Publications
Comprehensive Overview of Recent Research and Industrial Advancements in Nuclear Hydrogen Production
Jun 2024
Publication
As new sources of energy and advanced technologies are used there is a continuous evolution in energy supply demand and distribution. Advanced nuclear reactors and clean hydrogen have the opportunity to scale together and diversify the hydrogen production market away from fossil fuel-based production. Nevertheless the technical uncertainties surrounding nuclear hydrogen processes necessitate thorough research and a solid development effort. This paper aims to position pink hydrogen for nuclear hydrogen production at the forefront of sustainable energy-related solutions by offering a comprehensive review of recent advancements in nuclear hydrogen production covering both research endeavors and industrial applications. It delves into various pink hydrogen generation methodologies elucidating their respective merits and challenges. Furthermore this paper analyzes the evolving landscape of pink hydrogen in terms of its levelized cost by comparatively assessing different production pathways. By synthesizing insights from academic research and industrial practices this paper provides valuable perspectives for stakeholders involved in shaping the future of nuclear hydrogen production.
Low-carbon Economic Dispatch of Hydrogen-containing Integrated Energy System Considering Stepped Demand Response
Apr 2024
Publication
Vigorously developing an integrated energy system (IES) centered on the utilization of hydrogen energy is a crucial strategy to achieve the goal of carbon peaking and carbon neutrality. During the energy conversion process a hydrogen storage system releases a large amount of heat. By integrating a heat recovery mechanism we have developed a sophisticated hydrogen energy utilization model that accommodates multiple operational conditions and maximizes heat recovery thereby enhancing the efficiency of energy use on the supply side. To harness the potential of load-side response an integrated demand response (IDR) model accounting for price and incentives is established and a ladder-type subsidy incentive mechanism is proposed to deeply unlock load-side response capacity. Considering system economics and low carbon an IES source-load coordinated optimal scheduling model is proposed optimizing source-load coordinated operation for optimally integrated economy factoring in reward and punishment ladder-type carbon trading. Demonstrations reveal that the proposed methodology not only improves the efficiency of energy utilization but also minimizes wind energy wastage activates consumer engagement and reduces both system costs and carbon emissions thus proving the effectiveness of our optimization approach.
Pathways to the Hydrogen Economy: A Multidimensional Analysis of the Technological Innovation Systems of Germany and South Korea
Aug 2023
Publication
The global trend towards decarbonization and the demand for energy security have put hydrogen energy into the spotlight of industry politics and societies. Numerous governments worldwide are adopting policies and strategies to facilitate the transition towards hydrogen-based economies. To assess the determinants of such transition this study presents a comparative analysis of the technological innovation systems (TISs) for hydrogen technologies in Germany and South Korea both recognized as global front-runners in advancing and implementing hydrogen-based solutions. By providing a multi-dimensional assessment of pathways to the hydrogen economy our analysis introduces two novel and crucial elements to the TIS analysis: (i) We integrate the concept of ‘quality infrastructure’ given the relevance of safety and quality assurance for technology adoption and social acceptance and (ii) we emphasize the social perspective within the hydrogen TIS. To this end we conducted 24 semi-structured expert interviews applying qualitative open coding to analyze the data. Our results indicate that the hydrogen TISs in both countries have undergone significant developments across various dimensions. However several barriers still hinder the further realization of a hydrogen economy. Based on our findings we propose policy implications that can facilitate informed policy decisions for a successful hydrogen transition.
Advancements and Policy Implications of Green Hydrogen Production from Renewable Sources
Jul 2024
Publication
With the increasingly severe climate change situation and the trend of green energy transformation the development and utilization of hydrogen energy has attracted extensive attention from government industry and academia in the past few decades. Renewable energy electrolysis stands out as one of the most promising hydrogen production routes enabling the storage of intermittent renewable energy power generation and supplying green fuel to various sectors. This article reviews the evolution and development of green hydrogen policies in the United States the European Union Japan and China and then summarizes the key technological progress of renewable energy electrolysis while introducing the progress of hydrogen production from wind and photovoltaic power generation. Furthermore the environmental social and economic benefits of different hydrogen production routes are analyzed and compared. Finally it provides a prospective analysis of the potential impact of renewable energy electrolysis on the global energy landscape and outlines key areas for future research and development.
