- Home
- A-Z Publications
- Publications
Publications
Strategies for Life Cycle Impact Reduction of Green Hydrogen Production - Influence of Electrolyser Value Chain Design
Mar 2024
Publication
Green Hydrogen (H2 via renewable-driven electrolysis) is emerging as a vector to meet net-zero emission targets provided it is produced with a low life cycle impact. While certification schemes for green H2 have been introduced they mainly focus on the embodied emissions from energy supply during electrolyser operation. This narrow focus on just operation is an oversight considering that a complete green H2 value chain also includes the electrolyser’s manufacturing transport/installation and end-of-life. Each step of this chain involves materials and energy flows that impart impacts that undermine the clean and sustainable status of H2. Therefore holistic and harmonised assessments of the green H2 production chain are required to ensure both economic and environmental deployment of H2. Herein we conduct an overarching environmental assessment encompassing the production chain described above using Australia as a case study. Our results indicate that while the energy source has the most impact material and manufacturing inputs associated with electrolyser production are increasingly significant as the scale of H2 output expands. Moreover wind power electrolysis has a greater chance of achieving green H2 certification compared to solar powered while increasing the amount of localised manufactured content and investment in end-of-life recycling of electrolyser components can reduce the overall life cycle impact of green H2 production by 20%.
Propulsion System Integration for a First-generation Hydrogen Civil Airliner?
May 2021
Publication
An unusual philosophical approach is proposed here to decarbonise larger civil aircraft that fly long ranges and consume a large fraction of civil aviation fuel. These inject an important amount of carbon emissions into the atmosphere and holistic decarbonising solutions must consider this sector. A philosophical–analytical investigation is reported here on the feasibility of an airliner family to fly over long ranges and assist in the elimination of carbon dioxide emissions from civil aviation. Backed by state-of-the-art correlations and engine performance integration analytical tools a family of large airliners is proposed based on the development and integration of the body of a very large two-deck four-engine airliner with the engines wings and flight control surfaces of a very long-range twin widebody jet. The proposal is for a derivative design and not a retrofit. This derivative design may enable a swifter entry to service. The main contribution of this study is a philosophical one: a carefully evaluated aircraft family that appears to have very good potential for first-generation hydrogen-fuelled airliners using gas turbine engines for propulsion. This family offers three variants: a 380-passenger aircraft with a range of 3300nm a 330-passenger aircraft with a range of 4800nm and a 230- passenger aircraft with a range of 5500nm. The latter range is crucially important because it permits travel from anywhere in the globe to anywhere else with only one stop. The jet engine of choice is a 450kN high-bypass turbofan.
Case Studies towards Green Transition in EU Regions: Smart Specialisation for Transformative Innovation
Oct 2022
Publication
This report analyses five case study reports in-depth across five EU countries as part of a broader analytical and critical exercise. This analytical work seeks to contribute to the development of new models for regional and local authorities aiming to boost support for Green Transition of their economies through smarter innovation policies using the smart specialisation (S3) approach. The work covered five regions from across the European Union representing a diversity of approaches to using S3 for Green Transition: the Basque Country in Spain the Centro region in Portugal the region of East and North Finland the region of Western Macedonia in Greece and the region of West Netherlands. The case studies included in this report consists of three sections on (i) Profile of the region and key development challenges; (ii) Innovation strategies and policies for green transition: incorporating societal challenges; (iii) Understanding and monitoring innovationled green transition. Drawing together the different elements presented the conclusion provides a summary overview of the case and the authors’ opinion on it.
