Publications
Inter-Zone Optimal Scheduling of Rural Wind–Biomass-Hydrogen Integrated Energy System
Aug 2023
Publication
To solve the problems of low utilization of biomass and uncertainty and intermittency of wind power (WP) in rural winter an interval optimization model of a rural integrated energy system with biogas fermentation and electrolytic hydrogen production is constructed in this paper. Firstly a biogas fermentation kinetic model and a biogas hydrogen blending model are developed. Secondly the interval number is used to describe the uncertainty of WP and an interval optimization scheduling model is developed to minimize daily operating cost. Finally a rural integrated energy system in Northeast China is taken as an example and a sensitivity analysis of electricity price gas production and biomass price is conducted. The simulation results show that the proposed strategy can significantly reduce the wind abandonment rate and improve the economy by 3.8–22.3% compared with conventional energy storage under optimal dispatch.
Experimental Investigation of Fluid-structure Interaction in the Case of Hydrogen/Air Detonation Impacting a Thin Plate
Sep 2023
Publication
In recent years the use and development of hydrogen as a carbon-free energy carrier have grown. However as hydrogen is flammable with air safety issues are raised. In the case of ignition especially in confined space the flame can accelerate and reach the detonation regime causing severe structural damage [1].<br/>To assess these safety issues it is required to understand the fluid-structure interaction in the case of a detonation impacting a deformable structure and to quantify and model this interaction [2]. At the CEA (Commissariat à l’énergie atomique et aux energies alternatives) a combustion tube experimental facility [3] for studying the fluid-structure interaction in the case of hydrogen combustion has been developed. Several Photomultipliers and Pressure sensors are placed along the tube to monitor the flame acceleration and the detonation location. A fluid-structure interaction (FSI) module or a non-deformable flange can be placed at the end of the tube. Post-processing of the sensor’s signal will provide insight into the occurring phenomena inside the tube.<br/>Several experimental campaigns have been conducted with various initial conditions and configurations at the end of the tube. In this contribution the experiments resulting in a detonation are presented. First the recorded pressure and velocities will be compared to theoretical values coming from combustion models [4] [5]. Secondly the impulse before and after reflection for thin plate and non-deformable flange will be compared to quantify the energy transmitted to the plate and the influence of the fluid-structure interaction on the reflected shock.
Flame Acceleration in Stoichiometric Methane/Hydrogen/Air Mixtures in an Obstructed Channel: Effect of Hydrogen Blend Ratio
Sep 2023
Publication
Experiments and numerical simulations were conducted to study the flame acceleration (FA) in stoichiometric CH4/H2/air mixtures with various hydrogen blend ratios (i.e. Hbr = 0% 20% 50% 80% and 100%). In the experiments high-speed photography was used to record the FA process. In the calculations the two-dimensional fully-compressible reactive Navier-Stokes equations were solved using a high-order algorithm on a dynamically adapting mesh. The chemical reaction and diffusive transport of the mixtures were described by a calibrated chemical-diffusive model. The numerical predictions are in good agreement with the experimental measurements. The results show that the mechanism of FA is similar in all cases that is the flame is accelerated by the thermal expansion effects various fluid-dynamic instabilities flame-vortex interactions and the interactions of flame with pressure waves. The hydrogen blend ratio has a significant impact on the propagation speed and the morphological evolution of the flame during FA. A larger hydrogen blend ratio leads to a faster FA and the difference in FA mainly depends on the increase of flame surface area and the interactions between flame and pressure waves. In addition as the hydrogen blend ratio increases there are fewer pockets of the unburned funnels in the combustion products when the flame propagates to the end of the channel.
