure vessels are used for large commercial and industrial applications such as softening filtration and storage. It is expected that high-pressure hydrogen storage vessels will be widely used in hydrogen-fuelled vehicles. Progressive failure properties the burst pressure and fatigue life should be taken into account in the design of composite pressure vessels. In this work the model and analysis of hydrogen storage vessels along with complete structural and thermal analysis. Liquid hydrogen is seen as an outstanding candidate for the fuel of high altitude long-endurance unmanned aircraft. The design of lightweight and super-insulated storage tanks for cryogenic liquid hydrogen is since long identified as crucial to enable the adoption of the liquid hydrogen. The basic structural design of the airborne cryogenic liquid hydrogen tank was completed in this paper. The problem of excessive heat leakage of the traditional support structure was solved by designing and using a new insulating support structure. The thermal performance of the designed tank was evaluated. The structure of the tank was analyzed by the combination of the film container theory and finite element numerical simulation method. The structure of the adiabatic support was analyzed by using the Hertz contact theory and numerical simulation method. A simple and effective structure analysis method for a similar container structure and point-contact support structure was provided. Bases for further structural optimization design of hydrogen tank will be provided also. The analysis will be carried out with different materials like titanium nickel alloy and some coated powders like alumina Titania and zirconium oxide. The results will be compared with that.
Comparing Sustainable Fuel Adoption in the Energy Transition for Maritime and Aviation Transport
Jul 2025
Publication
Maritime and aviation transport are widely recognised as sectors where reducing greenhouse gas emissions is particularly challenging due to their reliance on energy-dense fuels and the challenges associated with direct electrification. These sectors face increasing pressure to defossilise and reduce emissions in line with global climate goals while simultaneously facing unique technological operational and economic uncertainties. This study addresses a key research gap by comparing the maritime and aviation sectors for common factors and sector-specific differences in their transition to green e-fuels produced from renewable electricity and sustainable CO2. A techno-economic assessment is conducted to evaluate alternative fuel and propulsion options using the levelised cost of mobility framework. The analysis also incorporates the pricing of non-CO2 greenhouse gases and air pollutant emissions. Results show that e-ammonia or e-LNG combustion is the most cost-effective option for maritime transport when emission costs are excluded whereas hydrogen fuel cells become more economical when these costs are internalised. In aviation e-kerosene use in conventional aircraft presents the lowest costs regardless of the year or emission pricing. The findings highlight the importance of considering unique characteristics of each sector and tailored defossilisation and decarbonisation strategies that consider sector-specific constraints. To sustainably meet the growing demand for transport fuels rapid investments in renewable electricity generation electrolysers and e-fuel synthesis are essential. Development of strong regulatory frameworks and financial instruments will be critical to support early deployment of e-fuels and minimise the risks.
A Novel LH2/GH2/Battery Multi-energy Vehicle Supply Station using 100% Local Wind Energy, Technical, Economic and Environmental Perspectives
Feb 2023
Publication
With the gradual maturity of wind power technology China’s wind power generation has grown rapidly over the recent years. However due to the on-site inconsumable electricity the phenomenon of large-scale “wind curtailment” occurs in some areas. In this paper a novel hybrid hydrogen/electricity refueling station is built near a wind farm and a part of the surplus wind power is used to charge electric trucks and the other part of the surplus power is used to produce “green hydrogen”. According to real-time load changes different amounts of liquid hydrogen and gas hydrogen can be properly coordinated to provide timely energy supply for hydrogen trucks. For a 400 MW wind farm in the western Inner Mongolia China the feasibility of the proposed system has been carried out based on the sensitivity and reliability analysis the static and dynamic economic modeling with an entire life cycle analysis. Compared to the conventional technology the initial investment of the proposed scheme (700.07 M$) decreases by 13.97% and the dynamic payback period (10.93 years) decreases by 25.87%. During the life cycle of the proposed system the accumulative NPV reaches 184.63 M$ which increases by 3.14 times compared to the case by conventional wind technology.
3E Analysis of a Virtual Hydrogen Valley Supported by Railway-based H2 Delivery for Multi-transportation Service
Nov 2023
Publication
In Southern Italy near the Mediterranean Sea mobility services like cars bicycles scooters and materialhandling forklifts are frequently required in addition to multimodal local transportation services such as trains ferry boats and airplanes. This research proposes an innovative concept of hydrogen valley virtually simulated in Matlab/Simulink environment located in Calabria. As a novelty hydrogen is produced centrally and delivered via fuel cell hybrid trains to seven hydrogen refueling stations serving various mobility hubs. The centralized production facility operates with a nominal capacity of about 4 tons/day producing hydrogen via PEM electrolysis and storing hydrogen at 200 bar with a hydrogen compressor. As the size of vehicle fleets and the cost of acquiring renewable energy through power purchase agreements vary the hydrogen valley is examined from both a technical and an economic perspective analyzing: the values of the levelized cost of hydrogen the energy consumption and the energy efficiency of the energy systems. Specifically the levelized cost of hydrogen reached competitive values close to 5 €/kg of hydrogen under the most optimistic scenarios with fleet conversions of more than 60 % and a power purchase agreement price lower than 150 €/MWh. Then the benefits of hydrogen rail transport in terms of emissions reduction and health from an economic standpoint are compared to conventional diesel trains and fully electric trains saving respectively 3.2 ktons/year and 0.4 ktons/year of carbon dioxide equivalent emissions and corresponding economic benefits of respectively 51 and 0.548 million euros.
Hydrogen Fuel Cell Electric Trains: Technologies, Current Status, and Future
Feb 2024
Publication
Trains have been a crucial part of modern transport and their high energy efficiency and low greenhouse gas emissions make them ideal candidates for the future transport system. Transitioning from diesel trains to hydrogen fuel cell electric trains is a promising way to decarbonize rail transport. That’s because the fuel cell electric trains have several advantages over other electric trains such as lower life-cycle emissions and shorter refueling time than battery ones and less requirements for wayside infrastructure than the ones with overhead electric wires. However hydrogen fuel technology still needs to be advanced in areas including hydrogen production storage refueling and on-board energy management. Currently there are several pilot projects of hydrogen fuel cell electric trains across the globe especially in developed countries including one commercialized and permanent route in Germany. The experiences from the pilot projects will promote the technological and economic feasibility of hydrogen fuel in rail transport.
Numerical Simulation of Underexpanded Cryogenic Hydrogen Jets
Sep 2023
Publication
As a clean and renewable energy carrier hydrogen is one of the most promising alternative fuels. Cryogenic compressed hydrogen can achieve high storage density without liquefying hydrogen which has good application prospects. Investigation of the safety problems of cryogenic compressed hydrogen is necessary before massive commercialization. The present study modeled the instantaneous flow field using the Large Eddy Simulation (LES) for cryogenic (50 and 100 K) underexpanded hydrogen jets released from a round nozzle of 1.5 mm diameter at pressures of 0.5-5.0 MPa. The simulation results were compared with the experimental data for validation. The axial and radial concentration and velocity distributions were normalized to show the self-similar characteristics of underexpanded cryogenic jets. The shock structures near the nozzle were quantified to correlate the shock structure sizes to the source pressure and nozzle diameter. The present study on the concentration and velocity distributions of underexpanded cryogenic hydrogen jets is useful for developing safety codes and standards.
