Publications
Linking the Power and Transport Sectors—Part 2: Modelling a Sector Coupling Scenario for Germany
Jul 2017
Publication
“Linking the power and transport sectors—Part 1” describes the general principle of “sector coupling” (SC) develops a working definition intended of the concept to be of utility to the international scientific community contains a literature review that provides an overview of relevant scientific papers on this topic and conducts a rudimentary analysis of the linking of the power and transport sectors on a worldwide EU and German level. The aim of this follow-on paper is to outline an approach to the modelling of SC. Therefore a study of Germany as a case study was conducted. This study assumes a high share of renewable energy sources (RES) contributing to the grid and significant proportion of fuel cell vehicles (FCVs) in the year 2050 along with a dedicated hydrogen pipeline grid to meet hydrogen demand. To construct a model of this nature the model environment “METIS” (models for energy transformation and integration systems) we developed will be described in more detail in this paper. Within this framework a detailed model of the power and transport sector in Germany will be presented in this paper and the rationale behind its assumptions described. Furthermore an intensive result analysis for the power surplus utilization of electrolysis hydrogen pipeline and economic considerations has been conducted to show the potential outcomes of modelling SC. It is hoped that this will serve as a basis for researchers to apply this framework in future to models and analysis with an international focus.
Everything About Hydrogen Podcast: Masters of Scale: The World of SOFC & SOE Technologies
Oct 2020
Publication
On this week's episode the EAH team catches up with Mark Selby Chief Technology Officer at Ceres Power to dive into the world of solid oxide fuel cell (SOFC) and solid oxide electrolyzer (SOE) technologies. Ceres Power specializes in the design of SOFCs for applications in a diverse range of energy intensive sectors. Mark takes the time in this episode to walk the team through the details advantages and challenges of deploying SOFCs and low-carbon hydrogen solutions more broadly and discusses how consumer and customer awareness of these technologies varies widely across international markets. We cover a lot of ground this week so be sure not to miss out on our conversation with Mark!
The podcast can be found on their website
The podcast can be found on their website
A CFD Analysis of Liquefied Gas Vessel Explosions
Dec 2021
Publication
Hydrogen is one of the most suitable candidates in replacing fossil fuels. However storage issues due to its very low density under ambient conditions are encountered in many applications. The liquefaction process can overcome such issues by increasing hydrogen’s density and thus enhancing its storage capacity. A boiling liquid expanding vapour explosion (BLEVE) is a phenomenon in liquefied gas storage systems. It is a physical explosion that might occur after the catastrophic rupture of a vessel containing a liquid with a temperature above its boiling point at atmospheric pressure. Even though it is an atypical accident scenario (low probability) it should be always considered due to its high yield consequences. For all the above-mentioned reasons the BLEVE phenomenon for liquid hydrogen (LH2) vessels was studied using the CFD methodology. Firstly the CFD model was validated against a well-documented CO2 BLEVE experiment. Secondly hydrogen BLEVE cases were simulated based on tests that were conducted in the 1990s on LH2 tanks designed for automotive purposes. The parametric CFD analysis examined different filling degrees initial pressures and temperatures of the tank content with the aim of comprehending to what extent the initial conditions influence the blast wave. Good agreement was shown between the simulation outcomes and the LH2 bursting scenario tests results.
Everything About Hydrogen Podcast: Flying Hy!
Feb 2021
Publication
Decarbonizing aviation is a big challenge. It is one of the most carbon intensive business sectors in the modern world and change comes slowly to the aviation industry. Hydrogen and fuel cell technologies offer a pathway to decarbonize regional flights in the not-so-distant future and big names are looking at potential solutions for long-haul flights in the longer term. But even if we build the aircraft that can use hydrogen as a fuel how do we get the fuel to them in a timely reliable and cost-efficient way?
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Taking the Lead in the Hydrogen Economy
Sep 2021
Publication
On the season premier episode the EAH hosts are joined by the Governor of New Mexico Michelle Lujan Grisham. The State of New Mexico has the opportunity to lead the United States into the hydrogen era and the Governor and her team are poised to take the opportunity to make New Mexico the strategic center of the US hydrogen economy. The Governor is joined by New Mexico Environment Department Secretary James Kenney on the show to announce the forthcoming New Mexico Hydrogen Hub Act which her administration expects to drive investment in the state job growth in the energy sector and catapult New Mexico to top of the list of states driving the hydrogen revolution.
The podcast can be found on their website.
The podcast can be found on their website.
