Publications
Techno-economic-environmental Assessment of Green Hydrogen and Ammonia Synthesis Using Solar and Wind Resources for Three Selected Sites in Egypt
Sep 2024
Publication
The primary motivation of the present study is to mitigate the severe impact of ongoing energy resource shortages while offering clean and sustainable energy carriers such as hydrogen and ammonia. The present system mainly encompasses water splitting and the Haber-Bosch (HB) processes for green hydrogen and ammonia synthesis using solar and wind power respectively. Pointwise quantification analyses are conducted to quantify the power hydrogen and ammonia as well as the economic parameters specifically the levelized cost of energy (LCOE) levelized cost of hydrogen (LCOH) and levelized cost of ammonia (LCOA). This analysis is based on meteorological data from three sites in Egypt considering the specific water and nitrogen requirements for hydrogen and ammonia synthesis respectively. Furthermore carbon dioxide mitigation from solar and wind systems is estimated. These respective sites are Jarjoub on the coastlines of the Mediterranean Sea and Ain Sokhna and Jabal Al-Zait on the coastlines of the Red Sea. The results indicate that the lowest values of LCOE LCOH and LCOA are 12.58 $/MWh 1.91 $/kg H2 and 396.1 $/Ton NH3 respectively which were attained using solar resources at Ain Sokhna geographical site at the Red Sea. Besides Jarjoub which is located in the Mediterranean Sea could attain LCOH of 2.15 $/kg which is still a promising option due to its export potential to Europe. However the use of wind resources is incompetent for solar counterparts in the respective sites; their potential application in Egypt is still promising. The results demonstrate that Jabal Al-Zait stands as a favorable location for green power hydrogen and ammonia synthesis using wind resources which has LCOE LCOH and LCOA of 23.67 $/MWh 2.75 $/kg H2 and 547.8 $/Ton NH3 respectively.
Alternative Gaseous Fuels for Marine Vessels towards Zero-Carbon Emissions
Nov 2023
Publication
The maritime industry is recognized as a major pollution source to the environment. The use of low- or zero-carbon marine alternative fuel is a promising measure to reduce emissions of greenhouse gases and toxic pollutants leading to net-zero carbon emissions by 2050. Hydrogen (H2 ) fuel cells particularly proton exchange membrane fuel cell (PEMFC) and ammonia (NH3 ) are screened out to be the feasible marine gaseous alternative fuels. Green hydrogen can reduce the highest carbon emission which might amount to 100% among those 5 types of hydrogen. The main hurdles to the development of H2 as a marine alternative fuel include its robust and energy-consuming cryogenic storage system highly explosive characteristics economic transportation issues etc. It is anticipated that fossil fuel used for 35% of vehicles such as marine vessels automobiles or airplanes will be replaced with hydrogen fuel in Europe by 2040. Combustible NH3 can be either burned directly or blended with H2 or CH4 to form fuel mixtures. In addition ammonia is an excellent H2 carrier to facilitate its production storage transportation and usage. The replacement of promising alternative fuels can move the marine industry toward decarbonization emissions by 2050.
Optimal Planning of Renewable Energy Park for Green Hydrogen Production Using Detailed Cost and Efficiency Curves of PEM Electrolyzer
Jul 2024
Publication
Installing multi-renewable energy (RE) power plants at designated locations known as RE parks is a promising solution to address their intermittent power. This research focuses on optimizing RE parks for three scenarios: photovoltaic (PV)-only wind-only and hybrid PV-wind with the aim of generating green hydrogen in locations with different RE potentials. To ensure rapid response to RE fluctuations a Proton Exchange Membrane (PEM) electrolyzer is employed. Furthermore this research proposes detailed models for manufacturer-provided wind power curves electrolyzer efficiency against its operating power and electrolyzer cost towards its capacity. Two optimization cases are conducted in MATLAB evaluating the optimum sizes of the plants in minimizing levelized cost of hydrogen (LCOH) using classical discrete combinatorial method and determining the ideal PV-to-wind capacity ratio for operating PEM electrolyzer within hybrid PV-wind parks using particle swarm optimization. Numerical simulations show that wind power-based hydrogen production is more cost-effective than PV-only RE parks. The lowest LCOH $4.26/kg H2 and the highest LCOH $14.378/kg H2 are obtained from wind-only and PV-only configurations respectively. Both occurred in Adum-Kirkeby Denmark as it has highest average wind speed and lowest irradiance level. Notably LCOH is reduced with the hybrid PV-wind configuration. The results suggest the optimum PV-to-wind capacity ratio is 65:35 on average and indicate that LCOH is more sensitive to electrolyzer’s cost than to electricity tariff variation. This study highlights two important factors i.e. selecting the suitable location based on the available RE resources and determining the optimum size ratio between the plants within the RE park.