Review of Hydrogen-Gasoline SI Dual Fuel Engines: Engine Performance and Emission
Mar 2023
Publication
Rapid depletion of conventional fossil fuels and increasing environmental concern are demanding an urgent carry out for research to find an alternate fuel which meets the fuel demand with minimum environmental impacts. Hydrogen is considered as one of the important fuel in the near future which meets the above alarming problems. Hydrogen–gasoline dual fuel engines use hydrogen as primary fuel and gasoline as secondary fuel. In this review paper the combustion performance emission and cyclic variation characteristics of a hydrogen–gasoline dual fuel engine have been critically analyzed. According to scientific literature hydrogen–gasoline dual fuel engines have a good thermal efficiency at low and partial loads but the performance deteriorates at high loads. Hydrogen direct injection with gasoline port fuel injection is the optimum configuration for dual fuel engine operating on hydrogen and gasoline. This configuration shows superior result in mitigating the abnormal combustion but experiences high NOx emission. Employing EGR showed a maximum reduction of 77.8% of NOx emission with a EGR flowrate of 18% further increment in flowrate leads to combustion instability. An overview on hydrogen production and carbon footprint related with hydrogen production is also included. This review paper aims to provide comprehensive findings from past works associated with hydrogen–gasoline dual fuel approach in a spark ignition engine
Expert Perceptions of Game-changing Innovations towards Net Zero
Dec 2022
Publication
Current technological improvements are yet to put the world on track to net-zero which will require the uptake of transformative low-carbon innovations to supplement mitigation efforts. However the role of such innovations is not yet fully understood; some of these ‘miracles’ are considered indispensable to Paris Agreement-compliant mitigation but their limitations availability and potential remain a source of debate. We evaluate such potentially game-changing innovations from the experts’ perspective aiming to support the design of realistic decarbonisation scenarios and better-informed net-zero policy strategies. In a worldwide survey 260 climate and energy experts assessed transformative innovations against their mitigation potential at-scale availability and/or widescale adoption and risk of delayed diffusion. Hierarchical clustering and multi-criteria decision-making revealed differences in perceptions of core technological innovations with next generation energy storage alternative building materials iron-ore electrolysis and hydrogen in steelmaking emerging as top priorities. Instead technologies highly represented in well-below-2◦C scenarios seemingly feature considerable and impactful delays hinting at the need to re-evaluate their role in future pathways. Experts’ assessments appear to converge more on the potential role of other disruptive innovations including lifestyle shifts and alternative economic models indicating the importance of scenarios including non-technological and demand-side innovations. To provide insights for expert elicitation processes we finally note caveats related to the level of representativeness among the 260 engaged experts the level of their expertise that may have varied across the examined innovations and the potential for subjective interpretation to which the employed linguistic scales may be prone to.
An Effective Optimisation Method for Coupled Wind–Hydrogen Power Generation Systems Considering Scalability
Jan 2023
Publication
A wind–hydrogen coupled power generation system can effectively reduce the power loss caused by wind power curtailment and further improve the ability of the energy system to accommodate renewable energy. However the feasibility and economy of deploying such a power generation system have not been validated through large‐scale practical applications and the economic comparison between regions and recommendations on construction are still lacking. In order to solve the aforementioned problems this paper establishes an economic analysis model for the wind–hydrogen coupled power generation system and proposes a linear optimisation‐based priority analysis method focusing on the major net present value for regional energy system as well as a cost priority analysis method for hydrogen production within sample power plants. The case study proves the effectiveness of the proposed analysis methods and the potential to develop wind–hydrogen coupled power generation systems in various provinces is compared based on the national wind power data in recent years. This provides recommendations for the future pilot construction and promotion of wind–hydrogen coupled power generation systems in China.
Towards a Safe Hydrogen Economy: An Absolute Climate Sustainability Assessment of Hydrogen Production
Jan 2023
Publication
Policymakers and global energy models are increasingly looking towards hydrogen as an enabling energy carrier to decarbonize hard-to-abate sectors (projecting growth in hydrogen consumption in the magnitude of hundreds of megatons). Combining scenarios from global energy models and life cycle impacts of different hydrogen production technologies the results of this work show that the life cycle emissions from proposed configurations of the hydrogen economy would lead to climate overshoot of at least 5.4–8.1x of the defined “safe” space for greenhouse gas emissions by 2050 and the cumulative consumption of 8–12% of the remaining carbon budget. This work suggests a need for a science-based definition of “clean” hydrogen agnostic of technology and compatible with a “safe” development of the hydrogen economy. Such a definition would deem blue hydrogen environmentally unviable by 2025–2035. The prolific use of green hydrogen is also problematic however due to the requirement of a significant amount of renewable energy and the associated embedded energy land and material impacts. These results suggest that demand-side solutions should be further considered as the large-scale transition to hydrogen which represents a “clean” energy shift may still not be sufficient to lead humanity into a “safe” space.