Green Hydrogen Integration in Aluminium Recycling: Techno-economic Analysis Towards Sustainability Transition in the Expanding Aluminium Market
Feb 2024
Publication
The use of aluminum-based products is widespread and growing particularly in industries such as automotive food packaging and construction. Obtaining aluminum is expensive and energy-intensive making the recycling of existing products essential for economic and environmental viability. This work explores the potential of using green hydrogen as a replacement for natural gas in the smelting and refining furnaces in aluminum recycling facilities. The adoption of green hydrogen has the potential to curtail approximately 4.54 Ktons/year of CO2 emissions rendering it a sustainable and economically advantageous solution. The work evaluates the economic viability of a case study through assessing the Net Present Value (NPV) and the Internal Rate of Return (IRR). Furthermore it is employed single- and multi-parameter sensitivity analyses to obtain insight on the most relevant conditions to achieve economic viability. Results demonstrate that integrating on-site green hydrogen generation yields a favorable NPV of €57370 an IRR of 9.83% and a 19.63-year payback period. The primary factors influencing NPV are the initial electricity consumption stack and the H2 price.
Thermoeconomic Analysis of a Integrated Membrane Reactor and Carbon Dioxide Capture System Producing Decarbonized Hydrogen
Jan 2025
Publication
In this study a novel thermo-economic analysis on a membrane reactor adopted to generate hydrogen coupled to a carbon-dioxide capture system is proposed. Exergy destruction fuel and environmental as well as pur chased equipment costs have been accounted to estimate the cost of hydrogen production in the aforementioned integrated plant. It has been found that the integration of the CO2 capture system with the membrane reactor is responsible for the reduction of the hydrogen production cost by 12 % due to the decrease in environmental penalty cost. In addition the effects of operating parameters (steam-to-carbo ratio and biogas temperature) on the hydrogen production cost are investigated. Hence this work demonstrates that the latter can be decreased by approximately 2 $/kgH2 when steam to carbon ratio increases from 1.5 to 4. The analyses reveal that steam-tocarbo ratio increases exergy destruction cost affecting consequently also the hydrogen production cost. How ever from a thermodynamic point of view it enhances the hydrogen production in the membrane reactor mutually lowering the hydrogen production cost. It has been also estimated that a decrease in the biogas inlet temperature from 450 to 400◦C can reduce the hydrogen production cost by 7 %. This study demonstrates that the fuel cost is a major economic parameter affecting commercialization of hydrogen production while exergy destruction and environmental costs are also significant factors in determining the hydrogen production cost.
Techno-Economic Evaluation of Scalable and Sustainable Hydrogen Production Using an Innovative Molten-Phase Reactor
Sep 2025
Publication
The transition to low-carbon energy systems requires efficient hydrogen production methods that minimise CO2 emissions. This study presents a techno-economic assessment of hydrogen production via methane pyrolysis utilising a novel liquid metal bubble column reactor (LMBCR) designed for CO2-free hydrogen and solid carbon outputs. Operating at 20 bar and 1100 ◦C the reactor employs a molten nickel-bismuth alloy as both catalyst and heat transfer medium alongside a sodium bromide layer to enhance carbon purity and facilitate separation. Four operational scenarios were modelled comparing various heating and recycling configurations to optimise hydrogen yield and process economics. Results indicate that the levelised cost of hydrogen (LCOH) is highly sensitive to methane and electricity prices CO2 taxation and the value of carbon by-products. Two reactor configurations demonstrate competitive LCOHs of 1.29 $/kgH2 and 1.53 $/kgH2 highlighting methane pyrolysis as a viable low-carbon alternative to steam methane reforming (SMR) with carbon capture and storage (CCS). This analysis underscores the potential of methane pyrolysis for scalable economically viable hydrogen production under specificmarket conditions.
Research & Innovation for Climate Neutrality 2050: Challenges, Opportunities & the Path Forward
Jan 2024
Publication
Transforming Europe into a climate neutral economy and society by 2050 requires extraordinary efforts and the mobilisation of all sectors and economic actors coupled with all the creative and brain power one can imagine. Each sector has to fundamentally rethink the way it operates to ensure it can be transformed towards this new net-zero paradigm without jeopardising other environmental and societal objectives both within the EU and globally. Given the scale of the transformation ahead our ability to meet climate neutrality targets directly depends on our ability to innovate. In this context Research & Innovation programmes have a key role to play and it is crucial to ensure they are fit for purpose and well equipped to support the next wave of breakthrough innovations that will be required to achieve climate neutrality in the EU and globally by 2050. The objective of this study is to contribute to these strategic planning discussions by not only identifying high-risk and high-impact climate mitigation solutions but most importantly look beyond individual solutions and consider how systemic interactions of climate change mitigation approaches can be integrated in the development of R&I agendas.
Towards Suitable Practices for the Integration of Social Life Cycle Assessment into the Ecodesign Framework of Hydrogen-related Products
Feb 2024
Publication
The hydrogen sector is envisaged as one of the key enablers of the energy transition that the European Union is facing to accomplish its decarbonization targets. However regarding the technologies that enable the deployment of a hydrogen economy a growing concern exists about potential burden-shifting across sustainability dimensions. In this sense social life cycle assessment arises as a promising methodology to evaluate the social implications of hydrogen technologies along their supply chains. In the context of the European projects eGHOST and SH2E this study seeks to advance on key methodological aspects of social life cycle assessment when it comes to guiding the ecodesign of two relevant hydrogen-related products: a 5 kW solid oxide electrolysis cell stack for hydrogen production and a 48 kW proton-exchange membrane fuel cell stack for mobility applications. Based on the social life cycle assessment results for both case studies under alternative approaches the definition of a product-specific supply chain making use of appropriate cut-off criteria was found to be the preferable choice when addressing system boundaries definition. Moreover performing calculations according to the activity variable approach was found to provide valuable results in terms of social hotspots identification to support subsequent decision-making processes on ecodesign while the direct calculation approach is foreseen as a complement to ease the interpretation of social scores. It is concluded that advancements in the formalization of such suitable practices could foster the integration of social metrics into the sustainable-by-design framework of hydrogen-related products.
How "Clean" is the Hydrogen Economy? Tracing the Connections Between Hydrogen and Fossil Fuels
Feb 2024
Publication
Hydrogen is experiencing a resurgence in energy transition debates. Before representing a solution however the existing hydrogen economy is still a climate change headache: over 99 % of production depends on fossil fuels oil refining accounts for 42 % of demand and its transportation is intertwined with fossil infrastructure like natural gas pipelines. This article investigates the path-dependent dynamics shaping the hydrogen economy and its interconnections with the oil and gas industry. It draws on the global production networks (GPN) approach and political economy research to provide a comprehensive review of current and prospective enduses of hydrogen modes of transport networks of industrial actors and state strategies along the major production facilities and holders of intellectual property rights. The results presented in this article suggest that the superimposition of private agendas may jeopardise the viability of future energy systems and requires counterbalancing forces to override the negative consequences of path-dependent energy transitions.