Optimal Sizing of Renewables-to-hydrogen Systems in a Suitable-site-selection Geospatial Framework: The Case Study if Italy and Portugal
Jun 2024
Publication
Growing renewable energy deployment worldwide has sparked a shift in the energy landscape with far-reaching geopolitical ramifications. Hydrogen’s role as an energy carrier is central to this change facilitating global trade and the decarbonisation of hard-to-abate sectors. This analysis offers a new method for optimally sizing solar/wind-to-hydrogen systems in specifically suitable locations. These locations are limited to the onshore and offshore regions of selected countries as determined by a bespoke geospatial analysis developed to be location-agnostic. Furthermore the research focuses on determining the best configurations for such systems that minimise the cost of producing hydrogen with the optimisation algorithm expanding from the detailed computation of the classic levelised cost of hydrogen. One of the study’s main conclusions is that the best hybrid configurations obtained provide up to 70% cost savings in some areas. Such findings represent unprecedented achievements for Italy and Portugal and can be a valuable asset for economic studies of this kind carried out by local and national governments across the globe. These results validate the optimisation model’s initial premise significantly improving the credibility of this work by constructively challenging the standard way of assessing large-scale green hydrogen projects.
Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future
Sep 2023
Publication
There is a growing interest in green hydrogen with researchers institutions and countries focusing on its development efficiency improvement and cost reduction. This paper explores the concept of green hydrogen and its production process using renewable energy sources in several leading countries including Australia the European Union India Canada China Russia the United States South Korea South Africa Japan and other nations in North Africa. These regions possess significant potential for “green” hydrogen production supporting the transition from fossil fuels to clean energy and promoting environmental sustainability through the electrolysis process a common method of production. The paper also examines the benefits of green hydrogen as a future alternative to fossil fuels highlighting its superior environmental properties with zero net greenhouse gas emissions. Moreover it explores the potential advantages of green hydrogen utilization across various industrial commercial and transportation sectors. The research suggests that green hydrogen can be the fuel of the future when applied correctly in suitable applications with improvements in production and storage techniques as well as enhanced efficiency across multiple domains. Optimization strategies can be employed to maximize efficiency minimize costs and reduce environmental impact in the design and operation of green hydrogen production systems. International cooperation and collaborative efforts are crucial for the development of this technology and the realization of its full benefits.
A Review of Control Strategies for Proton Exchange Membrane (PEM) Fuel Cells and Water Electrolysers: From Automation to Autonomy
Jul 2024
Publication
Proton exchange membrane (PEM) based electrochemical systems have the capability to operate in fuel cell (PEMFC) and water electrolyser (PEMWE) modes enabling efficient hydrogen energy utilisation and green hydrogen production. In addition to the essential cell stacks the system of PEMFC or PEMWE consists of four sub-systems for managing gas supply power thermal and water respectively. Due to the system’s complexity even a small fluctuation in a certain sub-system can result in an unexpected response leading to a reduced performance and stability. To improve the system’s robustness and responsiveness considerable efforts have been dedicated to developing advanced control strategies. This paper comprehensively reviews various control strategies proposed in literature revealing that traditional control methods are widely employed in PEMFC and PEMWE due to their simplicity yet they suffer from limitations in accuracy. Conversely advanced control methods offer high accuracy but are hindered by poor dynamic performance. This paper highlights the recent advancements in control strategies incorporating machine learning algorithms. Additionally the paper provides a perspective on the future development of control strategies suggesting that hybrid control methods should be used for future research to leverage the strength of both sides. Notably it emphasises the role of artificial intelligence (AI) in advancing control strategies demonstrating its significant potential in facilitating the transition from automation to autonomy.