Hydrogen in the Natural Gas Network—Relevance for Existing Fire Precautions
Jun 2024
Publication
Power-to-gas technology can be used to convert excess power from renewable energies to hydrogen by means of water electrolysis. This hydrogen can serve as “chemical energy storage” and be converted back to electricity or fed into the natural gas grid. In the presented study a leak in a household pipe in a single-family house with a 13 KW heating device was experimentally investigated. An admixture of up to 40% hydrogen was set up to produce a scenario of burning leakage. Due to the outflow and mixing conditions a lifted turbulent diffusion flame was formed. This led to an additional examination point and expanded the aim and novelty of the experimental investigation. In addition to the fire safety experimental simulation of a burning leakage the resulting complex properties of the flame namely the lift-off height flame length shape and thermal radiation have also been investigated. The obtained results of this show clearly that as a consequence of the hydrogen addition the main properties of the flame such as lifting height flame temperature thermal radiation and total heat flux densities along the flame have been changed. To supplement the measurements with thermocouples imaging methods based on the Sobel gradient were used to determine the lifting height and the flame length. In order to analyze the determined values a probability density function was created.
Co-Combustion of Hydrogen with Diesel and Biodiesel (RME) in a Dual-Fuel Compression-Ignition Engine
Jun 2023
Publication
The utilization of hydrogen for reciprocating internal combustion engines remains a subject that necessitates thorough research and careful analysis. This paper presents a study on the co-combustion of hydrogen with diesel fuel and biodiesel (RME) in a compression-ignition piston engine operating at maximum load with a hydrogen content of up to 34%. The research employed engine indication and exhaust emissions measurement to assess the engine’s performance. Engine indication allowed for the determination of key combustion stages including ignition delay combustion time and the angle of 50% heat release. Furthermore important operational parameters such as indicated pressure thermal efficiency and specific energy consumption were determined. The evaluation of dual-fuel engine stability was conducted by analyzing variations in the coefficient of variation in indicated mean effective pressure. The increase in the proportion of hydrogen co-combusted with diesel fuel and biodiesel had a negligible impact on ignition delay and led to a reduction in combustion time. This effect was more pronounced when using biodiesel (RME). In terms of energy efficiency a 12% hydrogen content resulted in the highest efficiency for the dual-fuel engine. However greater efficiency gains were observed when the engine was powered by RME. It should be noted that the hydrogen-powered engine using RME exhibited slightly less stable operation as measured by the COVIMEP value. Regarding emissions hydrogen as a fuel in compression ignition engines demonstrated favorable outcomes for CO CO2 and soot emissions while NO and HC emissions increased.
Flame Visibility in Hydrogen Appliances
Sep 2023
Publication
One of the benefits of the direct use of hydrogen is its ability to be burned in a similar way to natural gas using appliances with which the community is already familiar. This is particularly true for applications where electrification is neither practicable nor desirable. One common example is domestic cooking stoves where the open flame offers numerous real and perceived benefits to the chef. Similarly many commercial and industrial appliances rely on the unique properties of combustion to achieve a desired purpose that cannot readily be replaced by an alternative to an open flame. Despite the enormous decarbonisation potential of the direct replacement of natural gas with hydrogen there are some operational constraints due to the different burning characteristics of hydrogen. One of the challenges is the low visible light emission from hydrogen flames. The change in visible radiation from the combustion of hydrogen compared with natural gas is a safety concern whereby visual observation of a flame may be difficult. This paper aims to provide clarity on the visual appearance of hydrogen flames via a series of measurements of flame visibility and emission spectra accompanied by the assessment of strategies to improve the safe use of hydrogen.