Design, Analysis, and Testing of a Type V Composite Pressure Vessel for Hydrogen Storage
Dec 2024
Publication
Hydrogen as a zero-emission fuel produces only water when used in fuel cells making it a vital contributor to reducing greenhouse gas emissions across industries like transportation energy and manufacturing. Efficient hydrogen storage requires lightweight high-strength vessels capable of withstanding high pressures to ensure the safe and reliable delivery of clean energy for various applications. Type V composite pressure vessels (CPVs) have emerged as a preferred solution due to their superior properties thus this study aims to predict the performance of a Type V CPV by developing its numerical model and calculating numerical burst pressure (NBP). For the validation of the numerical model a Hydraulic Burst Pressure test is conducted to determine the experimental burst pressure (EBP). The comparative study between NBP and EBP shows that the numerical model provides an accurate prediction of the vessel’s performance under pressure including the identification of failure locations. These findings highlight the potential of the numerical model to streamline the development process reduce costs and accelerate the production of CPVs that are manufactured by prepreg hand layup process (PHLP) using carbon fiber/epoxy resin prepreg material.
Gas Storage in Geological Formations: A Comparative Review on Carbon Dioxide and Hydrogen Storage
Feb 2024
Publication
Carbon dioxide and hydrogen storage in geological formations at Gt scale are two promising strategies toward net-zero carbon emissions. To date investigations into underground hydrogen storage (UHS) remain relatively limited in comparison to the more established knowledge body of underground carbon dioxide storage (UCS). Despite their analogous physical processes can be used for accelerating the advancements in UHS technology the existing distinctions possibly may hinder direct applicability. This review therefore contributes to advancing our fundamental understanding on the key differences between UCS and UHS through multi-scale comparisons. These comparisons encompass key factors influencing underground gas storage including storage media trapping mechanisms and respective fluid properties geochemical and biochemical reactions and injection scenarios. They provide guidance for the conversion of our existing knowledge from UCS to UHS emphasizing the necessity of incorporating these factors relevant to their trapping and loss mechanisms. The article also outlines future directions to address the crucial knowledge gaps identified aiming to enhance the utilisation of geological formations for hydrogen and carbon dioxide storage.
Blending Hydrogen in Existing Natural Gas Pipelines: Integrity Consequences from a Fitness for Service Perspective
Jun 2023
Publication
Blending hydrogen in existing natural gas pipelines compromises steel integrity because it increases fatigue crack growth promotes subcritical cracking and decreases fracture toughness. In this regard several laboratories reported that the fracture toughness measured in a hydrogen containing gaseous atmosphere KIH can be 50% or less than KIC the fracture toughness measured in air. From a pipeline integrity perspective fracture mechanics predicts that injecting hydrogen in a natural gas pipeline decreases the failure pressure and the size of the critical flaw at a given pressure level. For a pipeline with a given flaw size as shown in this work the effect of hydrogen embrittlement (HE) in the predicted failure pressure is largest when failure occurs by brittle fracture. The HE effect on failure pressure diminishes with a decreasing crack size or increasing fracture toughness. The safety margin after a successful hydrostatic test is reduced and therefore the time between hydrotests should be decreased. In this work all those effects were quantified using a crack assessment methodology (level 2 API 579-ASME FFS) considering literature values for KIH and KIC reported for an API 5L X52 pipeline steel. To characterize different scenarios various crack sizes were assumed including a small crack with a size close to the detection limit of current in-line inspection techniques and a larger crack that represents the largest crack size that could survive a hydrotest to 100% of the steel specified minimum yield stress. The implications of a smaller failure pressure and smaller critical crack size on pipeline integrity are discussed in this paper.
A Comprehensive Review on the Power Supply System of Hydrogen Production Electrolyzers for Future Integrated Energy Systems
Feb 2024
Publication
Hydrogen energy is regarded as an ideal solution for addressing climate change issues and an indispensable part of future integrated energy systems. The most environmentally friendly hydrogen production method remains water electrolysis where the electrolyzer constructs the physical interface between electrical energy and hydrogen energy. However few articles have reviewed the electrolyzer from the perspective of power supply topology and control. This review is the first to discuss the positioning of the electrolyzer power supply in the future integrated energy system. The electrolyzer is reviewed from the perspective of the electrolysis method the market and the electrical interface modelling reflecting the requirement of the electrolyzer for power supply. Various electrolyzer power supply topologies are studied and reviewed. Although the most widely used topology in the current hydrogen production industry is still single-stage AC/DC the interleaved parallel LLC topology constructed by wideband gap power semiconductors and controlled by the zero-voltage switching algorithm has broad application prospects because of its advantages of high power density high efficiency fault tolerance and low current ripple. Taking into account the development trend of the EL power supply a hierarchical control framework is proposed as it can manage the operation performance of the power supply itself the electrolyzer the hydrogen energy domain and the entire integrated energy system.
The Competitive Edge of Norway's Hydrogen by 2030: Socio-environmental Considerations
Aug 2024
Publication
Can Norway be an important hydrogen exporter to the European Union (EU) by 2030? We explore three scenarios in which Norway’s hydrogen export market may develop: A Business-as-usual B Moderate Onshore C Accelerated Offshore. Applying a sector-coupled energy system model we examine the techno-economic viability spatial and socio-economic considerations for blue and green hydrogen export in the form of ammonia by ship. Our results estimate the costs of low-carbon hydrogen to be 3.5–7.3€/kg hydrogen. While Norway may be cost-competitive in blue hydrogen exports to the EU its sustainability is limited by the reliance on natural gas and the nascent infrastructure for carbon transport and storage. For green hydrogen exports Norway may leverage its strong relations with the EU but is less cost-competitive than countries like Chile and Morocco which benefit from cheaper solar power. For all scenarios significant land use is needed to generate enough renewable energy. Developing a green hydrogen-based export market requires policy support and strategic investments in technology infrastructure and stakeholder engagement ensuring a more equitable distribution of renewable installations across Norway and national security in the north. Using carbon capture and storage technologies and offshore wind to decarbonise the offshore platforms is a win-win solution that would leave more electricity for developing new industries and demonstrate the economic viability of these technologies. Finally for Norway to become a key hydrogen exporter to the EU will require a balanced approach that emphasises public acceptance and careful land use management to avoid costly consequences.
Current Status of Green Hydrogen Production Technology: A Review
Oct 2024
Publication
As a clean energy source hydrogen not only helps to reduce the use of fossil fuels but also promotes the transformation of energy structure and sustainable development. This paper firstly introduces the development status of green hydrogen at home and abroad and then focuses on several advanced green hydrogen production technologies. Then the advantages and shortcomings of different green hydrogen production technologies are compared. Among them the future source of hydrogen tends to be electrolysis water hydrogen production. Finally the challenges and application prospects of the development process of green hydrogen technology are discussed and green hydrogen is expected to become an important part of realizing sustainable global energy development.