Local Energy Community to Support Hydrogen Production and Network Flexibility
Jul 2024
Publication
This paper deals with the optimal scheduling of the resources of a renewable energy community whose coordination is aimed at providing flexibility services to the electrical distribution network. The available resources are renewable generation units battery energy storage systems dispatchable loads and power-to-hydrogen systems. The main purposes behind the proposed strategy are enhancement of self-consumption and hydrogen production from local resources and the maximization of the economic benefits derived from both the selling of hydrogen and the subsidies given to the community for the shared energy. The proposed approach is formulated as an economic problem accounting for the perspectives of both community members and the distribution system operator. In more detail a mixed-integer constrained non-linear optimization problem is formulated. Technical constraints related to the resources and the power flows in the electrical grid are considered. Numerical applications allow for verifying the effectiveness of the procedure. The results show that it is possible to increase self-consumption and the production of green hydrogen while providing flexibility services through the exploitation of community resources in terms of active and reactive power support. More specifically the application of the proposed strategy to different case studies showed that daily revenues of up to EUR 1000 for each MW of renewable energy generation installed can be obtained. This value includes the benefit obtained thanks to the provision of flexibility services which contribute about 58% of the total.
Minimization of Construction and Operation Costs of the Fuel Cell Bus Transportation System
Dec 2024
Publication
This paper took the actual bus transportation system as the object simulated the operating state of the system replaced all the current diesel engine buses with fuel cell buses using electrolysis-produced hydrogen and completed the existing timetable and routes. In the study the numbers of hydrogen production stations and hydrogen storage stations the maximum hydrogen storage capacity of the buses the supplementary hydrogen capacity of the buses and the hydrogen production capacity of the hydrogen storage stations were used as the optimal adjustment parameters for minimizing the ten-year construction and operating costs of the fuel cell bus transportation system by the artificial bee colony algorithm. Two hydrogen supply methods decentralized and centralized hydrogen production were analyzed. This paper used the actual bus timetable to simulate the operation of the buses including 14 transfer stations and 112 routes. The results showed that the use of centralized hydrogen production and partitioned hydrogen production transfer stations could indeed reduce the construction and operating costs of the fuel cell bus transportation system. Compared with the decentralized hydrogen production case the construction and operating costs could be reduced by 6.9% 12.3% and 14.5% with one two and three zones for centralized hydrogen production respectively.
The Long Term Price Elastic Demand of Hydrogen - A Multi-model Analysis for Germany
May 2024
Publication
Hydrogen and its derivatives are important components to achieve climate policy goals especially in terms of greenhouse gas neutrality. There is an ongoing controversial debate about the applications in which hydrogen and its derivatives should be used and to what extent. Typically the estimation of hydrogen demand relies on scenario-based analyses with varying underlying assumptions and targets. This study establishes a new framework consisting of existing energy system simulation and optimisation models in order to assess the long-term price-elastic demand of hydrogen. The aim of this work is to shift towards an analysis of the hydrogen demand that is primarily driven by its price. This is done for the case of Germany because of the expected high hydrogen demand for the years 2025–2045. 15 wholesale price pathways were established with final prices in 2045 between 56 €/MWh and 182 €/MWh. The results suggest that – if climate targets are to be achieved - even with high hydrogen prices (252 €/MWh in 2030 and 182 €/MWh in 2045) a significant hydrogen demand in the industry sector and the energy conversion sector is expected to emerge (318 TWh). Furthermore the energy conversion sector has a large share of price sensitive hydrogen demand and therefore its demand strongly increases with lower prices. The road transportation sector will only play a small role in terms of hydrogen demand if prices are low. In the decentralised heating for buildings no relevant demand will be seen over the considered price ranges whereas the centralised supply of heat via heat grids increases as prices fall.
Renewable Electricity and Green Hydrogen Integration for Decarbonization of “Hard-to-Abate” Industrial Sectors
Jul 2024
Publication
This paper investigates hydrogen’s potential to accelerate the energy transition in hardto-abate sectors such as steel petrochemicals glass cement and paper. The goal is to assess how hydrogen produced from renewable sources can foster both industrial decarbonization and the expansion of renewable energy installations especially solar and wind. Hydrogen’s dual role as a fuel and a chemical agent for process innovation is explored with a focus on its ability to enhance energy efficiency and reduce CO2 emissions. Integrating hydrogen with continuous industrial processes minimizes the need for energy storage making it a more efficient solution. Advances in electrolysis achieving efficiencies up to 60% and storage methods consuming about 10% of stored energy for compression are discussed. Specifically in the steel sector hydrogen can replace carbon as a reductant in the direct reduced iron (DRI) process which accounts for around 7% of global steel production. A next-generation DRI plant producing one million tons of steel annually would require approximately 3200 MW of photovoltaic capacity to integrate hydrogen effectively. This study also discusses hydrogen’s role as a co-fuel in steel furnaces. Quantitative analyses show that to support typical industrial plants hydrogen facilities of several hundred to a few thousand MW are necessary. “Virtual” power plants integrating with both the electrical grid and energy-intensive systems are proposed highlighting hydrogen’s critical role in industrial decarbonization and renewable energy growth.