Numerical Investigation of Hydrogen Jet Dispersion Below and Around a Car in a Tunnel
Sep 2023
Publication
Accidental release from a hydrogen car tank in a confined space like a tunnel poses safety concerns. This Computational Fluid Dynamics (CFD) study focuses on the first seconds of such a release which are the most critical. Hydrogen leaks through a Thermal Pressure Relief Device (TPRD) forms a high-speed jet that impinges on the street spreads horizontally recirculates under the chassis and fills the area below it in about one second. The “fresh-air entrainment effect” at the back of the car changes the concentrations under the chassis and results in the creation of two “tongues” of hydrogen at the rear corners of the car. Two other tongues are formed near the front sides of the vehicle. In general after a few seconds hydrogen starts moving upwards around the car mainly in the form of buoyant blister-like structures. The average hydrogen volume concentrations below the car have a maximum of 71% which occurs at 2 s. The largest “equivalent stoichiometric flammable gas cloud size Q9” is 20.2 m3 at 2.7 s. Smaller TPRDs result in smaller hydrogen flow rates and smaller buoyant structures that are closer to the car. The investigation of the hydrogen dispersion during the initial stages of the leak and the identification of the physical phenomena that occur can be useful for the design of experiments for the determination of the TPRD characteristics for potential safety measures and for understanding the further distribution of the hydrogen cloud in the tunnel.
Performance Evaluation of Renewable Energy Systems: Photovoltaic, Wind Turbine, Battery Bank, and Hydrogen Storage
Sep 2023
Publication
The analysis aims to determine the most efficient and cost-effective way of providing power to a remote site. The two primary sources of power being considered are photovoltaics and small wind turbines while the two potential storage media are a battery bank and a hydrogen storage fuel cell system. Subsequently the hydrogen is stored within a reservoir and employed as required by the fuel cell. This strategy offers a solution for retaining surplus power generated during peak production phases subsequently utilizing it during periods when the renewable power sources are generating less power. To evaluate the performance of the hydrogen storage system the analysis included a sensitivity analysis of the wind speed and the cost of the hydrogen subsystem. In this analysis the capital and replacement costs of the electrolyzer and hydrogen storage tank were linked to the fuel cell capital cost. As the fuel cell cost decreases the cost of the electrolyzer and hydrogen tank also decreases. The optimal system type graph showed that the hydrogen subsystem must significantly decrease in price to become competitive with the battery bank.
Hydrogen Storage in Unlined Rock Caverns: An Insight on Opportunities and Challenges
Jun 2024
Publication
Transitioning to a sustainable energy future necessitates innovative storage solutions for renewable energies where hydrogen (H₂) emerges as a pivotal energy carrier for its low emission potential. This paper explores unlined rock caverns (URCs) as a promising alternative for underground hydrogen storage (UHS) overcoming the geographical and technical limitations of UHS methods like salt rock caverns and porous media. Drawing from the experiences of natural gas (NG) and compressed air energy storage (CAES) in URCs we explore the viability of URCs for storing hydrogen at gigawatt-hour scales (>100 GWh). Despite challenges such as potential uplift failures (at a depth of approximately less than 1000 m) and hydrogen reactivity with storage materials at typical conditions (below temperatures of 100◦C and pressures of 15 MPa) URCs present a flexible scalable option closely allied with green hydrogen production from renewable sources. Our comprehensive review identifies critical design considerations including hydraulic containment and the integrity of fracture sealing materials under UHS conditions. Addressing identified knowledge gaps particularly around the design of hydraulic containment systems and the interaction of hydrogen with cavern materials will be crucial for advancing URC technology. The paper underscores the need for further experimental and numerical studies to refine URC suitability for hydrogen storage highlighting the role of URCs in enhancing the compatibility of renewable energy sources with the grid.
Assessment of Fuel Switching as a Decarbonization Strategy in the Cement Sector
May 2024
Publication
Limiting global warming and the pursuit of a net-zero global society by 2050 emphasizes the need to transform the hard-to-abate industrial sectors. The cement sector is the second-largest source of global industrial emissions accounting for 8% of worldwide greenhouse gas emissions. Fuel switching in the cement sector is a decarbonization pathway that has not been explored in detail; previous studies involving fuel switching in the sector either view it from an energy efficiency lens or focus on a single technology. In this study a framework is developed to evaluate and directly compare six fuel switching options (including hydrogen biomass municipal solid waste and natural gas) from 2020 to 2050. Capital costs non-energy operating costs energy costs and carbon costs are used to calculate marginal abatement costs and emulate cost based-market decisions. The developed framework is used to conduct a case study for Canada using the LEAP-Canada model. This study shows that cumulative energy-related greenhouse gas emissions can be reduced by up to 21% between 2020 and 2050 with negative marginal abatement costs. Multiple fuel switching decarbonization pathways were established reducing the likelihood that locality prevents meaningful emissions reduction and suggesting that with low-carbon fuel and electricity policies the sector can take significant steps towards emissions reduction. The developed framework can be applied to jurisdictions around the world for decision making as nations move towards eliminating emissions from cement production.