Nested Decomposition Approach for Dispatch Optimization of Large-Scale, Integrated Electricity, Methane and Hydrogen Infrastructures
Apr 2022
Publication
Energy system integration enables raising operational synergies by coupling the energy infrastructures for electricity methane and hydrogen. However this coupling reinforces the infrastructure interdependencies increasing the need for integrated modeling of these infrastructures. To analyze the cost-efficient sustainable and secure dispatch of applied large-scale energy infrastructures an extensive and non-linear optimization problem needs to be solved. This paper introduces a nested decomposition approach with three stages. The method enables an integrated and full-year consideration of large-scale multi-energy systems in hourly resolution taking into account physical laws of power flows in electricity and gas transmission systems as boundary conditions. For this purpose a zooming technique successively reduces the temporal scope while first increasing the spatial and last the technical resolution. A use case proves the applicability of the presented approach to large-scale energy systems. To this end the model is applied to an integrated European energy system model with a detailed focus on Germany in a challenging transport situation. The use case demonstrates the temporal regional and cross-sectoral interdependencies in the dispatch of integrated energy infrastructures and thus the benefits of the introduced approach.
Process Integration of Green Hydrogen: Decarbonization of Chemical Industries
Sep 2020
Publication
Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind solar etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically new process designs uniquely exploit intermittent renewable energy for CO2 conversion enabling thermal integration H2 and O2 utilization and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction municipal waste incineration biomass gasification fermentation pulp production biogas upgrading and calcination and are an essential step forward in reducing anthropogenic CO2 emissions.
1921–2021: A Century of Renewable Ammonia Synthesis
Apr 2022
Publication
Synthetic ammonia manufactured by the Haber–Bosch process and its variants is the key to securing global food security. Hydrogen is the most important feedstock for all synthetic ammonia processes. Renewable ammonia production relies on hydrogen generated by water electrolysis using electricity generated from hydropower. This was used commercially as early as 1921. In the present work we discuss how renewable ammonia production subsequently emerged in those countries endowed with abundant hydropower and in particular in regions with limited or no oil gas and coal deposits. Thus renewable ammonia played an important role in national food security for countries without fossil fuel resources until after the mid-20th century. For economic reasons renewable ammonia production declined from the 1960s onward in favor of fossil-based ammonia production. However renewable ammonia has recently gained traction again as an energy vector. It is an important component of the rapidly emerging hydrogen economy. Renewable ammonia will probably play a significant role in maintaining national and global energy and food security during the 21st century.
A CFD Analysis of Liquid Hydrogen Vessel Explosions using the ADREA-HF Code
Sep 2021
Publication
Despite hydrogen is one of the most suitable candidates in replacing fossil fuels its very low densityrepresents a drawback when it is stored. The liquefaction process can increase the hydrogen densityand therefore enhance its storage capacity. The boiling liquid expanding vapour explosion (BLEVE) isa typical accident scenario that must be always considered when liquefied gases are stored. Inparticular BLEVE is a physical explosion with low probabilities and high consequences which mayoccur after the catastrophic rupture of a vessel containing a liquid with a temperature above its boilingpoint at atmospheric pressure. In this paper a parametric CFD analysis of the BLEVE phenomenonwas conducted by means of the CFD code ADREA-HF for liquid hydrogen (LH2) vessels. Firstly theCFD model is validated against a well-documented CO2 BLEVE experiment. Next hydrogen BLEVEcases are examined. The physical parameters were chosen based on the BMW tests carried out in the1990s on LH2 tanks designed for automotive purposes. Different filling degrees initial pressures andtemperatures of the tank content are simulated to comprehend how the blast wave is influenced by theinitial conditions. The aim of this study is twofold: provide new insights and observations on theBLEVE dynamics and demonstrate the CFD tool effectiveness for conducting the consequenceanalysis and thus aiding the risk assessment of liquefied gas vessel explosion. Good agreement wasshown between the simulation outcomes and the experimental results.