Realistic Electrolyzer Temperature and Pressure Conditions Evaluation of NiFeP/Zn-coated Electrodes for Alkaline Water Splitting
Jul 2025
Publication
The current transition to renewable energies has motivated research into energy storage using various techniques. Of these electrolysis for pure hydrogen production stands out as hydrogen is a crucial energy vector molecule capable of decarbonizing multiple sectors. However the low efficiency of the electrolysis process presents a major limitation. In this work an electrochemical evaluation of catalyst materials for water splitting under elevated temperature and pressure (ETP) conditions to replicate realistic electrolyzer operating environments is proposed. The NiFeP/Zn-coated nickel foam electrodes demonstrated a brain-like compact morphology with EDS revealing a composition of 62.20 at% Ni 13.90 at% Fe 1.60 at% Zn 7.65 at% P and 15.21 at% O2. Electrochemical performance tests revealed a significant reduction in overpotential for the hydrogen evolution reaction (HER) achieving 38 mV at 8 bar and 80 ◦C while the oxygen evolution reaction (OER) exhibited 119 mV at 1 bar and 80 ◦C both at |30| mAcm− 2 . Chronopotentiometry confirmed the stability of the coating for over 24 h at high current density of |400| mAcm− 2 . The bifunctional capability of the coating was validated in a fullcell test obtaining a remarkably low overpotential of 1.47 V at 30 mAcm− 2 for overall water splitting under 80 ◦C and 8 bar conditions.
A COMSOL Framework for Predicting Hydrogen Embrittlement - Part 1: Coupled Hydrogen Transport
Mar 2025
Publication
Hydrogen threatens the structural integrity of metals and thus predicting hydrogen-material interactions is key to unlocking the role of hydrogen in the energy transition. Quantifying the interplay between material deformation and hydrogen diffusion ahead of cracks and other stress concentrators is key to the prediction and prevention of hydrogen-assisted failures. In this work a generalised theoretical and computational framework is presented that for the first time encompasses: (i) stress-assisted diffusion (ii) hydrogen trapping due to multiple trap types rigorously accounting for the rate of creation of dislocation trap sites (iii) hydrogen transport through dislocations (iv) equilibrium (Oriani) and non-equilibrium (McNabb-Foster) trapping kinetics (v) hydrogen-induced softening and (vi) hydrogen uptake considering the role of hydrostatic stresses and local electrochemistry. Particular emphasis is placed on the numerical implementation in COMSOL Multiphysics releasing the relevant models and discussing stability discretisation and solver details. Each of the elements of the framework is independently benchmarked against results from the literature and implications for the prediction of hydrogen-assisted fractures are discussed. The second part of this work (Part II) shows how these crack tip predictions can be combined with crack growth simulations.
Flame Acceleration, Detonation Limit and Heat Loss for Hydrogen-Oxygen Mixture at Cryogenic Temperature of 77 K
Sep 2023
Publication
Experiments are performed in hydrogen-oxygen mixtures at the cryogenic temperature of 77 K with the equivalence ratio of 1.5 and 2.0. The optical fibers pressure sensors and the smoked foils are used to record the flame velocity overpressure evolution curve and detonation cells respectively. The 1st and 2nd shock waves are captured and they finally merge to form a stronger precursor shock wave prior to the onset of detonation. The cryogenic temperature will cause the larger expansion ratio which results in the occurrence of strong flame acceleration. The stuttering mode the galloping mode and the deflagration mode are observed when the initial pressure decreases from 0.50 atm to 0.20 atm with the equivalence ratio of 1.5 and the detonation limit is within 0.25-0.30 atm. The heat loss effect on the detonation limit is analysed. In addition the regularity of detonation cell is investigated and the larger post-shock specific heat ratio !"" and the lower normalized activation energy # at lower initial pressure will cause the more regular detonation cell. Also the detonation cell width is predicted by a model of = ($) ⋅ Δ# and the prediction results are mainly consistent with the experimental results.