Current Status and Development Trend of Wind Power Generation-based Hydrogen Production Technology
Jan 2019
Publication
The hydrogen production technology by wind power is an effective mean to improve the utilization of wind energy and alleviate the problem of wind power curtailment. First the basic principles and technical characteristics of the hydrogen production technology by wind power are briefly introduced. Then the history of the hydrogen production technology is reviewed and on this basis the hydrogen production system by wind power is elaborated in detail. In addition the prospect of the application of the hydrogen production technology by wind power is analyzed and discussed. In the end the key technology of the hydrogen production by wind power and the problems to be solved are comprehensively reviewed. The development of hydrogen production technology by wind power is analyzed from many aspects which provides reference for future development of hydrogen production technology by wind power
Everything About Hydrogen Podcast: The Oracle of Hydrogen
Oct 2019
Publication
Nel Hydrogen is one of the largest electrolysis companies in the world with an array of Alkaline and PEM solutions that have been used in an array of energy and industrial applications. On the show we ask Bjørn Simonsen Vice President of Investor Relations and Corporate Communication at Nel Hydrogen to talk through how Nel has seen the green hydrogen market evolve and where Nel fits into this sector transition.
The podcast can be found on their website
The podcast can be found on their website
Techno-Economic Analysis of a Novel Hydrogen-Based Hybrid Renewable Energy System for Both Grid-Tied and Off-Grid Power Supply in Japan: The Case of Fukushima Prefecture
Jun 2020
Publication
After the Great East Japan Earthquake energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES) in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture Japan. The techno-economic assessment of deploying the proposed systems was conducted using an integrated simulation-optimization modeling framework considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results the proposed HRES can generate about 47.3 MWh of electricity in all scenarios which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh respectively
Everything About Hydrogen Podcast: Going "Green"
May 2021
Publication
Founded in 2007 and based in Denmark Green Hydrogen Systems designs and manufactures efficient standardized and modular electrolysers for the production of green hydrogen with renewable energy. Niels-Arne Baden has led the company to the upper echelons of the electrolysis sector and he now leads the company's strategy and and public-facing initiatives as the Vice President for Strategy and Public Affairs. On this episode of the Everything About Hydrogen podcast the EAH team sits down with Niels to talk about the journey of the clean hydrogen sector over the recent decades and its rise to prominence in the transition to a decarbonized energy future and how modular electrolysis fits into that picture.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Decarbonising the Gas Grid with Cadent
Mar 2020
Publication
On this weeks episode the team are talking all things hydrogen with Lorna Millington Future Networks Manager in the Safety and Network Strategy team at Cadent. On the show we discuss the role that Cadent and other gas distribution network operators (GDNOs) are playing in supporting the transition towards a low (and eventually zero) carbon gas grid through the use of hydrogen. The potential for hydrogen to support decarbonisation of heat through the gas network is one of the most exciting emerging themes for countries that have large existing gas networks and who are looking to repurpose those assets towards national net zero objectives. As a leader on hydrogen into the gas grid projects Cadent offer a wealth of knowledge around the potential opportunities and considerations for displacing natural gas with hydrogen over time. And given the chance to reduce up to 6 million tonnes of CO2 a year through using more hydrogen in the gas grid this is a show you won’t want to miss! All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Supplying the Building Blocks of an Energy Revolution
Apr 2021
Publication
On this episode of Everything About Hydrogen the team is joined by Sam French Business Development Director at JM who spent some time speaking with us about the transition from grey hydrogen to low-carbon generation technologies and what steps the UK - and countries all over the world - to use hydrogen as part of the pathway to a sustainable energy future.
The podcast can be found on their website
The podcast can be found on their website
Assessment and Recommendations for a Fossil Free Future for Track Work Machinery
Oct 2021
Publication
Current railway track work machinery is mainly operated with diesel fuel. As a result track maintenance of Austrian Federal Railways (OeBB) amounts to nearly 9000 t CO2 equivalent per year according to calculations from Graz University of Technology. OeBB’s total length of railway lines only accounts for 0.56% of the world’s length of lines. This indicates huge potential for mitigating greenhouse gas emissions considering the need for track maintenance worldwide. Environmental concerns have led to the introduction of alternative drives in the transport sector. Until now R&D (Research & Development) of alternative propulsion technologies for track work machinery has been widely neglected. This paper examines the possibility of achieving zero direct emissions during maintenance and construction work in railways by switching to alternative drives. The goal is to analyze alternative propulsion solutions arising from the transport sector and to assess their applicability to track work machinery. Research results together with a calculation tool show that available battery technology is recommendable for energy demands lower than 300 kWh per construction shift. Hydrogen fuel cell technology is an alternative for energy demands higher than 800 kWh. For machinery with energy requirements in between enhancements in battery technology are necessary and desirable for the coming years.