Hydrogen Embrittlement Susceptibility of Additively Manufactured High-strength Low-alloy AISI 4340 Steel
Jul 2025
Publication
Hydrogen embrittlement (HE) poses a significant challenge for high-strength steels. Although HE of wrought steels has been extensively studied it remains limited in steels processed by additive manufacturing (AM). The present work (i) compares the HE susceptibility of AISI 4340 ultra-high-strength steel fabricated by selective laser melting (SLM) with its wrought counterpart; (ii) investigates the predominant factors and possible HE mechanisms in the AM-fabricated material; and (iii) correlates microstructures produced with different SLM processing parameters to HE susceptibility of the steel. Generally conventionally processed AISI 4340 steel is used with a tempered martensitic structure to ensure the ultrahigh strength and therefore is susceptible to HE. In contrast SLM-fabricated 4340 exhibits a uniform refined bainitic microstructure. How this change of microstructure influences the HE susceptibility of the steel is unknown and needs investigation. Our results demonstrate that at the same level of strength the SLM-fabricated 4340 steel exhibits significantly lower HE susceptibility than its wrought counterpart. The SLM-fabricated steel showed a higher hydrogen diffusion rate. Furthermore the refined microstructure of the SLM-fabricated steel contributes to enhanced ductility even with hydrogen. These findings indicate that AM of high-strength steels has strong potential to improve HE resistance providing a pathway to solve this long-term problem. This study highlights the critical role of microstructure in influencing HE and offers valuable insights for developing steels for hydrogen applications.
The Regulatory Framework of Geological Storage of Hydrogen in Salt Caverns
Sep 2023
Publication
A growing share of renewable energy production in the energy supply systems is key to reaching the European political goal of zero CO2 emission in 2050 highlighted in the green deal. Linked to the irregular production of solar and wind energies which have the highest potential for development in Europe massive energy storage solutions are needed as energy buffers. The European project HyPSTER [1] (Hydrogen Pilot STorage for large Ecosystem Replication) granted by the Clean Hydrogen Partnership addresses this topic by demonstrating a cyclic test in an experimental salt cavern filled with hydrogen up to 3 tons using hydrogen that is produced onsite by a 1 MW electrolyser. One specific objective of the project is the assessment of the risks and environmental impacts of cyclic hydrogen storage in salt caverns and providing guidelines for safety regulations and standards. This paper highlights the first outcome of the task WP5.5 of the HyPSTER project addressing the regulatory and normative frameworks for the safety of hydrogen storage in salt caverns from some selected European Countries which is dedicated to defining recommendations for promoting the safe development of this industry within Europe.
Enhanced Management of Unified Energy Systems Using Hydrogen Fuel Cell Combined Heat and Power with a Carbon Trading Scheme Incentivizing Emissions Reduction
Jun 2024
Publication
In the quest to achieve “double carbon” goals the urgency to develop an efficient Integrated Energy System (IES) is paramount. This study introduces a novel approach to IES by refining the conventional Power-to-Gas (P2G) system. The inability of current P2G systems to operate independently has led to the incorporation of hydrogen fuel cells and the detailed investigation of P2G’s dual-phase operation enhancing the integration of renewable energy sources. Additionally this paper introduces a carbon trading mechanism with a refined penalty–reward scale and a detailed pricing tier for carbon emissions compelling energy suppliers to reduce their carbon footprint thereby accelerating the reduction in system-wide emissions. Furthermore this research proposes a flexible adjustment mechanism for the heat-to-power ratio in cogeneration significantly enhancing energy utilization efficiency and further promoting conservation and emission reductions. The proposed optimization model in this study focuses on minimizing the total costs including those associated with carbon trading and renewable energy integration within the combined P2G-Hydrogen Fuel Cell (HFC) cogeneration system. Employing a bacterial foraging optimization algorithm tailored to this model’s characteristics the study establishes six operational modes for comparative analysis and validation. The results demonstrate a 19.1% reduction in total operating costs and a 22.2% decrease in carbon emissions confirming the system’s efficacy low carbon footprint and economic viability.