A Brief on Nano-Based Hydrogen Energy Transition
Sep 2023
Publication
Considering the clean renewable and ecologically friendly characteristics of hydrogen gas as well as its high energy density hydrogen energy is thought to be the most potent contender to locally replace fossil fuels. The creation of a sustainable energy system is currently one of the critical industrial challenges and electrocatalytic hydrogen evolution associated with appropriate safe storage techniques are key strategies to implement systems based on hydrogen technologies. The recent progress made possible through nanotechnology incorporation either in terms of innovative methods of hydrogen storage or production methods is a guarantee of future breakthroughs in energy sustainability. This manuscript addresses concisely and originally the importance of including nanotechnology in both green electroproduction of hydrogen and hydrogen storage in solid media. This work is mainly focused on these issues and eventually intends to change beliefs that hydrogen technologies are being imposed only for reasons of sustainability and not for the intrinsic value of the technology itself. Moreover nanophysics and nano-engineering have the potential to significantly change the paradigm of conventional hydrogen technologies.
Effects of Surface Modification on a Proton Exchange Membrane for Improvements in Green Hydrogen Production
Oct 2023
Publication
Proton Exchange Membrane (PEM) electrolysis an advanced technique for producing hydrogen with efficiency and environmental friendliness signifies the forefront of progress in this domain. Compared to alkaline cells these electrolytic cells offer numerous advantages such as lower operating temperatures enhanced hydrogen production efficiency and eliminating the need for an aqueous solution. However PEM electrolysis still faces limitations due to the high cost of materials used for the membrane and catalysts resulting in elevated expenses for implementing large-scale systems. The pivotal factor in improving PEM electrolysis lies in the Platinum catalyst present on the membrane surface. Enhancing catalytic efficiency through various methods and advancements holds immense significance for the progress of this technology. This study investigates the use of patterned membranes to improve the performance of PEM electrolytic cells toward green hydrogen production. By increasing the Platinum loading across the membrane surface and enhancing catalytic performance these patterned membranes overcome challenges faced by conventionally fabricated counterparts. The findings of this research indicate that membranes with modified surfaces not only exhibit higher current draw but also achieve elevated rates of hydrogen production.
Optimizing Green Hydrogen Production from Wind and Solar for Hard-to-abate Industrial Sectors Across Multiple Sites in Europe
Jul 2024
Publication
This article analyzes a power-to-hydrogen system designed to provide high-temperature heat to hard-to-abate industries. We leverage on a geospatial analysis for wind and solar availability and different industrial demand profiles with the aim to identify the ideal sizing of plant components and the resulting Levelized Cost of Hydrogen (LCOH). We assess the carbon intensity of the produced hydrogen especially when grid electricity is utilized. A methodology is developed to size and optimize the PV and wind energy capacity the electrolyzer unit and hybrid storage by combining compressed hydrogen storage with lithium-ion batteries. The hydrogen demand profile is generated synthetically thus allowing different industrial consumption profiles to be investigated. The LCOH in a baseline scenario ranges from 3.5 to 8.9 €/kg with the lowest values in wind-rich climates. Solar PV only plays a role in locations with high PV full-load hours. It was found that optimal hydrogen storage can cover the users’ demand for 2–3 days. Most of the considered scenarios comply with the emission intensity thresholds set by the EU. A sensitivity analysis reveals that a lower variability of the demand profile is associated with cost savings. An ideally constant demand profile results in a cost reduction of approximately 11 %.
An Analysis of Hybrid Renewable Energy-Based Hydrogen Production and Power Supply for Off-Grid Systems
Jun 2024
Publication
Utilizing renewable energy sources to produce hydrogen is essential for promoting cleaner production and improving power utilization especially considering the growing use of fossil fuels and their impact on the environment. Selecting the most efficient method for distributing power and capacity is a critical issue when developing hybrid systems from scratch. The main objective of this study is to determine how a backup system affects the performance of a microgrid system. The study focuses on power and hydrogen production using renewable energy resources particularly solar and wind. Based on photovoltaics (PVs) wind turbines (WTs) and their combinations including battery storage systems (BSSs) and hydrogen technologies two renewable energy systems were examined. The proposed location for this study is the northwestern coast of Saudi Arabia (KSA). To simulate the optimal size of system components and determine their cost-effective configuration the study utilized the Hybrid Optimization Model for Multiple Energy Resources (HOMER) software (Version 3.16.2). The results showed that when considering the minimum cost of energy (COE) the integration of WTs PVs a battery bank an electrolyzer and a hydrogen tank brought the cost of energy to almost 0.60 USD/kWh in the system A. However without a battery bank the COE increased to 0.72 USD/kWh in the same location because of the capital cost of system components. In addition the results showed that the operational life of the fuel cell decreased significantly in system B due to the high hours of operation which will add additional costs. These results imply that long-term energy storage in off-grid energy systems can be economically benefited by using hydrogen with a backup system.