Life Cycle Assessment of Greenhouse Gas Emissions in Hydrogen Production via Water Electrolysis in South Korea
Dec 2024
Publication
This study evaluated the greenhouse gas (GHG) emissions associated with hydrogen production in South Korea (hereafter referred to as Korea) using water electrolysis. Korea aims to advance hydrogen as a clean fuel for transportation and power generation. To support this goal we employed a life cycle assessment (LCA) approach to evaluate the emissions across the hydrogen supply chain in a well-to-pump framework using the Korean clean hydrogen certification tiers. Our assessment covered seven stages from raw material extraction for power plant construction to hydrogen production liquefaction storage and distribution to refueling stations. Our findings revealed that among the sixteen power sources evaluated hydroelectric and onshore wind power exhibited the lowest emissions qualifying as the Tier 2 category of emissions between 0.11 and 1.00 kgCO2e/kgH2 under a well-to-pump framework and Tier 1 category of emissions below 0.10 kgCO2e/kgH2 under a well-to-gate framework. They were followed by photovoltaics nuclear energy and offshore wind all of which are highly dependent on electrolysis efficiency and construction inputs. Additionally the study uncovered a significant impact of electrolyzer type on GHG emissions demonstrating that improvements in electrolyzer efficiency could substantially lower GHG outputs. We further explored the potential of future energy mixes for 2036 2040 and 2050 as projected by Korea’s energy and environmental authorities in supporting clean hydrogen production. The results suggested that with progressive decarbonization of the power sector grid electricity could meet Tier 2 certification for hydrogen production through electrolysis and potentially reach Tier 1 when considering well-to-gate GHG emissions.
Comprehensive Optimisation of an Integrated Energy System for Power, Hydrogen, and Freshwater Generation Using High-temperature PEM Fuel Cell
Feb 2024
Publication
Modern energy conversion technologies with low or no emissions are needed to achieve sustainable development goals. This research examines the thermodynamic and exergy-economic features of a high-temperature proton exchange membrane fuel cell. A cutting-edge integrated energy system uses high-temperature proton exchange membrane fuel cells an organic Rankine cycle a proton exchange membrane electrolyzer and a multi-effect desalination unit. This setup generates electricity hydrogen and fresh water. Methanol-steam reformation produces hydrogen for the fuel cell. The recommended cycle drives an organic Rankine power producing cycle using 120-200 °C waste heat from hightemperature proton exchange membrane fuel cell to power water electrolysis and hydrogen generation. An integrated method incorporates energy and exergy balances and cost analysis to assess the proposed system's exergetic economic and environmental impacts. The suggested integration delivers high energy and exergy efficiency at an acceptable cost and environmental effect. According to parametric research boosting the fuel cell's working temperature decreases production costs and carbon dioxide emissions per mass. Raising current density has positive technical and environmental impacts. As the current density increases from 0.4 to 0.8 (A/cm2 ) the net power generation increases to 46.67% and the exergy efficiency increases from 64.5% to 68%. An increase in multi-effect distillation motivate steam pressure from 200 to 600 kPa results in an increase in the daily freshwater generated from 111.68 m3 to 116.41 m3 . For environmental protection and output optimization fuel utilization ratio must be reduced. The ideal system's exergy efficiency product unit cost and environmental impact are 65.78% 86.28 ($/h) and 4.33% respectively.
Potential Capacity and Cost Assessments for Hydrogen Production from Marine Sources
May 2024
Publication
The current study comprehensively examines the application of wave tidal and undersea current energy sources of Turkiye for green hydrogen fuel production and cost analysis. The estimated potential capacity of each city is derived from official data and acceptable assumptions and is subject to discussion and evaluation in the context of a viable hydrogen economy. According to the findings the potential for green hydrogen generation in Turkiye is projected to be 7.33 million tons using a proton exchange membrane electrolyser (PEMEL). Cities with the highest hydrogen production capacities from marine applications are Mugla Izmir Antalya and Canakkale with 998.10 kt 840.31 kt 605.46 kt and 550.42 kt respectively. The study calculations obviously show that there is a great potential by using excess power in producing hydrogen which will result in an economic value of 3.01 billion US dollars. This study further helps develop a detailed hydrogen map for every city in Turkiye using the identified potential capacities of renewable energy sources and the utilization of electrolysers to make green hydrogen by green power. The potentials and specific capacities for every city are also highlighted. Furthermore the study results are expected to provide clear guidance for government authorities and industries to utilize such a potential of renewable energy for investment and promote clean energy projects by further addressing concerns caused by the usage of carbon-based (fossil fuels dependent) energy options. Moreover green hydrogen production and utilization in every sector will help achieve the national targets for a net zero economy and cope with international targets to achieve the United Nation's sustainable development goals.
Hydrogen Diffusion into Water and Cushion Gases - Relevance for Hydrogen Geo-storage
Dec 2024
Publication
Hydrogen (H2) has been recognized as a promising solution to reduce carbon dioxide (CO2) emissions. H2 is considered a green energy carrier for energy storage transport and usage and it can be produced from renewable energy resources (such as solar hydropower and wind energy). However H2 is a highly diffusive compound compared to other natural gases raising concerns about the possibility of H2 loss in geo-storage (e.g. in underground geological formations such as depleted oil/gas reservoirs aquifers or shale formations) or H2 leak via pipelines when blending H2 with natural gas in existing pipeline systems. Thus understanding H2 diffusion in subsurface formations and pipeline systems is vital. However despite its importance only limited data is available to assess the above situations. Therefore in this study molecular dynamics simulations were used to predict the self-diffusion coefficients of H2 in water and cushion gases (CH4 and N2) at relevant geothermal conditions (i.e. 300 K–373 K and pressures up to 50 MPa). The findings showed that H2 self-diffusion in methane and nitrogen increases with increasing temperature but decreases with increasing pressure. However H2 selfdiffusion in water increases with increasing temperature but is not impacted by increasing or decreasing pres sure. The results also indicated that the rate of H2 self-diffusion in cushion gas is faster than in water about exceeding two-digit times. Furthermore the outcomes reported extended or new data on H2 self-diffusion for the binary system of H2–H2O H2–CH4 and H2–N2. This study is beneficial and contributes to assessing efficiency and safety for executing H2 transportation and underground hydrogen storage (UHS) schemes.