Technology Pathways, Efficiency Gains and Price Implications of Decarbonising Residential Heat in the UK
Jun 2023
Publication
The UK government’s plans to decarbonise residential heating will mean major changes to the energy system whatever the specific technology pathway chosen driving a range of impacts on users and suppliers. We use an energy system model (UK TIMES) to identify the potential energy system impacts of alternative pathways to low or zero carbon heating. We find that the speed of transitioning can affect the network investment requirements the overall energy use and emissions generated while the primary heating fuel shift will determine which sectors and networks require most investment. Crucially we identify that retail price differences between heating fuels in the UK particularly gas and electricity could erode or eliminate bill savings from switching to more efficient heating systems.
Feasibility Assessment of Alternative Clean Power Systems onboard Passenger Short-Distance Ferry
Sep 2023
Publication
In order to promote low-carbon fuels such as hydrogen to decarbonize the maritime sector it is crucial to promote clean fuels and zero-emission propulsion systems in demonstrative projects and to showcase innovative technologies such as fuel cells in vessels operating in local public transport that could increase general audience acceptability thanks to their showcase potential. In this study a short sea journey ferry used in the port of Genova as a public transport vehicle is analyzed to evaluate a ”zero emission propulsion” retrofitting process. In the paper different types of solutions (batteries proton exchange membrane fuel cell (PEMFC) solid oxide fuel cell (SOFC)) and fuels (hydrogen ammonia natural gas and methanol) are investigated to identify the most feasible technology to be implemented onboard according to different aspects: ferry daily journey and scheduling available volumes and spaces propulsion power needs energy storage/fuel tank capacity needed economics etc. The paper presents a multi-aspect analysis that resulted in the identification of the hydrogen-powered PEMFC as the best clean power system to guarantee for this specific case study a suitable retrofitting of the vessel that could guarantee a zero-emission journey
Feasibility of Green Hydrogen-Based Synthetic Fuel as a Carbon Utilization Option: An Economic Analysis
Sep 2023
Publication
Singapore has committed to achieving net zero emissions by 2050 which requires the pursuit of multiple decarbonization pathways. CO2 utilization methods such as fuel production may provide a fast interim solution for carbon abatement. This paper evaluates the feasibility of green hydrogen-based synthetic fuel (synfuel) production as a method for utilizing captured CO2. We consider several scenarios: a baseline scenario with no changes local production of synfuel with hydrogen imports and overseas production of synfuel with CO2 exports. This paper aims to determine a CO2 price for synfuel production evaluate the economic viability of local versus overseas production and investigate the effect of different cost parameters on economic viability. Using the current literature we estimate the associated production and transport costs under each scenario. We introduce a CO2 utilization price (CUP) that estimates the price of utilizing captured CO2 to produce synfuel and an adjusted CO2 utilization price (CCUP) that takes into account the avoided emissions from crude oil-based fuel production. We find that overseas production is more economically viable compared to local production with the best case CCUP bounds giving a range of 142–148 $/tCO2 in 2050 if CO2 transport and fuel shipping costs are low. This is primarily due to the high cost of hydrogen feedstock especially the transport cost which can offset the combined costs of CO2 transport and fuel shipping. In general we find that any increase in the hydrogen feedstock cost can significantly affect the CCUP for local production. Sensitivity analysis reveals that hydrogen transport cost has a significant impact on the viability of local production and if this cost is reduced significantly local production can be cheaper than overseas production. The same is true if the economies of scale for local production is significantly better than overseas production. A significantly lower carbon capture cost can also the reduce the CCUP significantly.
