Publications
Can Hydrogen-powered Air Travel Grow within the Planetary Limits?
Aug 2025
Publication
Air travel demand is rising rapidly and the aviation sector is relying on technology to decouple environmental impacts from its growth. Using Sweden as a case study we assessed the absolute environmental sustainability of medium-distance air travel in 2050 positioning the aviation sector's environmental impacts in relation to the planetary limits. We employed a novel framework that integrates prospective life cycle assessment and absolute environmental sustainability assessment methodologies. Our findings suggest that projected medium-distance air travel powered by e-kerosene or liquid hydrogen could have life cycle environmental impacts that overshoot global climate change and biodiversity loss thresholds by several orders of magnitude. Based on our case results for Sweden for aviation to develop within the planetary limits we recommend cross-sector collaboration to address environmental impacts from fossil-free energy supplies and the establishment of integrated targets that incorporate broader environmental issues. Given the unlikelihood of decoupling growth from environmental impacts policymakers and the aviation sector should consider concurrently supporting technological development and implementing measures to manage air travel demand.
Techno-Economic Optimization of a Hybrid Renewable Energy System with Seawater-Based Pumped Hydro, Hydrogen, and Battery Storage for a Coastal Hotel
Oct 2025
Publication
This study presents the design and techno-economic optimization of a hybrid renewable energy system (HRES) for a coastal hotel in Manavgat Türkiye. The system integrates photovoltaic (PV) panels wind turbines (WT) pumped hydro storage (PHS) hydrogen storage (electrolyzer tank and fuel cell) batteries a fuel cell-based combined heat and power (CHP) unit and a boiler to meet both electrical and thermal demands. Within this broader optimization framework six optimal configurations emerged representing gridconnected and standalone operation modes. Optimization was performed in HOMER Pro to minimize net present cost (NPC) under strict reliability (0% unmet load) and renewable energy fraction (REF > 75%) constraints. The grid-connected PHS–PV–WT configuration achieved the lowest NPC ($1.33 million) and COE ($0.153/kWh) with a renewable fraction of ~96% and limited excess generation (~21%). Off-grid PHS-based and PHS–hydrogen configurations showed competitive performance with slightly higher costs. Hydrogen integration additionally provides complementary storage pathways coordinated operation waste heat utilization and redundancy under component unavailability. Battery-only systems without PHS or hydrogen storage resulted in 37–39% higher capital costs and ~53% higher COE confirming the economic advantage of long-duration PHS. Sensitivity analyses indicate that real discount rate variations notably affect NPC and COE particularly for battery-only systems. Component cost sensitivity highlights PV and WT as dominant cost drivers while PHS stabilizes system economics and the hydrogen subsystem contributes minimally due to its small scale. Overall these results confirm the techno-economic and environmental benefits of combining seawater-based PHS with optional hydrogen and battery storage for sustainable hotel-scale applications.
The Role of Financial Mechanisms in Advancing Renewable Energy and Green Hydrogen
Jun 2025
Publication
Europe’s transition toward a low-carbon energy system relies on the deployment of hydrogen produced with minimized carbon emissions; however regulatory requirements increase system costs and create financial barriers. This study investigates the financial implications of enforcing European Commission rules for renewable hydrogen production from 2024 to 2048. Using a scenario-based modeling approach that draws on European power system investments in renewable energy the results show that immediate compliance leads to an additional cost of approximately eighty billion euros over twenty-four years corresponding to a 3.6 percent increase in total system costs. To address this investment gap the study employs a segmentation analysis of support mechanisms based on existing policies and market practices identifying seven categories that range from investment incentives and production subsidies to infrastructure and financial instruments. Among these hydrogen offtake support and infrastructure funding are identified as the most effective measures for reducing risk and enabling private investment. These findings provide strategic insights for policymakers seeking to align their regulatory ambitions with financially viable pathways for integrating renewable energy.