Innovative Strategies for Combining Solar and Wind Energy with Green Hydrogen Systems
Oct 2024
Publication
The integration of wind and solar energy with green hydrogen technologies represents an innovative approach toward achieving sustainable energy solutions. This review examines state-ofthe-art strategies for synthesizing renewable energy sources aimed at improving the efficiency of hydrogen (H2 ) generation storage and utilization. The complementary characteristics of solar and wind energy where solar power typically peaks during daylight hours while wind energy becomes more accessible at night or during overcast conditions facilitate more reliable and stable hydrogen production. Quantitatively hybrid systems can realize a reduction in the levelized cost of hydrogen (LCOH) ranging from EUR 3.5 to EUR 8.9 per kilogram thereby maximizing the use of renewable resources but also minimizing the overall H2 production and infrastructure costs. Furthermore advancements such as enhanced electrolysis technologies with overall efficiencies rising from 6% in 2008 to over 20% in the near future illustrate significant progress in this domain. The review also addresses operational challenges including intermittency and scalability and introduces system topologies that enhance both efficiency and performance. However it is essential to consider these challenges carefully because they can significantly impact the overall effectiveness of hydrogen production systems. By providing a comprehensive assessment of these hybrid systems (which are gaining traction) this study highlights their potential to address the increasing global energy demands. However it also aims to support the transition toward a carbon-neutral future. This potential is significant because it aligns with both environmental goals and energy requirements. Although challenges remain the promise of these systems is evident.
A Techno-economic Assessment of the Viability of a Photovoltaic-wind-battery Storage-hydrogen Energy System for Electrifying Primary Healthcare Centre in Sub-Saharan Africa
Jun 2024
Publication
Healthcare facilities in isolated rural areas of sub-Saharan Africa face challenges in providing essential health services due to unreliable energy access. This study examines the use of hybrid renewable energy systems consisting of solar PV wind turbines batteries and hydrogen storage for the electrification of rural healthcare facilities in Nigeria and South Africa. The study deployed the efficacy of Hybrid Optimization of Multiple Energy Resources software for techno-economic analysis and the Evaluation based on the Distance from Average Solution method for multicriteria decision-making for sizing optimizing and selecting the optimal energy system. Results show that the optimal configurations achieve cost-effective levelized energy costs ranging from $0.336 to $0.410/kWh for both countries. For the Nigeria case study the optimal energy system includes 5 kW PV 10 kW fuel cell 10 kW inverter 10 kW electrolyzer and 16 kg hydrogen tank. South Africa's optimal configuration has 5 kW PV 10 kW battery 10 kW inverter and 7.5 kW rectifier. Solar PV provides more than 90% of energy with dual axis tracking yielding the highest output: 8889kWh/yr for Nigeria and 10470kWh/yr for South Africa. The multi-criteria decisionmaking analysis reveals that Nigeria's preferred option is the hybrid system without tracking. In contrast the horizontal axis weekly adjustment tracking configuration is optimal for South Africa considering technical economic and environmental criteria. The findings highlight the importance of context-specific optimization for hybrid renewable energy systems in rural healthcare facilities to accelerate Sustainable Development Goals 3 and 7.
Modelling Guided Energy Management System for a Hydrogen-fuelled Harbour Tug
May 2024
Publication
The use of hydrogen as a source of fuel for marine applications is relatively nascent. As the maritime industry pivots to the use of alternate low and zero-emission fuels to adapt to a changing regulatory landscape hydrogen energy needs to present and substantiate a technical and commercially viable use case to secure its value proposition in the future fuel mix. This paper leverages the technoeconomic and environmental assessment previously performed on HyForce a hydrogen-fuelled harbour tug which has shown encouraging results for both technical and commercial aspects. This study aims to create a digital twin of HyForce to accurately predict her operability in real-world scenarios. The results from this study identify the strengths and drawbacks of the proposed use case. This is achieved by embedding the detailed design of HyForce in a virtual environment to further evaluate its operational performance through Computational Fluid Dynamics (CFD) simulations of realistic environmental conditions such as wind wave sea currents and friction attributed to the properties of seawater. The results from this study indicate a base case power requirement of 93 kW to 1892 kW to achieve speeds of 5 to 12 knots in the absence of external environmental influences. Consequently the speed of HyForce has a profound impact on total resistance peaking at 97.3 kN at 12 knots. Seawater properties such as low seawater temperature of 0C and a high salinity of 50g/kg increased friction. Additionally wind speeds of 10 m/s acting on HyForce delivered a resistance of 3 kN. However these will be well mitigated through the design of the propulsion system which will be able to deliver a thrust power of 1892 kW and with assistance from the energy storage systems produce 2 MW of power to overcome the resistance experienced. The findings presented in this paper can serve as a foundation for constructing a robust model for the development of a predictive controller for future work. This controller has the potential to optimize the configuration of hydrogen and battery energy storage aligning with desired cost functions.
Multi-agent Based Optimal Sizing of Hybrid Renewable Energy Systems and their Significance in Sustainable Energy Development
Nov 2024
Publication
This paper delves into the enhancement and optimization of on-grid renewable energy systems using a variety of renewable energy sources with a particular focus on large-scale applications designed to meet the energy demand of a certain load. As global concerns surrounding climate change continue to mount the urgency of replacing traditional fossil fuel-based power generation with cleaner more cost-effective and dependable alternatives becomes increasingly apparent. In this context a comprehensive investigation is conducted on grid connected hybrid energy system that combines photovoltaic wind and fuel cell technologies. The study employs three state-of-the-art optimization algorithms namely Walrus Optimization Algorithm (WaOA) Coati Optimization Algorithm (COA) and Osprey Optimization Algorithm (OOA) to determine the optimal system size and energy management strategies all aimed at minimizing the cost of energy (COE) for grid-based electricity. The results of the optimization process are compared with the results obtained from the utilization of the Particle swarm optimization (PSO) and Grey Wolf optimizer (GWO). The findings of this study underscore both the practical feasibility and the critical importance of adopting on-grid renewable energy systems to decrease the dependence on traditional energy sources within the grid. The proposed WaOA succeeded to reach the optimal solution of the optimal design process with a COE of 0.51758129611 $//kwh while keeping the loss of power supply probability (LPSP) the reliability index at 7.303681e-19. The practical recommendations and forwardlooking insights provided within this research hold the potential to foster sustainable development and effectively mitigate carbon emissions in the future.
Electrification or Hydrogen? The Challenge of Decarbonizing Industrial (High-Temperature) Process Heat
Oct 2024
Publication
The decarbonization of industrial process heat is one of the bigger challenges of the global energy transition. Process heating accounts for about 20% of final energy demand in Germany and the situation is similar in other industrialized nations around the globe. Process heating is indispensable in the manufacturing processes of products and materials encountered every day ranging from food beverages paper and textiles to metals ceramics glass and cement. At the same time process heating is also responsible for significant greenhouse gas emissions as it is heavily dependent on fossil fuels such as natural gas and coal. Thus process heating needs to be decarbonized. This review article explores the challenges of decarbonizing industrial process heat and then discusses two of the most promising options the use of electric heating technologies and the substitution of fossil fuels with low-carbon hydrogen in more detail. Both energy carriers have their specific benefits and drawbacks that have to be considered in the context of industrial decarbonization but also in terms of necessary energy infrastructures. The focus is on high-temperature process heat (>400 ◦C) in energy-intensive basic materials industries with examples from the metal and glass industries. Given the heterogeneity of industrial process heating both electricity and hydrogen will likely be the most prominent energy carriers for decarbonized high-temperature process heat each with their respective advantages and disadvantages.