Modelling and Performance Analysis of an Autonomous Marine Vehicle Powered by a Fuel Cell Hybrid Powertrain
Sep 2022
Publication
This paper describes the implementation of a hydrogen-based system for an autonomous surface vehicle in an effort to reduce environmental impact and increase driving range. In a suitable computational environment the dynamic electrical model of the entire hybrid powertrain consisting of a proton exchange membrane fuel cell a hydrogen metal hydride storage system a lithium battery two brushless DC motors and two control subsystems is implemented. The developed calculation tool is used to perform the dynamic analysis of the hybrid propulsion system during four different operating journeys investigating the performance achieved to examine the obtained performance determine the feasibility of the work runs and highlight the critical points. During the trips the engine shows fluctuating performance trends while the energy consumption reaches 1087 Wh for the fuel cell (corresponding to 71 g of hydrogen) and 370 Wh for the battery consuming almost all the energy stored on board.
Effects of Renewable Energy Unstable Source to Hydrogen Production: Safety Considerations
Sep 2021
Publication
Hydrogen is considered a promising energy carrier for a sustainable future when it is produced by utilizing renewable energy. Nowadays less than 4% of hydrogen production is based on electrolysis processes. Each component of a hydrogen energy system needs to be optimized to increase the operation time and system efficiency. Only in this way hydrogen produced by electrolysis processes can be competitive with the conventional fossil energy sources. As conventional electrolysers are designed for operation at fixed process conditions the implementation of fluctuating and highly intermittent renewable energy is challenging. Alkaline water electrolysis is a key technology for large-scale hydrogen production powered by renewable energy. At low power availability conventional alkaline water electrolysers show a limited part-load range due to an increased gas impurity. Explosive mixtures of hydrogen and oxygen must be prevented; thus a safety shutdown is performed when reaching specific gas contamination. The University of Pisa is setting up a dedicated laboratory including a 40-kW commercial alkaline electrolyser: the focus of the study is to analyze the safety of the electrolyser together with its performance and the real energy efficiency analyzing its operational data collected under different operating conditions affected by the unstable energy supply.
Overview of First Outcomes of PNR Project HYTUNNEL-CS
Sep 2021
Publication
Dmitry Makarov,
Donatella Cirrone,
Volodymyr V. Shentsov,
Sergii Kashkarov,
Vladimir V. Molkov,
Z. Xu,
Mike Kuznetsov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Ilias C. Tolias,
Knut Vaagsaether,
André Vagner Gaathaug,
Mark R. Pursell,
Wayne M. Rattigan,
Frank Markert,
Luisa Giuliani,
L.S. Sørensen,
A. Bernad,
Mercedes Sanz Millán,
U. Kummer,
Christian Brauner,
Paola Russo,
J. van den Berg,
F. de Jong,
Tom Van Esbroeck,
M. Van De Veire,
Didier Bouix,
Gilles Bernard-Michel,
Sergey Kudriakov,
Etienne Studer,
Domenico Ferrero,
Joachim Grüne and
G. Stern
The paper presents the first outcomes of the experimental numerical and theoretical studies performed in the funded by Fuel Cell and Hydrogen Joint Undertaking (FCH2 JU) project HyTunnel-CS. The project aims to conduct pre-normative research (PNR) to close relevant knowledge gaps and technological bottlenecks in the provision of safety of hydrogen vehicles in underground transportation systems. Pre normative research performed in the project will ultimately result in three main outputs: harmonised recommendations on response to hydrogen accidents recommendations for inherently safer use of hydrogen vehicles in underground traffic systems and recommendations for RCS. The overall concept behind this project is to use inter-disciplinary and inter-sectoral prenormative research by bringing together theoretical modelling and experimental studies to maximise the impact. The originality of the overall project concept is the consideration of hydrogen vehicle and underground traffic structure as a single system with integrated safety approach. The project strives to develop and offer safety strategies reducing or completely excluding hydrogen-specific risks to drivers passengers public and first responders in case of hydrogen vehicle accidents within the currently available infrastructure.