Degradation Mechanisms of a Proton Exchange Membrane Water Electrolyzer Stack Operating at High Current Densities
Sep 2025
Publication
On the path to an emission free energy economy proton exchange membrane water electrolysis (PEMWE) is a promising technology for a sustainable production of green hydrogen at high current densities and thus high production rates. Long lifetime increasing the current density and the reduction of platinum group metal loadings are major challenges for a widespread implementation of PEMWE. In this context this work investigates the aging of a PEMWE stack operating at 4 A cm-2 which is twice the nominal current density of commercial electrolyzers. Specifically an 8-cells PEMWE stack using catalyst coated membranes (CCMs) with different platinum group metal (PGM) loading was operated for 2200 h. To understand degradation phenomena physical ex-situ analyses such as scanning electron microscopy (SEM) atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were carried out. The same aging mechanism were observed in all cells independent on their position in stack or the specific PGM loading of the membrane electrode assembly (CCM): (i) a decrease of ohmic resistance over time related to membrane thinning (ii) a significant loss of ionomer at anodes (iii) loss of noble metal from the electrodes leading to deposition of small Ir and Pt concentrations in the membrane (iv) heterogeneous enrichment of Ti on the cathode side likely originating from the cathode-side of the Ti bipolar plates (BPPs). These results are in good agreement with the electrochemical performance loss. Thus we were able to identify the degradation phenomena that dominate under high-current operation and their impact on performance.
A Framework for the Configuration and Operation of EV/FCEV Fast-Charging Stations Integrated with DERs Under Uncertainty
Oct 2025
Publication
The integration of electric vehicles (EVs) and fuel-cell electric vehicles (FCEVs) requires accessible and profitable facilities for fast charging. To promote fast-charging stations (FCSs) a systematic analysis that encompasses both planning and operation is required including the incorporation of multi-energy resources and uncertainty. This paper presents an optimization framework that addresses a joint strategy for the configuration and operation of an EV/FCEV fast-charging station (FCS) integrated with distributed energy resources (DERs) and hydrogen systems. The framework incorporates uncertainties related to solar photovoltaic (PV) generation and demand for EVs/FCEVs. The proposed joint strategy comprises a four-phase decision-making framework. Phase 1 involves modeling EV/FECE demand while Phase 2 focuses on determining an optimal long-term infrastructure configuration. Subsequently in Phase 3 the operator optimizes daily power scheduling to maximize profit. A real-time uncertainty update is then executed in Phase 4 upon the realization of uncertainty. The proposed optimization framework formulated as mixed-integer quadratic programming (MIQP) considers configuration investment operational maintenance and penalty costs for excessive grid power usage. A heuristic algorithm is proposed to solve this problem. It yields good results with significantly less computational complexity. A case study shows that under the most adverse conditions the proposed joint strategy increases the FCS owner’s profit by 3.32% compared with the deterministic benchmark.
Effect of Real Gas Equations on Calculation Accuracy of Thermodynamic State in Hydrogen Storage Tank
Oct 2025
Publication
The gas equation of state (EOS) serves as a critical tool for analyzing the thermal effects within the hydrogen storage tank during refueling processes. It quantifies the dynamic relationships among pressure temperature and volume playing a vital role in numerical simulations of hydrogen refueling the development of refueling protocols and ensuring refueling safety. This study first establishes a lumped-parameter thermodynamic model for the hydrogen refueling process which combines a zero-dimensional gas model with a one-dimensional tank wall model (0D1D). The model’s accuracy was validated against experimental data and will be used in combination with different EOSs to simulate hydrogen temperature and pressure. Subsequently parameter values are derived for the van der Waals EOS and its modified forms—Redlich–Kwong Soave and Peng–Robinson. The accuracy of the modified forms is evaluated using the Joule–Thomson inversion curve. A polynomial EOS is formulated and its parameters are numerically determined. Finally the hydrogen temperatures and pressures calculated using the van der Waals EOS Redlich– Kwong EOS polynomial EOS and the National Institute of Standards and Technology (NIST) database are compared. Within the initial and boundary conditions set in this study the results indicate that among the modified forms for van der Waals EOS the Redlich– Kwong EOS exhibits higher accuracy than the Soave and Peng–Robinson EOSs. Using the NIST-calculated hydrogen pressure as a benchmark the relative error is 0.30% for the polynomial EOS 1.83% for the Redlich–Kwong EOS and 17.90% for the van der Waals EOS. Thus the polynomial EOS exhibits higher accuracy followed by the Redlich–Kwong EOS while the van der Waals EOS demonstrates lower accuracy. This research provides a theoretical basis for selecting an appropriate EOS in numerical simulations of hydrogen refueling processes.