Examining the Role of Safety in Communication Concerning Emerging Hydrogen Technologies by Selected Groups of Stakeholders
Sep 2021
Publication
Governments and other stakeholders actively promote and facilitate the development and deployment of hydrogen and fuel cell technologies. Various strategy documents and energy forecasts outline the environmental and societal benefits of the prospective hydrogen economy. At the same time the safety related properties of hydrogen imply that it is not straightforward to achieve and document the same level of safety for hydrogen systems compared to conventional fuels. Severe accidents can have major impact on the development of energy technologies. The stakes will increase significantly as the use of hydrogen shifts from controlled environments in industrial facilities to the public domain and as the transport-related consumption extends from passenger cars and buses to trains ships and airplanes. Widespread deployment of hydrogen as an energy carrier in society will require massive investments. This implies commercial and political commitment involvement and influence on research priorities and decision-making. The legacy from accidents and the messages communicated by influential stakeholders impact not only how the public perceives hydrogen technologies but also governmental policies the development of regulations codes and standards (RCS) and ultimately the measures adopted for preventing and mitigating accidents. This paper explores whether and how selected aspects of safety are considered when distinct groups of stakeholders frame the hydrogen economy. We assess to what extent the communication is consistent with the current state-of-the-art in hydrogen safety and the contemporary strength of knowledge in risk assessments for hydrogen systems. The approach adopted entails semi-quantitative text analysis and close reading to highlight variations between diverse groups of stakeholders. The results indicate a bias in the framing of the safety-related aspects of the hydrogen economy towards procedural organisational and societal measures of risk reduction at the expense of well-known challenges and knowledge gaps associated with the implications of fundamental safety-related properties of hydrogen.
Hydrogen Production Technologies Overview
Jan 2019
Publication
Hydrogen energy became the most significant energy as the current demand gradually starts to increase. Hydrogen energy is an important key solution to tackle the global temperature rise. The key important factor of hydrogen production is the hydrogen economy. Hydrogen production technologies are commercially available while some of these technologies are still under development. This paper reviews the hydrogen production technologies from both fossil and non-fossil fuels such as (steam reforming partial oxidation auto thermal pyrolysis and plasma technology). Additionally water electrolysis technology was reviewed. Water electrolysis can be combined with the renewable energy to get eco-friendly technology. Currently the maximum hydrogen fuel productions were registered from the steam reforming gasification and partial oxidation technologies using fossil fuels. These technologies have different challenges such as the total energy consumption and carbon emissions to the environment are still too high. A novel non-fossil fuel method [ammonia NH3] for hydrogen production using plasma technology was reviewed. Ammonia decomposition using plasma technology without and with a catalyst to produce pure hydrogen was considered as compared case studies. It was showed that the efficiency of ammonia decomposition using the catalyst was higher than ammonia decomposition without the catalyst. The maximum hydrogen energy efficiency obtained from the developed ammonia decomposition system was 28.3% with a hydrogen purity of 99.99%. The development of ammonia decomposition processes is continues for hydrogen production and it will likely become commercial and be used as a pure hydrogen energy source.
Outlook of Fermentative Hydrogen Production Techniques: An Overview of Dark, Photo and Integrated Dark-photo Fermentative Approach to Biomass
Jan 2019
Publication
Biomass can be a sustainable choice for bioenergy production worldwide. Biohydrogen production using fermentative conversion of biomass has gained great interest during the last decade. Besides being an efficient transportation fuel biohydrogen can also be also be a low-carbon source of heat and electricity. Microbes assisted conversion (bioconversion) can be take place either in presence or absence of light. This is called photofermentation or dark-fermentation respectively. This review provides an overview of approaches of fermentative hydrogen production. This includes: dark photo and integrated fermentative modes of hydrogen production; the molecular basis behind its production and diverse range of its applicability industrially. Mechanistic understanding of the metabolic pathways involved in biomass-based fermentative hydrogen production are also reviewed.