Optimal Design of Hydrogen Delivery Infrastructure for Multi-sector End Uses at Regional Scale
Jul 2024
Publication
Hydrogen is a promising solution for the decarbonisation of several hard-to-abate end uses which are mainly in the industrial and transport sectors. The development of an extensive hydrogen delivery infrastructure is essential to effectively activate and deploy a hydrogen economy connecting production storage and demand. This work adopts a mixed-integer linear programming model to study the cost-optimal design of a future hydrogen infrastructure in presence of cross-sectoral hydrogen uses taking into account spatial and temporal variations multiple production technologies and optimised multi-mode transport and storage. The model is applied to a case study in the region of Sicily in Italy aiming to assess the infrastructural needs to supply the regional demand from transport and industrial sectors and to transfer hydrogen imported from North Africa towards Europe thus accounting for the region’s role as transit point. The analysis integrates multiple production technologies (electrolysis supplied by wind and solar energy steam reforming with carbon capture) and transport options (compressed hydrogen trucks liquid hydrogen trucks pipelines). Results show that the average cost of hydrogen delivered to demand points decreases from 3.75 €/kgH2 to 3.49 €/kgH2 when shifting from mobilityonly to cross-sectoral end uses indicating that the integrated supply chain exploits more efficiently the infrastructural investments. Although pipeline transport emerges as the dominant modality delivery via compressed hydrogen trucks and liquid hydrogen trucks remains relevant even in scenarios characterised by large hydrogen flows as resulting from cross-sectoral demand demonstrating that the system competitiveness is maximised through multi-mode integration.
Optimal Multi-layer Economical Schedule for Coordinated Multiple Mode Operation of Wind-solar Microgrids with Hybrid Energy Storage Systems
Nov 2023
Publication
The aim of this paper is the design and implementation of an advanced model predictive control (MPC) strategy for the management of a wind–solar microgrid (MG) both in the islanded and grid-connected modes. The MG includes energy storage systems (ESSs) and interacts with external hydrogen and electricity consumers as an extra feature. The system participates in two different electricity markets i.e. the daily and real-time markets characterized by different time-scales. Thus a high-layer control (HLC) and a low-layer control (LLC) are developed for the daily market and the real-time market respectively. The sporadic characteristics of renewable energy sources and the variations in load demand are also briefly discussed by proposing a controller based on the stochastic MPC approach. Numerical simulations with real wind and solar generation profiles and spot prices show that the proposed controller optimally manages the ESSs even when there is a deviation between the predicted scenario determined at the HLC and the real-time one managed by the LLC. Finally the strategy is tested on a lab-scale MG set up at Khalifa University Abu Dhabi UAE.
The UK Hydrogen Innovation Opportunity: Techno-economic Methodology
Apr 2024
Publication
This report outlines the methods and assumptions used in the hydrogen technology market analysis. The results of the analysis are presented in The UK Hydrogen Innovation Opportunity and the supporting report Hydrogen technology roadmaps. They include forecasts for the following market data:
○ Global hydrogen economy The overall size of the global hydrogen economy in 2023 2030 and 2050.
○ Global and UK hydrogen technology market by technology family
This is the proportion of the total future hydrogen economy attributable to hydrogen-related technologies in 2023 2030 and 2050. The hydrogen economy is defined as the ‘end-to-end’ value created from hydrogen production storage & distribution and use. This includes the direct economic value associated with production and distribution of hydrogen as a fuel or chemical feedstock hydrogen infrastructure technologies products services and the indirect economic value created through products and services that indirectly support the use of hydrogen in industry transport power generation and heating. This endto-end definition of the hydrogen economy is represented in Figure 1 overleaf.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
○ Global hydrogen economy The overall size of the global hydrogen economy in 2023 2030 and 2050.
○ Global and UK hydrogen technology market by technology family
This is the proportion of the total future hydrogen economy attributable to hydrogen-related technologies in 2023 2030 and 2050. The hydrogen economy is defined as the ‘end-to-end’ value created from hydrogen production storage & distribution and use. This includes the direct economic value associated with production and distribution of hydrogen as a fuel or chemical feedstock hydrogen infrastructure technologies products services and the indirect economic value created through products and services that indirectly support the use of hydrogen in industry transport power generation and heating. This endto-end definition of the hydrogen economy is represented in Figure 1 overleaf.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
No more items...