Germany's Power-to-X Policy for Climate-neutral Transport
Nov 2024
Publication
Germany aligned with the European Union has set important targets for decreasing greenhouse gas emissions by 65% by 2030 and achieving climate neutrality by 2045. In this context Power-to-X fuels have emerged as promising solutions for defossilizing transport modes less suitable for electrification. However a significant challenge in developing Power-to-X fuels is the absence of a well-defined regulatory framework for their production and utilization. Thus this study investigates the regulatory landscapes of the EU and Germany aiming to comprehend objectives support schemes and advancements. A total of 25 legal frameworks from the EU and Germany with direct or indirect effects on Power-to-X fuels were identified. For a detailed and comprehensive policy analysis a qualitative inductive approach based on a coding scheme and policy content analysis was implemented. Findings indicate that several updates in the German and EU regulatory frameworks addressed Power-to-X fuels in the 2010s and 2020s. The RED III the REFuelEU Aviation and the FuelEU Maritime have shown to be turning points for Power-to-X fuels in the EU. In Germany the most relevant policies are the 37. BImSchV the National Hydrogen Strategy and the PtL Roadmap. Key challenges are identified related to the limited coherence among policies supporting the sustainable use of resources for the fuel production.
A Cogeneration System Based on Solid Oxide and Proton Exchange Membrane Fuel Cells with Hybrid Storage for Off-grid Applications
Jan 2019
Publication
Solid oxide fuel cells (SOFC) have developed to a mature technology able to achieve electrical efficiencies beyond 60%. This makes them particularly suitable for off-grid applications where SOFCs can supply both electricity and heat at high efficiency. Concerns related to lifetime particularly when operated dynamically and the high investment cost are however still the main obstacles toward a widespread adoption of this technology. In this paper we propose a hybrid cogeneration system that attempts to overcome these limitations in which the SOFC mainly provides the baseload of the system. Introducing a purification unit allows the production and storage of pure hydrogen from the SOFC anode off-gas. The hydrogen can be stored and used in a proton exchange membrane fuel cell (PEMFC) during peak demands. The SOFC system is completed with a battery used during periods of high electricity production. We propose the use of a mixed integer-linear optimization framework for the sizing of the different components of the system and particularly for identifying the optimal trade-off between round-trip efficiency and investment cost of the battery-based and hydrogen-based storage systems. The proposed system is applied and optimized to two case studies: an off-grid dwelling and a cruise ship. The results show that if the SOFC is used as the main energy conversion technology of the system the use of hydrogen storage in combination with a PEMFC and a battery is more economically convenient compared to the use of the SOFC in stand-alone mode or of pure battery storage. The results show that the proposed hybrid storage solution makes it possible to reduce the investment cost of the system while maintaining the use of the SOFC as the main energy source of the system.
Power Ultrasound as Performance Enhancer for Alkaline Water Electrolysis: A Review
Dec 2024
Publication
The industry is advancing decarbonization in hydrogen production through water splitting technologies like water electrolysis which involves the hydrogen evolution reaction (HER) at the cathode and oxygen evolution reaction (OER) at the anode. Alkaline water electrolyser (AWE) is particularly suited for industrial applications due to its use of cost-effective and abundant nickel-based electrodes. However AWE faces significant challenges including energy losses from gas bubble coverage and poor detachment known as “bubble resistance”. Recent research highlights the role of power ultrasound in mitigating these issues by leveraging Bjerknes forces. These forces facilitate the ejection of larger bubbles and the coalescence of smaller ones enhancing gas removal. Additionally ultrasound improves mass transfer from the electrolyte to electrodes and boosts heat transfer via acoustic streaming and acoustic cavitation which the latter also enhances electrocatalytic properties for both HER and OER. However employing ultrasonic fields presents both benefits and challenges for scaling the system.
Is it Green? Designing a Blockchain-based Certification System for the EU Hydrogen Market
Dec 2024
Publication
Energy production and consumption are major contributors to greenhouse gas (GHG) emissions exacerbating one of the greatest challenges faced by modern societies: climate change. Thus societies must switch to more sustainable energy sources. Green hydrogen has emerged as a promising alternative energy carrier facilitating storage and utilization across various industries. However amidst different production processes solely sustainable electrolysis stands out as an environmentally benign production method. Hydrogen producers must prove provenance and sustainable production to regulatory bodies and hydrogen buyers to comply with the regulations for sustainable development. Blockchain provides a viable solution encompassing trustworthy and secure information sharing between untrusted partners. In this article we employ a design science research approach to develop a blockchain-based certification system (BLC-CS) for green hydrogen. Through collaboration with experts to gather requirements and conduct evaluations we design an artifact that streamlines the certification process for producers regulators and consumers. Our proposed solution facilitates information gathering verification and reporting contributing to the advancement of sustainable energy practices. We provide a comprehensive discussion of the BLC-CS’s feasibility for green hydrogen certification including technical extensions recommendations for practitioners and directions for future research.
Research Goals for Minimizing the Cost of CO2 Capture when Using Steam Methane Reforming for Hydrogen Production
Nov 2024
Publication
This paper presents a techno-economic assessment of adding state-of-the-art solvent-based CO2 capture technologies to greenfield steam methane reforming (SMR)-based H2 production plants and quantifies the impacts of improvements in CO2 capture technology. Current conventional capture technologies are reviewed and future technologies in intermediate and long-term scenarios are analyzed. The results show that adding significantly more efficient solvent-based capture technologies leads to an equivalent rate of natural gas consumption as that of a conventional SMR plant without capture despite capturing most of the CO2 and producing the same amount of H2. Overall improvements in reboiler duty and reductions in capital costs can significantly reduce the cost of H2 production and cost of capture. Particularly the reboiler duty of pre-combustion capture and the capital cost of post-combustion capture have the greatest impact. Based on the results research goals are suggested. Solvent development is recommended—particularly pre-combustion solvents—for reducing the reboiler duties and process schemes to reduce the capital costs. Costlier but more efficient solvents can be considered. A sensitivity analysis using natural gas price shows that technological improvements can reduce the impacts of high natural gas prices. The degree of economic feasibility of CO2 capture increases with improvements to the capture technology.
Influence of Hydrogen on the Performance and Emissions Characteristics of a Spark Ignition Ammonia Direct Injection Engine
Oct 2023
Publication
Because ammonia is easier to store and transport over long distances than hydrogen it is a promising research direction as a potential carrier for hydrogen. However its low ignition and combustion rates pose challenges for running conventional ignition engines solely on ammonia fuel over the entire operational range. In this study we attempted to identify a stable engine combustion zone using a high-pressure direct injection of ammonia fuel into a 2.5 L spark ignition engine and examined the potential for extending the operational range by adding hydrogen. As it is difficult to secure combustion stability in a low-temperature atmosphere the experiment was conducted in a sufficiently-warmed atmosphere (90 ± 2.5 ◦C) and the combustion emission and efficiency results under each operating condition were experimentally compared. At 1500 rpm the addition of 10% hydrogen resulted in a notable 20.26% surge in the maximum torque reaching 263.5 Nm in contrast with the case where only ammonia fuel was used. Furthermore combustion stability was ensured at a torque of 140 Nm by reducing the fuel and air flow rates.