Safety Assessment of Hydrogen Jet Fire Scenarios within Semi-Confined Spaces
Jan 2023
Publication
Hydrogen fuel cell vehicle (HFCV) technology poses great promise as an alternative to significantly reduce the environmental impact of the transport sector’s emissions. However hydrogen fuel cell technology is relatively new therefore confirmation of the reliability and safety analysis is still required particularly for fire scenarios within confined spaces such as tunnels. This study applied the computational fluid dynamics (CFD) simulations in conjunction with probabilistic calculation methods to determine the associated thermal risk of a hydrogen jet fire in a tunnel and its dependency on scenarios with different tunnel slopes longitudinal and transverse ventilation velocities and fire positions. A large-scale model of 102 m in which the effects of outlined parameter variations on the severity of the fire incident were analysed. It is found that both tunnel ventilation techniques and slope were critical for the effective ejection of accumulated heat. With ventilation playing a primary role in the ejection of heat and gas and slope ensuring the stability of the ejected heat probabilities of thermal burns were found to be reduced by up to approximately 35% with a strong suggestion of critical combinations to further reduce the dangers of hydrogen tunnel fires.
Monte-Carlo-Analysis of Minimum Burst Requirements for Composite Cylinders for Hydrogen Service
Sep 2021
Publication
For achieving Net Zero-aims hydrogen is an indispensable component probably the main component. For the usage of hydrogen a wide acceptance is necessary which requires trust in hydrogen based on absence of major incidents resulting from a high safety level. Burst tests stand for a type of testing that is used in every test standard and regulation as one of the key issues for ensuring safety in use. The central role of burst and proof test is grown to historical reasons for steam engines and steel vessels but - with respect for composite pressure vessels (CPVs) - not due an extraordinary depth of outcomes. Its importance results from the relatively simple test process with relatively low costs and gets its importance by running of the different test variations in parallel. In relevant test und production standards (as e. g. ECE R134) the burst test is used in at least 4 different meanings. There is the burst test on a) new CPVs and some others b) for determining the residual strength subsequent to various simulations of ageing effects. Both are performed during the approval process on a pre-series. Then there is c) the batch testing during the CPVs production and finally d) the 100% proof testing which means to stop the burst test at a certain pressure level. These different aspects of burst tests are analysed and compared with respect to its importance for the resulting safety of the populations of CPVs in service based on experienced test results and Monte-Carlo simulations. As main criterial for this the expected failure rate in a probabilistic meaning is used. This finally ends up with recommendations for relevant RC&S especially with respect to GTR 13."
Everything About Hydrogen Podcast: Building an Integrated Clean Hydrogen Infrastructure from the Ground Up
Nov 2021
Publication
On this episode of EAH we are joined by Andrew Clennett Co-Founder and CEO of Hiringa Energy. Hiringa is headquartered in New Zealand where they are building clean hydrogen production projects using renewable energy to displace the use of fossil fuels for transport and industrial feedstock across New Zealand. We are delighted to have Andrew with us today to speak about how Hiringa are using hydrogen to change the energy and carbon landscape of New Zealand.
This podcast can be found on their website
This podcast can be found on their website
Future Electricity Series Part 3 - Power from Nuclear
Mar 2014
Publication
This independent cross-party report highlights the key role that political consensus can play in helping to reduce the costs of nuclear power in the UK as well as other low carbon technologies. This political consensus has never been more important than in this ‘defining decade’ for the power sector. The report highlights that an immediate challenge facing the UK’s new build programme is agreeing with the European Commission a regime for supporting new nuclear power. Changing the proposed support package would not be an impossible task if made necessary but maintaining broad political consensus and considering the implications of delay are also important. The State Aid process is an important opportunity for scrutiny with the report demonstrating that shareholders for Hinkley Point C could see bigger returns (19-21%) than those typically expected for PFI projects (12-15%). However it is too early to conclude on the value for money of the Hinkley Point C agreement. Both the negotiation process and the resulting investment contract are important but there has been little transparency over either so far and the negotiations were not competitive. The inquiry calls for more urgency and better coordination in seizing the opportunity to reuse the UK’s plutonium stockpile.
The UK’s stockpile of separated plutonium presents opportunities to tackle a number of national strategic priorities including implementing long term solutions for nuclear waste developing new technologies that could redefine the sector laying the ground for new nuclear power and pursuing nuclear non-proliferation. Government has identified three ‘credible solutions’ for reuse and the report recommends that it now sets clearer criteria against which to assess options and identifies budgetary requirements to help expediate the process. The report also argues that Government should do more on new nuclear technologies that could redefine the sector – such as considering smaller reactors nuclear for industrial heat or hydrogen production and closed or thorium fuel cycles. The Government’s initial response to a review of nuclear R&D a year ago by the then Chief Scientific Advisor Sir John Beddington has been welcome and it needs to build on this. In particular the UK should capitalise upon its existing expertise and past experience to focus efforts where there is most strategic value. Nulcear waste. Having failed to date the Government must urgently revisit plans for finding a site to store nuclear waste underground for thousands of years. Implementing this is a crucial part of demonstrating that nuclear waste is a manageable challenge. Despite being rejected by Cumbria County Council the continuing strong support amongst communities in West Cumbria for hosting a site is a promising sign.