Designing a Future-proof Gas and Hydrogen Infrastructure for Europe - A Modelling-based Approach
Jun 2023
Publication
Hydrogen has been at the centre of attention since the EU kicked-off its decarbonization agenda at full speed. Many consider it a silver bullet for the deep decarbonization of technically challenging sectors and industries but it is also an attractive option for the gas industry to retain and future-proof its well-developed infrastructure networks. The modelling methodology presented in this report systematically tests the feasibility and cost of different pipeline transportation methods – blending repurposing and dedicated hydrogen pipelines - under different decarbonization pathways and concludes that blending is not a viable solution and pipeline repurposing can lead to excessive investment outlays in the range of EUR 19–25 bn over the modelled period (2020–2050) for the EU-27.
Lifetime Greenhouse Gas Emissions from Offshore Hydrogen Production
Aug 2023
Publication
With a limited global carbon budget it is imperative that decarbonisation decisions are based on accurate holistic accounts of all greenhouse gas (GHG) emissions produced to assess their validity. Here the upstream GHG emissions of potential UK offshore Green and Blue hydrogen production are compared to GHG emissions from hydrogen produced through electrolysis using UK national grid electricity and the ‘business-as-usual’ case of continuing to combust methane. Based on an operational life of 25 years and producing 0.5MtH2 per year for each hydrogen process the results show that Blue hydrogen will emit between 200-262MtCO2e of GHG emissions depending on the carbon capture rates achieved (39%–90%) Green hydrogen produced via electrolysis using 100% renewable electricity from offshore wind will emit 20MtCO2e and hydrogen produced via electrolysis powered by the National Grid will emit between 103-168MtCO2e depending of the success of its NetZero strategy. The ‘business-as-usual’ case of continuing to combust methane releases 250MtCO2e over the same lifetime. This study finds that Blue hydrogen at scale is not compatible with the Paris Agreement reduces energy security and will require a substantial GHG emissions investment which excludes it from being a ‘low carbon technology’ and should not be considered for any decarbonisation strategies going forward.
CFD Modelling of Large Scale Liquid Hydrogen Experiments Indoors and Outdoors
Sep 2023
Publication
The use of liquid hydrogen in maritime applications is expected to grow in the coming years in order to meet the decarbonisation goals that EU countries and countries worldwide have set for 2050. In this context The Norwegian Public Roads Administration commissioned large-scale LH2 dispersion and explosion experiments both indoors and outdoors which were conducted by DNG GL in 2019 to better understand safety aspects of LH2 in the maritime sector. In this work the DNV unignited outdoor and indoor tests have been simulated and compared with the experiments with the aim to validate the ADREA-HF Computational Fluid Dynamics (CFD) code in maritime applications. Three tests two outdoors and one indoors were chosen for the validation. The outdoor tests (test 5 and 6) involved liquid hydrogen release vertically downwards and horizontal to simulate an accidental leakage during bunkering. The indoor test (test 9) involved liquid hydrogen release inside a closed room to simulate an accident inside a tank connection space (TCS) connected to a ventilation mast.
Blue Hydrogen and Industrial Base Products: The Future of Fossil Fuel Exporters in a Net-zero World
May 2022
Publication
Is there a place for today’s fossil fuel exporters in a low-carbon future? This study explores trade channels between energy exporters and importers using a novel electricity-hydrogen-steel energy systems model calibrated to Norway a major natural gas producer and Germany a major energy consumer. Under tight emission constraints Norway can supply Germany with electricity (blue) hydrogen or natural gas with re-import of captured CO2. Alternatively it can use hydrogen to produce steel through direct reduction and supply it to the world market an export route not available to other energy carriers due to high transport costs. Although results show that natural gas imports with CO2 capture in Germany is the least-cost solution avoiding local CO2 handling via imports of blue hydrogen (direct or embodied in steel) involves only moderately higher costs. A robust hydrogen demand would allow Norway to profitably export all its natural gas production as blue hydrogen. However diversification into local steel production as one example of easy-to-export industrial base products offers an effective hedge against the possibility of lower European blue hydrogen demand. Looking beyond Europe the findings of this study are also relevant for the world’s largest energy exporters (e.g. OPEC+) and importers (e.g. developing Asia). Thus it is recommended that large hydrocarbon exporters consider a strategic energy export transition to a diversified mix of blue hydrogen and climate-neutral industrial base products.