An Efficient Renewable Hybridization Based on Hydrogen Storage for Peak Demand Reduction: A Rule-based Energy Control and Optimisation Using Machine Learning Techniques
Dec 2022
Publication
The present study proposes and thoroughly examines a novel approach for the effective hybridization of solar and wind sources based on hydrogen storage to increase grid stability and lower peak load. The parabolic trough collector vanadium chloride thermochemical cycle hydrogen storage tank alkaline fuel cells thermal energy storage and absorption chiller make up the suggested smart system. Additionally the proposed system includes a wind turbine to power the electrolyzer unit and minimize the size of the solar system. A rule-based control technique establishes an intelligent two-way connection with energy networks to compensate for the energy expenses throughout the year. The transient system simulation (TRNSYS) tool and the engineering equation solver program are used to conduct a comprehensive techno-economic-environmental assessment of a Swedish residential building. A four-objective optimization utilizing MATLAB based on the grey wolf algorithm coupled with an artificial neural network is used to determine the best trade-off between the indicators. According to the results the primary energy saving carbon dioxide reduction rate overall cost and purchased energy are 80.6 % 219 % 14.8 $/h and 24.9 MWh at optimal conditions. From the scatter distribution it can be concluded that fuel cell voltage and collector length should be maintained at their lowest domain and the electrode area is an ineffective parameter. The suggested renewable-driven smart system can provide for the building’s needs for 70 % of the year and sell excess production to the local energy network making it a feasible alternative. Solar energy is far less effective in storing hydrogen over the winter than wind energy demonstrating the benefits of combining renewable energy sources to fulfill demand. By lowering CO2 emissions by 61758 kg it is predicted that the recommended smart renewable system might save 7719 $ in environmental costs equivalent to 6.9 ha of new reforestation.
Life Cycle Assessment and Life Cycle Costing of Hydrogen Production from Biowaste and Biomass in Sweden
Jun 2023
Publication
In this study an environmental and economic assessment of hydrogen production from biowaste and biomass is performed from a life cycle perspective with a high degree of primary life cycle inventory data on materials energy and investment flows. Using SimaPro LCA software and CML-IA 2001 impact assessment method ten environmental impact categories are analyzed for environmental analysis. Economic analysis includes capital and operational expenditures and monetization cost of life cycle environmental impacts. The hydrogen pro duction from biowaste has a high climate impact photochemical oxidant and freshwater eutrophication than biomass while it performs far better in ozone depletion terrestrial ecotoxicity abiotic depletion-fossil abiotic depletion human toxicity and freshwater ecotoxicity. The sensitivity analysis of LCA results indicates that feedstock to biogas/pyrolysis-oil yields ratio and the type of energy source for the reforming process can significantly influence the results particularly climate change abiotic depletion and human toxicity. The life cycle cost (LCC) of 1 kg hydrogen production has been accounted as 0.45–2.76 € with biowaste and 0.54–3.31 € with biomass over the plant’s lifetime of 20 years. From the environmental impacts of climate change photo chemical oxidant and freshwater eutrophication hydrogen production from biomass is a better option than biowaste while from other included impact categories and LCC perspectives it’s biowaste. This research con tributes to bioresources to hydrogen literature with some new findings that can be generalized in Europe and even globally as it is in line with and endorse existing theoretical and simulation software-based studies.
Advancing Energy Management Strategies for Hybrid Fuel Cell Vehicles: A Comparative Study of Deterministic and Fuzzy Logic Approaches
Aug 2025
Publication
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries these vehicles offer greater efficiency and zero emissions. However their energy management remains a challenge requiring advanced strategies. This paper presents a comparative study of two developed energy management strategies: a deterministic rule-based approach and a fuzzy logic approach. The proposed system consists of a proton exchange membrane fuel cell (PEMFC) as the primary energy source and a lithium-ion battery as the secondary source. A comprehensive model of the hybrid powertrain is developed to evaluate energy distribution and system behaviour. The control system includes a model predictive control (MPC) method for fuel cell current regulation and a PI controller to maintain DC bus voltage stability. The proposed strategies are evaluated under standard driving cycles (UDDS and NEDC) using a simulation in MATLAB/Simulink. Key performance indicators such as fuel efficiency hydrogen consumption battery state-of-charge and voltage stability are examined to assess the effectiveness of each approach. Simulation results demonstrate that the deterministic strategy offers a structured and computationally efficient solution while the fuzzy logic approach provides greater adaptability to dynamic driving conditions leading to improved overall energy efficiency. These findings highlight the critical role of advanced control strategies in improving FCHEV performance and offer valuable insights for future developments in hybrid-vehicle energy management.
Quantum-Inspired MoE-Based Optimal Operation of a Wave Hydrogen Microgrid for Integrated Water, Hydrogen, and Electricity Supply and Trade
Feb 2025
Publication
This research explores the optimal operation of an offshore wave-powered hydrogen system specifically designed to supply electricity and water to a bay in Humboldt California USA and also sell it with hydrogen. The system incorporates a desalination unit to provide the island with fresh water and feed the electrolyzer to produce hydrogen. The optimization process utilizes a mixture of experts in conjunction with the Quantitative Structure-Activity Relationship (QSAR) algorithm traditionally used in drug design to achieve two main objectives: minimizing operational costs and maximizing revenue from the sale of water hydrogen and electricity. Many case studies are examined representing typical electricity demand and wave conditions during typical summer winter spring and fall days. The simulation optimization and results are carried out using MATLAB 2018 and SAM 2024 software applications. The findings demonstrate that the combination of the QSAR algorithm and quantum-inspired MoE results in higher revenue and lower costs compared to other current techniques with hydrogen sales being the primary contributor to increased income.
A Comparison of Low-carbon Gas-turbine Power Generation Cycles
Sep 2025
Publication
This study investigates potential solutions for low-carbon power generation with hydrogen firing and carbon capture. Multi-dimensional system modeling was used to assess the effects on plant performance size and cost. The examined cycles include advanced dry- wet- bottoming- oxyfuel cycles with air-separation units and post-combustion carbon capture with exhaust gas recirculation. The results identify three distinct lowcarbon technology pathways. While conventional combined-cycle plants are suitable for hydrogen retrofits hydrogen firing (both blue and green) results in levelized costs of electricity 50%–300% higher than carbon capture solutions making carbon capture more attractive for long-term energy storage. When carbon capture is applied to conventional combined cycles they become suboptimal compared to alternative solutions. The intercooled-recuperated (ICR) gas turbine cycle integrated with post-combustion carbon capture offers superior performance: over 3% higher efficiency 12% lower capital costs and 70% smaller physical footprint compared to conventional combined cycles with carbon capture. The Allam cycle represents a third pathway achieving 100% CO2 capture with efficiency comparable to combined cycles at 90% capture. Gas separation units emerge as the dominant source of both capital costs and efficiency penalties across all carbon capture configurations representing the key area for future optimization to reduce overall electricity costs.