Hydrogen Refueling Stations and Carbon Emission Reduction of Coastal Expressways: A Deployment Model and Multi-Scenario Analysis
Jul 2022
Publication
Hydrogen is considered to the ultimate solution to achieve carbon emission reduction due to its wide sources and high calorific value as well as non-polluting renewable and storable advantages. This paper starts from the coastal areas uses offshore wind power hydrogen production as the hydrogen source and focuses on the combination of hydrogen supply chain network design and hydrogen expressway hydrogen refueling station layout optimization. It proposes a comprehensive mathematical model of hydrogen supply chain network based on cost analysis which determined the optimal size and location of hydrogen refueling stations on hydrogen expressways in coastal areas. Under the multi-scenario and multi-case optimization results the location of the hydrogen refueling station can effectively cover the road sections of each case and the unit hydrogen cost of the hydrogen supply chain network is between 11.8 and 15.0 USD/kgH2 . Meanwhile it was found that the transportation distance and the number of hydrogen sources play a decisive role on the cost of hydrogen in the supply chain network and the location of hydrogen sources have a decisive influence on the location of hydrogen refueling stations. In addition carbon emission reduction results of hydrogen supply chain network show that the carbon emission reduction per unit hydrogen production is 15.51 kgCO2/kgH2 at the production side. The CO2 emission can be reduced by 68.3 kgCO2/km and 6.35 kgCO2/kgH2 per unit mileage and per unit hydrogen demand at the application side respectively. The layout planning utilization of hydrogen energy expressway has a positive impact on energy saving and emission reduction.
Golden Hydrogen
Nov 2022
Publication
Hydrogen is a colorless compound to which symbolic colors are attributed to classify it according to the resources used in production production processes such as electrolysis and energy vectors such as solar radiation. Green hydrogen is produced mainly by electrolysis of water using renewable electricity from an electricity grid powered by wind geothermal solar or hydroelectric power plants. For grid-powered electrolyzers the tendency is to go larger to reach the gigawatt-scale. An evolution in the opposite direction is the integration of the photophysics of sunlight harvesting and the electrochemistry of water molecule splitting in solar hydrogen generator units with each unit working at kilowatt-scale or less. Solar hydrogen generators are intrinsically modular needing multiplication of units to reach gigawatt-scale. To differentiate these two fundamentally different technologies the term ‘golden hydrogen’ is proposed referring to hydrogen produced by modular solar hydrogen generators. Decentralized modular production of golden hydrogen is complementary to centralized energy-intensive green hydrogen production. The differentiation between green hydrogen and golden hydrogen will facilitate the introduction of the additionality principle in clean hydrogen policy.
Efficient Plasma Technology for the Production of Green Hydrogen from Ethanol and Water
Apr 2022
Publication
This study concerns the production of hydrogen from a mixture of ethanol and water. The process was conducted in plasma generated by a spark discharge. The substrates were introduced in the liquid phase into the reactor. The gaseous products formed in the spark reactor were hydrogen carbon monoxide carbon dioxide methane acetylene and ethylene. Coke was also produced. The energy efficiency of hydrogen production was 27 mol(H2 )/kWh and it was 36% of the theoretical energy efficiency. The high value of the energy efficiency of hydrogen production was obtained with relatively high ethanol conversion (63%). In the spark discharge it was possible to conduct the process under conditions in which the ethanol conversion reached 95%. However this entailed higher energy consumption and reduced the energy efficiency of hydrogen production to 8.8 mol(H2 )/kWh. Hydrogen production increased with increasing discharge power and feed stream. However the hydrogen concentration was very high under all tested conditions and ranged from 57.5 to 61.5%. This means that the spark reactor is a device that can feed fuel cells the power load of which can fluctuate.