Risk Management in a Containerized Metal Hydride Storage System
Sep 2023
Publication
HyCARE project supported by the Clean Hydrogen Partnership of the European Union deals with a prototype of hydrogen storage tank using a solid-state hydrogen carrier. Up to 40 kilograms of hydrogen are stored in twelve tanks at less than 50 barg and less than 100 °C. The innovative design is based on a standard twenty-foot container including twelve TiFe-based metal hydride (MH) hydrogen storage tanks coupled with a thermal energy storage in phase change materials (PCM). This article aims at showing the main risks related to hydrogen storage in a MH system and the safety barriers considered based on HyCARE’s specific risk analysis.<br/>Regarding the TiFe MH material used to store hydrogen experimental tests showed that the exposure of the MH to air or water did not cause spontaneous ignition. Furthermore an explosion within the solid MH cannot propagate due to internal pore size. Additionally in case of leakage the speed of hydrogen desorption from the MH is self-limited which is an important safety characteristic since it reduces the potential consequences from the hydrogen release scenario.<br/>Regarding the integrated system the critical scenarios identified during the risk analysis were: explosion due to release of hydrogen inside or outside the container internal explosion inside MH tanks due to accidental mix of hydrogen and air and asphyxiation due to inert gas accumulation in the container. This identification phase of the risk analysis allowed to pinpoint the most relevant safety barriers already in place and recommend additional ones if needed to further reduce the risk that were later implemented.<br/>The main safety barriers identified were: material and component selection (including the MH selected) safety interlocks safety valves ventilation gas detection and safety distances.<br/>The risk management process based on risk identification and assessment contributed to coherently integrate inherently safe design features and safety barriers.
The Role of Hydrogen and Batteries in Delivering Net Zero in the UK by 2050
Apr 2023
Publication
This report presents an analysis of how hydrogen and battery technologies are likely to be utilised in different sectors within the UK including transportation manufacturing the built environment and power. In particular the report compares the use of hydrogen and battery technology across these sectors. In addition it evaluates where these technologies will be in competition where one technology will dominate and where a combination of the two may be used. This sector analysis draws on DNV’s knowledge and experience within both the battery and hydrogen industries along with a review of studies available in the public domain. The analysis has been incorporated into DNV’s Energy Transition Outlook model an integrated system-dynamics simulation model covering the energy system which provides an independent view of the energy outlook from now until 2050. The modelling which includes data on costs demand supply policy population and economic indicators enables the non-linear interdependencies between different parameters to be considered so that decisions made in one sector influence the decision made in another.
Explosion Mitigation Techniques in Tunnels and their Applicability to Scenarios of Hydrogen Tank Rupture in a Fire
Sep 2023
Publication
This paper presents a comprehensive review of existing explosion mitigation techniques for tunnels and evaluates their applicability in scenarios of hydrogen tank rupture in a fire. The study provides an overview of the current state of the art in tunnel explosion mitigation and discusses the challenges associated with hydrogen explosions in the context of fire incidents. The review shows that there are several approaches available to decrease the effects of explosions including wrapping the tunnel with a flexible and compressible barrier and introducing energy-absorbing flexible honeycomb elements. However these methods are limited to the mitigation of the action and do not consider either the mitigation of the structural response or the effects on the occupants. The study highlights how the structural response is affected by the duration of the action and the natural period of the structural elements and how an accurate design of the element stiffness can be used in order to mitigate the structural vulnerability to the explosion. The review also presents various passive and active mitigation techniques aimed at mitigating the explosion effects on the occupants. Such techniques include tunnel branching ventilation openings evacuation lanes right-angled bends drop-down perforated plates or high-performance fibre-reinforced cementitious composite (HPFRCC) panels for blast shielding. While some of these techniques can be introduced during the tunnel's construction phase others require changes to the already working tunnels. To simulate the effect of blast wave propagation and evaluate the effectiveness of these mitigation techniques a CFD-FEM study is proposed for future analysis. The study also highlights the importance of considering these mitigation techniques to ensure the safety of the public and first responders. Finally the study identifies the need for more research to understand blast wave mitigation by existing structural elements in the application for potential accidents associated with hydrogen tank rupture in a tunnel.