QRA of Hydrogen Vehicles in a Road Tunnel
Sep 2023
Publication
Hydrogen energy is recognized by many European governments as an important part of the development to achieve a more sustainable energy infrastructure. Great efforts are spent to build up a hydrogen supply chain to support the increasing number of hydrogen-powered vehicles. Naturally these vehicles will use the common traffic infrastructure. Thus it has to be ensured these infrastructures are capable to withstand the hazards and associated risks that may arise from these new technologies. In order to have an appropriate assessment tool for hydrogen vehicles transport through tunnels a new QRA methodology is developed and presented here. In Europe the PIARC is a very common approach. It is therefore chosen as a starting point for the new methodology. It provides data on traffic statistics accident frequencies tunnel geometries including certain prevention and protection measures. This approach is enhanced by allowing better identification of hazards and their respective sources for hydrogen vehicles. A detailed analysis of the accident scenarios that are unique for hydrogen vehicles hereunder the initiating events severity of collision types that may result in a release of hydrogen gas in a tunnel and the location of such an accident are included. QRA enables the assessment and evaluation of scenarios involving external fires or vehicles that burst into fire because of an accident or other fire sources. Event Tree Analysis is the technique used to estimate the event frequencies. The consequence analysis includes the hazards from blast waves hydrogen jet fires DDT.
Towards Enhanced Durability: A Review of Fuel Cell Electric Vehicle Development
Aug 2025
Publication
Fuel cell electric vehicles (FCEVs) provide a viable answer to transportation issues caused by fossil fuel limitations and environmental concerns. This review presents a thorough evaluation of the most recent advances in FCEV durability research. It addresses 4 major topics: component upgrades technical control techniques test optimization and durability prediction. Upgrades to components include improved catalysts bipolar plates gas diffusion layers proton exchange membranes and plant balancing. Technical control solutions include power energy temperature ventilation and control management. Stress acceleration and cold start tests are examples of test optimization whereas durability prediction requires parameter selection real-time monitoring dynamic modeling and lifespan prediction. This review also makes some novel recommendations targeted at improving the endurance of FCEVs. These include measures for raising public awareness lowering prices while increasing performance improving subsystems for greater durability updating health diagnostics to prevent performance deterioration and implementing supporting regulations to encourage industry upgrading. These findings are expected to accelerate the adoption of FCEVs and the transition to a more sustainable transportation system.
Hydrogen Embrittlement of Low Carbon Structural Steel
Jun 2014
Publication
Hydrogen embrittlement (HE) of steels is extremely interesting topic in many industrial applications while a predictive physical model still does not exist. A number of studies carried out in the world are unambiguous confirmation of that statement. Bearing in mind multiple effects of hydrogen in certain metals the specific mechanism of hydrogen embrittlement is manifested depending on the experimental conditions. In this paper structural low carbon steel for pressure purposes grade 20 - St.20 (GOST 1050-88) was investigated. Numerous tested samples were cut out from the boiler tubes of fossil fuel power plant damaged due to high temperature hydrogen attack and HE during service as a result of the development of hydrogen-induced corrosion process. Samples were prepared for the chemical composition analysis hardness measurement impact strength testing (on instrumented Charpy machine) and microstructural characterization by optical and scanning electron microscopy - SEM/EDX. Based on multi-scale special approach applied in experimental investigations the results presented in this paper indicate the simultaneous action of the hydrogen-enhanced decohesion (HEDE) and hydrogen enhanced localized plasticity (HELP) mechanisms of HE depending on the local concentration of hydrogen in investigated steel. These results are consistent with some models proposed in literature about a possible simultaneous action of the HELP and HEDE mechanisms in metallic materials.