On affordability the report finds that it is not yet clear which electricity generation technologies will be cheapest in the 2020s and beyond. Coal and gas could get more expensive if fossil fuel and carbon prices rise whilst low carbon technologies could get cheaper as technology costs fall with more deployment. This is the main reason for adopting an ‘all of the above’ strategy including nuclear power until costs become clearer and there is broad consensus behind this general approach.
On security of supply the inquiry says that deployment of nuclear power is likely to be influenced more by the economics of system balancing rather than technical system balancing challenges which can be met with greater deployment of existing balancing tools. The cost of maintaining system security is likely to mean that the UK maintains at least some baseload capacity such as nuclear power to limit system costs.
On sustainability the report finds that the environmental impacts of nuclear power are comparable to some generation technologies and favourable to others although the long lived nature of some radioactive nuclear waste and the dual use potential of nuclear technology for civil and military applications create unique sustainability challenges which the UK is a world leader in managing.
It is the final report of the Future Electricity Series an independent and cross party inquiry into the UK power sector sponsored by the Institution of Gas Engineers and Managers
The UK’s stockpile of separated plutonium presents opportunities to tackle a number of national strategic priorities including implementing long term solutions for nuclear waste developing new technologies that could redefine the sector laying the ground for new nuclear power and pursuing nuclear non-proliferation. Government has identified three ‘credible solutions’ for reuse and the report recommends that it now sets clearer criteria against which to assess options and identifies budgetary requirements to help expediate the process. The report also argues that Government should do more on new nuclear technologies that could redefine the sector – such as considering smaller reactors nuclear for industrial heat or hydrogen production and closed or thorium fuel cycles. The Government’s initial response to a review of nuclear R&D a year ago by the then Chief Scientific Advisor Sir John Beddington has been welcome and it needs to build on this. In particular the UK should capitalise upon its existing expertise and past experience to focus efforts where there is most strategic value. Nulcear waste. Having failed to date the Government must urgently revisit plans for finding a site to store nuclear waste underground for thousands of years. Implementing this is a crucial part of demonstrating that nuclear waste is a manageable challenge. Despite being rejected by Cumbria County Council the continuing strong support amongst communities in West Cumbria for hosting a site is a promising sign.
On affordability the report finds that it is not yet clear which electricity generation technologies will be cheapest in the 2020s and beyond. Coal and gas could get more expensive if fossil fuel and carbon prices rise whilst low carbon technologies could get cheaper as technology costs fall with more deployment. This is the main reason for adopting an ‘all of the above’ strategy including nuclear power until costs become clearer and there is broad consensus behind this general approach.
On security of supply the inquiry says that deployment of nuclear power is likely to be influenced more by the economics of system balancing rather than technical system balancing challenges which can be met with greater deployment of existing balancing tools. The cost of maintaining system security is likely to mean that the UK maintains at least some baseload capacity such as nuclear power to limit system costs.
On sustainability the report finds that the environmental impacts of nuclear power are comparable to some generation technologies and favourable to others although the long lived nature of some radioactive nuclear waste and the dual use potential of nuclear technology for civil and military applications create unique sustainability challenges which the UK is a world leader in managing.
It is the final report of the Future Electricity Series an independent and cross party inquiry into the UK power sector sponsored by the Institution of Gas Engineers and Managers
Distinct facets to enhance the process of hydrogen production via methanol steam reforming—A review
Jan 2022
Publication
Methanol steam reforming manifests great potential for generating hydrogen owing to its lower reaction temperature (200–300 °C) and higher hydrogen/carbon ratio comparing with ethanol and methane reforming. In this case methanol steam reforming is applied in various renewable energy systems to assist the energy conversion and improve the system efficiency. The performance of methanol steam reforming reaction strongly depends on the catalysts and reactor structure. In this paper the development of the copper-based the noble metal–based and the nanomaterial catalysts were summarized by analyzing the effects of different modification methods which indicates that cutting the cost and simplifying the manufacturing process are the future goal of catalyst modification. Moreover the reaction mechanism of different catalyst type was discussed. For the reactor performance conventional miniature micro and membrane reactors were discussed and compared where conventional reactor with high CO tolerance is more suitable for industrial application while membrane reactor with high H2 purity and compact structure is ideal for fuel cell technology. The integration of the methanol steam reforming system into renewable power systems was reviewed as well. Methanol steam reforming technology is of great potential in exhaust heat recovery cogeneration system and other renewable energy field where more comprehensive research should be performed.
No more items...