French Guide to Conformity Assessment and Certification of Hydrogen Systems
Sep 2021
Publication
Hydrogen as energy carrier is referenced in French and European political strategies to realize the transition to low-carbon energy. In 2020 in France the government was launching a major investment plan amounting to 7.2 billion euros until 2030 to support the deployment of large-scale hydrogen technologies [1]. The implementation of this strategy should lead to the arrival of several new hydrogen systems that will need to be evaluated and certified regarding their compliance with safety requirements before being commercialized. Conformity assessment and certification play an important role to achieve a good safety level on the EU market for the protection of workers and consumers. It is a way for the manufacturer to prove that hazards have been identified and risks are managed and to demonstrate his commitment to safety that are key to access to the EU market. To assist manufacturers in identifying the applicable regulations standards and procedures for putting their product on the market Ineris elaborated a guidebook [2] with financial and technical support by ADEME the French Agency for Ecological Transition and France Hydrogen the French Association for Hydrogen and Fuel Cells. The preparation of this document also led to identifying gaps in the Regulations Codes and Standards (RCS) framework and necessary resources for the implementation of the conformity assessment procedures. This paper first describes the main regulatory procedures applicable for various types of hydrogen systems. Then describes the role of the actors involved in this process with a special focus on the French context. And finally focuses on some of the gaps that were identified and formulates suggestions to address them.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Effect of the Renewable Gases on the Uncertainty Budgets of Gas Meters
Sep 2022
Publication
During the study of the CEN/TC 237 standards “Gas meters” in the European Metrology Programme for Innovation and Research (EMPIR) project named NEWGASMET the impact of the renewable gases (biogas biomethane hydrogen syngas and mixtures with natural gas) on the uncertainty on the gas meter was discussed and described in several recommendation reports. This report is on the activity A2.1.15 where the objective is “Using input from A2.1.2-A2.1.8 FORCE with support from Cesame CMI NEL PTB VSL and ISSI will write a report on the effects of renewable gases on the uncertainty budgets of gas meters.”
Import Options for Chemical Energy Carriers from Renewable Sources to Germany
Feb 2024
Publication
Import and export of fossil energy carriers are cornerstones of energy systems world-wide. If energy systems are to become climate neutral and sustainable fossil carriers need to be substituted with carbon neutral alternatives or electrified if possible. We investigate synthetic chemical energy carriers hydrogen methane methanol ammonia and Fischer-Tropsch fuels produced using electricity from Renewable Energy Source (RES) as fossil substitutes. RES potentials are obtained from GIS-analysis and hourly resolved time-series are derived using reanalysis weather data. We model the sourcing of feedstock chemicals synthesis and transport along nine different Energy Supply Chains to Germany and compare import options for seven locations around the world against each other and with domestically sourced alternatives on the basis of their respective cost per unit of hydrogen and energy delivered. We find that for each type of chemical energy carrier there is an import option with lower costs compared to domestic production in Germany. No single exporting country or energy carrier has a unique cost advantage since for each energy carrier and country there are cost-competitive alternatives. This allows exporter and infrastructure decisions to be made based on other criteria than energy and cost. The lowest cost means for importing of energy and hydrogen are by hydrogen pipeline from Denmark Spain and Western Asia and Northern Africa starting at 36 EUR/MWhLHV to 42 EUR/MWhLHV or 1.0 EUR/kgH2 to 1.3 EUR/kgH2 (in 2050 assuming 5% p.a. capital cost). For complex energy carriers derived from hydrogen like methane ammonia methanol or Fischer-Tropsch fuels imports from Argentina by ship to Germany are lower cost than closer exporters in the European Union or Western Asia and Northern Africa. For meeting hydrogen demand direct hydrogen imports are more attractive than indirect routes using methane methanol or ammonia imports and subsequent decomposition to hydrogen because of high capital investment costs and energetic losses of the indirect routes. We make our model and data available under open licenses for adaptation and reuse.
No more items...