Coordinated Operation of Multi-energy Microgrids Considering Green Hydrogen and Congestion Management via a Safe Policy Learning Approach
Aug 2025
Publication
Multi-energy microgrids (MEMGs) with green hydrogen have attracted significant research attention for their benefits such as energy efficiency improvement carbon emission reduction as well as line congestion alleviation. However the complexities of multi-energy networks coupled with diverse uncertainties may threaten MEMG’s operation. In this paper a data-driven methodology is proposed to achieve effective MEMG operation considering the green hydrogen technique and congestion management. First a detailed MEMG modelling approach is developed coupling with electricity green hydrogen natural gas and thermal flows. Different from conventional MEMG models hydrogen-enriched compressed natural gas (HCNG) models and weatherdependent power flow are thoroughly considered in the modelling. Meanwhile the power flow congestion problem is also formulated in the MEMG operation which could be mitigated through HCNG integration. Based on the proposed MEMG model a reinforcement learning-based method is designed to obtain the optimal solution of MEMG operation. To ensure the solution’s safety a soft actor-critic (SAC) algorithm is applied and modified by leveraging the Lagrangian relaxation and safety layer scheme. In the end case studies are conducted and presented to validate the effectiveness of the proposed method.
The Role of Hydrogen in the Ecological Benefits of Ultra Low Sulphur Diesel Production and Use: An LCA Benchmark
Apr 2019
Publication
Desulphurization of oil-based fuels is common practice to mitigate the ecological burden to ecosystems and human health of SOx emissions. In many countries fuels for vehicles are restricted to 10 ppm sulphur. For marine fuels low sulphur contents are under discussion. The environmental impact of desulphurization processes is however quite high: (1) The main current source for industrial hydrogen is Steam Methane Reforming (SMR) with a rather high level of CO2 emissions (2) the hydrotreating process especially below 150 ppm needs a lot of energy. These two issues lead to three research questions: (a) What is the overall net ecological benefit of the current desulphurization practice? (b) At which sulfphur ppm level in the fuel is the additional ecological burden of desulphurization higher than the additional ecological benefit of less SOx pollution from combustion? (c) To what extent can cleaner hydrogen processes improve the ecological benefit of diesel desulphurization? In this paper we use LCA to analyze the processes of hydrotreatment the recovery of sulphur via amine treating of H2S and three processes of hydrogen production: SMR without Carbon Capture and Sequestration (CCS) SMR with 53% and 90% CCS and water electrolysis with two types of renewable energy. The prevention-based eco-costs system is used for the overall comparison of the ecological burden and the ecological benefit. The ReCiPe system was applied as well but appeared not suitable for such a comparison (other damage-based indicators cannot be applied either). The overall conclusion is that (1) the overall net ecological benefit of hydrogen-based Ultra Low Sulphur Diesel is dependent of local conditions but is remarkably high (2) desulphurization below 10 ppm is beneficial for big cities and (3) cleaner production of hydrogen reduces eco-cost by a factor 1.8–3.4.
Hydrogen Storage Potential in Natural Gas Deposits in the Polish Lowlands
Jan 2024
Publication
In the future the development of a zero-carbon economy will require large-scale hydrogen storage. This article addresses hydrogen storage capacities a critical issue for large-scale hydrogen storage in geological structures. The aim of this paper is to present a methodology to evaluate the potential for hydrogen storage in depleted natural gas reservoirs and estimate the capacity and energy of stored hydrogen. The estimates took into account the recoverable reserves of the reservoirs hydrogen parameters under reservoir conditions and reservoir parameters of selected natural gas reservoirs. The theoretical and practical storage capacities were assessed in the depleted natural gas fields of N and NW Poland. Estimates based on the proposed methodology indicate that the average hydrogen storage potential for the studied natural gas fields ranges from 0.01 to 42.4 TWh of the hydrogen energy equivalent. Four groups of reservoirs were distinguished which differed in recovery factor and technical hydrogen storage capacity. The issues presented in the article are of interest to countries considering large-scale hydrogen storage geological research organizations and companies generating electricity from renewable energy sources.