Progress in Carbon Capture and Impurities Removal for High Purity Hydrogen Production from Biomass Thermochemical Conversion
Nov 2024
Publication
Renewable hydrogen production from biomass thermochemical conversion is an emerging technology to reduce fossil fuel consumptions and carbon emissions. Biomass-derived hydrogen can be produced by pyrolysis gasification alkaline thermal treatment etc. However the removal of impurities from biomass thermochemical conversion products to improve hydrogen purity is currently technical bottleneck. It is important to assess and investigate the types and properties of impurities the difficulty of separation and the impact on downstream utilization of hydrogen in the biomass-derived hydrogen production process. The key objectives of this comprehensive review are: (1) to reveal the current status and necessity of developing biomass-derived hydrogen production; (2) to evaluate the types devices and impurities distribution of biomass thermochemical conversion; (3) to explore the formation pathways and removal technologies of typical impurities of tar CO2 sulfides and nitrides in hydrogen production process; and (4) to propose future insights on the separation technologies of typical impurities to promote the gradual substitution of biomass-derived hydrogen for fossil-derived energy.
Underground Hydrogen Storage in Sandstone Reservoirs: Effects of Geochemical Reactivity of Hydrogen on Reservoir Performance
Jan 2025
Publication
Underground hydrogen storage in porous rocks is a promising method to stabilize renewable energy fluctuations. However data on the geochemical reactivity of hydrogen with reservoir rocks and its potential effects on reservoir performance are limited. This study investigates the geochemical reactivity of hydrogen with Bunt sandstein reservoir sandstones from northern Germany collected at a depth of about 2.5 km. Experiments were performed at 100 ◦C and 150 bar hydrogen partial pressure for four weeks examining scenarios with dry hydrogen synthetic saline fluid with hydrogen synthetic saline fluid with helium (as a control) and an oxidation environment (air). We measured permeability porosity magnetic susceptibility and fluid element concentration before and after the experiments. Results showed no significant mineral changes attributed to hydrogen. Mag netic susceptibility indicated no formation of magnetic minerals such as magnetite and pyrrhotite. Minor var iations in permeability and porosity were attributed to anhydrite dissolution from fluid chemistry nonequilibrium. Overall our findings suggest hydrogen interactions with Buntsandstein sandstone (no pyrite content) at temperatures up to 100 ◦C do not risk hydrogen loss or reservoir performance degradation.
Evaluating the Hydrogen Storage Potential of Shut Down Oil and Gas Fields Along the Norwegian Continental Shelf
Apr 2023
Publication
The underground hydrogen storage (UHS) capacities of shut down oil and gas (O&G) fields along the Norwegian continental shelf (NCS) are evaluated based on the publicly available geological and hydrocarbon production data. Thermodynamic equilibrium and geochemical models are used to describe contamination of hydrogen loss of hydrogen and changes in the mineralogy. The contamination spectrum of black oil fields and retrograde gas fields are remarkably similar. Geochemical models suggest limited reactive mineral phases and meter-scale hydrogen diffusion into the caprock. However geochemical reactions between residual oil reservoir brine host rock and hydrogen are not yet studied in detail. For 23 shut down O&G fields a theoretical maximum UHS capacity of ca. 642 TWh is estimated. We conclude with Frigg Nordost Frigg and Odin as the best-suited shut down fields for UHS having a maximum UHS capacity of ca. 414 TWh. The estimates require verification by site-specific dynamic reservoir models.
Electrochemical Devices to Power a Sustainable Energy Transition—An Overview of Green Hydrogen Contribution
Mar 2024
Publication
This work discusses the current scenario and future growth of electrochemical energy devices such as water electrolyzers and fuel cells. It is based on the pivotal role that hydrogen can play as an energy carrier to replace fossil fuels. Moreover it is envisaged that the scaled-up and broader deployment of the technologies can hold the potential to address the challenges associated with intermittent renewable energy generation. From a sustainability perspective this synergy between hydrogen and electricity from renewable sources is particularly attractive: electrolyzers convert the excess energy from renewables into green hydrogen and fuel cells use this hydrogen to convert it back into electricity when it is needed. Although this transition endorses the ambitious goal to supply greener energy for all it also entails increased demand for the materials that are essential for developing such cleaner energy technologies. Herein several economic and environmental issues are highlighted besides a critical overview regarding each technology. The aim is to raise awareness and provide the reader (a non-specialist in the field) with useful resources regarding the challenges that need to be overcome so that a green hydrogen energy transition and a better life can be fully achieved.
Assessment of the Role of the Green Hydrogen as the Commodity Enabling a New Green Dialogue Among the Mediterranean Shores
Apr 2024
Publication
The Mediterranean basin has been characterized by a net flow of fossil commodities from the North African shore to Southern Europe and the Middle East for decades; however decarbonizing the energy system implies to substantially modify this situation turning the current “black dialogue” into a “green dialogue” (i.e. based on the exchange of renewable electricity and green hydrogen). This paper presents a feasibility study conducted to estimate the potential green hydrogen production by electrolysis in three Tunisian sites. It shows and compares several plant layouts varying the size and typology of renewable electricity generators and electrolyzers. The work adopts local weather data and technical features of the technologies in the computations and accounts for site specific topographical and infrastructural constraints such as land available for construction and local power grid connection capacities. It shows that configurations able to produce large quantities of green hydrogen may not be compliant with such constraints basically nullifying their contribution in any hydrogen strategy. Finally results show that the LCOH lies in the range 1.34 $/kgH2 and 4.06 $/kgH2 depending on both the location and the combination of renewable electricity generators and electrolyzers.
Research on Hydrogen Production System Technology Based on Photovoltaic-Photothermal Coupling Electrolyzer
Dec 2023
Publication
Solar hydrogen production technology is a key technology for building a clean low-carbon safe and efficient energy system. At present the intermittency and volatility of renewable energy have caused a lot of “wind and light.” By combining renewable energy with electrolytic water technology to produce high-purity hydrogen and oxygen which can be converted into electricity the utilization rate of renewable energy can be effectively improved while helping to improve the solar hydrogen production system. This paper summarizes and analyzes the research status and development direction of solar hydrogen production technology from three aspects. Energy supply mode: the role of solar PV systems and PT systems in this technology is analyzed. System control: the key technology and system structure of different types of electrolytic cells are introduced in detail. System economy: the economy and improvement measures of electrolytic cells are analyzed from the perspectives of cost consumption efficiency and durability. Finally the development prospects of solar hydrogen production systems in China are summarized and anticipated. This article reviews the current research status of photovoltaic-photothermal coupled electrolysis cell systems fills the current research gap and provides theoretical reference for the further development of solar hydrogen production systems.
No more items...