Techno-economic Modelling of Zero-emission Marine Transport with Hydrogen Fuel and Superconducting Propulsion System: Case Study of a Passenger Ferry
Mar 2023
Publication
This paper proposes a techno-economic model for a high-speed hydrogen ferry. The model can describe the system properties i.e. energy demand weight and daily operating expenses of the ferry. A novel aspect is the consideration of superconductivity as a measure for cost saving in the setting where liquid hydrogen (LH2) can be both coolant and fuel. We survey different scenarios for a high-speed ferry that could carry 300 passengers. The results show that despite higher energy demand compressed hydrogen gas is more economical compared with LH2 for now; however constructing large-scale hydrogen liquefaction plants make it competitive in the future. Moreover compressed hydrogen gas is restricted to a shorter distance while LH2 makes longer distances possible and whenever LH2 is accessible using a superconducting propulsion system has a beneficial impact on both energy and cost savings. These effects strengthen if the operational time or the weight of the ferry increases.
Technology Roadmap for Hydrogen-fuelled Transportation in the UK
Apr 2023
Publication
Transportation is the sector responsible for the largest greenhouse gas emission in the UK. To mitigate its impact on the environment and move towards net-zero emissions by 2050 hydrogen-fuelled transportation has been explored through research and development as well as trials. This article presents an overview of relevant technologies and issues that challenge the supply use and marketability of hydrogen for transportation application in the UK covering on-road aviation maritime and rail transportation modes. The current development statutes of the different transportation modes were reviewed and compared highlighting similarities and differences in fuel cells internal combustion engines storage technologies supply chains and refuelling characteristics. In addition common and specific future research needs in the short to long term for the different transportation modes were suggested. The findings showed the potential of using hydrogen in all transportation modes although each sector faces different challenges and requires future improvements in performance and cost development of innovative designs refuelling stations standards and codes regulations and policies to support the advancement of the use of hydrogen.
Critical Mineral Demands May Limit Scaling of Green Hydrogen Production
Jan 2024
Publication
Hydrogen (H2) is widely viewed as critical to the decarbonization of industry and transportation. Water electrolysis powered by renewable electricity commonly referred to as green H2 can be used to generate H2 with low carbon dioxide emissions. Herein we analyze the critical mineral and energy demands associated with green H2 production under three different hypothetical future demand scenarios ranging from 100–1000 Mtpa H2. For each scenario we calculate the critical mineral demands required to build water electrolyzers (i.e. electrodes and electrolyte) and to build dedicated or additional renewable electricity sources (i.e. wind and solar) to power the electrolyzers. Our analysis shows that scaling electrolyzer and renewable energy technologies that use platinum group metals and rare earth elements will likely face supply constraints. Specifically larger quantities of lanthanum yttrium or iridium will be needed to increase electrolyzer capacity and even more neodymium silicon zinc molybdenum aluminum and copper will be needed to build dedicated renewable electricity sources. We find that scaling green H2 production to meet projected netzero targets will require ~24000 TWh of dedicated renewable energy generation which is roughly the total amount of solar and wind projected to be on the grid in 2050 according to some energy transition models. In summary critical mineral constraints may hinder the scaling of green H2 to meet global net-zero emissions targets motivating the need for the research and development of alternative lowemission methods of generating H2
No more items...