A Review on Applicability, Limitations, and Improvements of Polymeric Materials in High-Pressure Hydrogen Gas Atmospheres
Feb 2021
Publication
Typically polymeric materials experience material degradation anddamage over time in harsh environments. Improved understandingof the physical and chemical processes associated with possibledamage modes intended in high-pressure hydrogen gas exposedatmospheres will help to select and develop materials well suited forapplications fulfilling future energy demands in hydrogen as anenergy carrier. In high-pressure hydrogen gas exposure conditionsdamage from rapid gas decompression (RGD) and from aging inelastomeric as well as thermoplastic material components is unavoid-able. This review discusses the applications of polymeric materials ina multi-material approach in the realization of the “Hydrogen econo-my”. It covers the limitations of existing polymeric components thecurrent knowledge on polymeric material testing and characteriza-tion and the latest developments. Some improvements are sug-gested in terms of material development and testing procedures tofill in the gaps in existing knowledge in the literature.
Safety Margin on the Ductile to Brittle Transition Temperature after Hydrogen Embrittlement on X65 Steel
Jan 2022
Publication
Hydrogen embrittlement is a phenomenon that affects the mechanical properties of steels intended for hydrogen transportation. One affected by this embrittlement is the Ductile to Brittle Transition Temperature (DBTT) which characterizes the change in the failure mode of the steel from ductile to brittle. This temperature is conventionally defined and compared to the operating temperature as an acceptability criterion for codes. Transition temperature does not depend only on the material but also on specimen geometry particularly the thickness. Generally the transition temperature is defined for the conservative reason by Charpy impact test. Standard Charpy specimens are straight beams with a thickness of 10 mm. For thin pipes it is impossible to extract these standard specimens. One uses in this case Mini-Charpy specimens with a reduced thickness due to pipe curvature. This paper aims to quantify the effect of hydrogen embrittlement on the transition temperature of pipe steel (API 5L X65) using two types of Charpy specimens.
The Bright Future of Solar-driven Hydrogen Production
Dec 2024
Publication
Hydrogen production from sunlight using innovative photocatalytic and photoelectrochemical systems offers decentralized sustainable energy solutions with potential applications in remote off-grid locations.<br/>Photocatalytic hydrogen production has the potential to transform clean cooking by reducing dependency on wood and charcoal in low-resource settings addressing significant health and environmental challenges.<br/>Photocatalytic reactors could also be used to capture atmospheric carbon dioxide and perform artificial photosynthesis mimicking processes found in nature producing green energy molecules.
Photovoltaic-Assisted Photo(electro)catalytic Hydrogen Production: A Review
Aug 2023
Publication
The idea of supporting the Sustainable Development Goals (SDGs) has inspired researchers around the world to explore more environmentally friendly energy generation and production methods especially those related to solar and hydrogen energy. Among the various available sustainable energy technologies photo(electro)catalytic hydrogen production has been competitively explored benefiting from its versatile platform to utilize solar energy for green hydrogen production. Nevertheless the bottleneck of this photo(electro)catalytic system lies within its high voltage required for water electrolysis (>1.23 V) which affects the economic prospects of this sustainable technology. In this regard coupling the photo(electro)catalytic system with a solar-powered photovoltaic (PV) system (PV-PEC) to unleash the fascinating properties and readiness of this system has heightened attention among the scientific community. In this context this review begins by elucidating the basic principles of PV-PEC systems followed by an exploration of various types of solar PV technology and the different types of semiconductors used as photocatalysts in the PEC system. Subsequently the main challenges faced by the PV-PEC system are presented covering areas such as efficiency stability and cost-effectiveness. Finally this review delves into recent research related to PV-PEC systems discussing the advancements and breakthroughs in this promising technology. Furthermore this review provides a forecast for the future prospects of the PV-PEC system highlighting the potential for its continued development and widespread implementation as a key player in sustainable hydrogen production.
No more items...