Optimizing Renewable Microgrid Performance Through Hydrogen Storage Integration
Oct 2025
Publication
The global transition to a low-carbon energy system requires innovative solutions that integrate renewable energy production with storage and utilization technologies. The growth in energy demand combined with the intermittency of these sources highlights the need for advanced management models capable of ensuring system stability and efficiency. This paper presents the development of an optimized energy management system integrating renewable sources with a focus on green hydrogen production via electrolysis storage and use through a fuel cell. The system aims to promote energy autonomy and support the transition to a low-carbon economy by reducing dependence on the conventional electricity grid. The proposed model enables flexible hourly energy flow optimization considering solar availability local consumption hydrogen storage capacity and grid interactions. Formulated as a Mixed-Integer Linear Programming (MILP) model it supports strategic decision-making regarding hydrogen production storage and utilization as well as energy trading with the grid. Simulations using production and consumption profiles assessed the effects of hydrogen storage capacity and electricity price variations. Results confirm the effectiveness of the model in optimizing system performance under different operational scenarios.
Response Surface Analysis of the Energy Performance and Emissions of a Dual-Fuel Engine Generator Using Biodiesel and Hydrogen-Enriched Biogas
Oct 2025
Publication
In this study we investigate the dual-fuel operation of compression ignition engines using biodiesel at varying concentrations in combination with biogas with and without hydrogen enrichment. A response surface methodology based on a central composite experimental design was employed to optimize energy efficiency and minimize pollutant emissions. The partial substitution of diesel with gaseous fuel substantially reduces the specific fuel consumption achieving a maximum decrease of 21% compared with conventional diesel operation. Enriching biogas with hydrogen accounting for 13.3% of the total flow rate increases the thermal efficiency by 0.8% compensating for the low calorific value and reduced volumetric efficiency of biogas. Variations in biodiesel concentration exhibits a nonlinear effect yielding an additional average efficiency gain of 0.4%. Regarding emissions the addition of hydrogen to biogas contributes to an average reduction of 5% in carbon monoxide emissions compared to the standard dual-fuel operation. However dual-fuel operation leads to higher unburned hydrocarbon emissions relative to neat diesel; hydrogen enrichment mitigates this drawback by reducing hydrocarbon emissions by 4.1%. Although NOx emissions increase by an average of 26.6% with hydrogen addition dual-fuel strategies achieve NOx reductions of 11.5% (hydrogen-enriched mode) and 33.3% (pure biogas mode) relative to diesel-only operation. Furthermore the application of response surface methodology is robust and reliable with experimental validation showing errors of 0.55–8.66% and an overall uncertainty of 4.84%.
A Two-Layer HiMPC Planning Framework for High-Renewable Grids: Zero-Exchange Test on Germany 2045
Oct 2025
Publication
High-renewables grids are planned in min but judged in milliseconds; credible studies must therefore resolve both horizons within a single model. Current adequacy tools bypass fast frequency dynamics while detailed simulators lack multi-hour optimization leaving investors without a unified basis for sizing storage shifting demand or upgrading transfers. We present a two-layer Hierarchical Model Predictive Control framework that links 15-min scheduling with 1-s corrective action and apply it to Germany’s four TSO zones under a stringent zero-exchange stress test derived from the NEP 2045 baseline. Batteries vehicleto-grid pumped hydro and power-to-gas technologies are captured through aggregators; a decentralized optimizer pre-positions them while a fast layer refines setpoints as forecasts drift; all are subject to inter-zonal transfer limits. Year-long simulations hold frequency within ±2 mHz for 99.9% of hours and below ±10 mHz during the worst multi-day renewable lull. Batteries absorb sub-second transients electrolyzers smooth surpluses and hydrogen turbines bridge week-long deficits—none of which violate transfer constraints. Because the algebraic core is modular analysts can insert new asset classes or policy rules with minimal code change enabling policy-relevant scenario studies from storage mandates to capacity-upgrade plans. The work elevates predictive control from plantscale demonstrations to system-level planning practice. It unifies adequacy sizing and dynamic-performance evaluation in a single optimization loop delivering an open scalable blueprint for high-renewables assessments. The framework is readily portable to other interconnected grids supporting analyses of storage obligations hydrogen roll-outs and islanding strategies.
Solar-powered Electric Vehicles - Batter EV & Fuel Cell EV: A Review
Sep 2025
Publication
The transport sector is a major contributor to greenhouse gas emissions largely due to its dependence on fossil fuels. Electrifying transport through Battery Electric Vehicles (BEVs) and Hydrogen Fuel Cell Electric Vehicles (FCEVs) is widely recognized as a key pathway to reducing emissions. While both BEVs and FCEVs are zero-emission during operation they still require electricity to function. Sourcing this electricity from solar energy presents a promising opportunity for sustainable operation. The novelty of this work lies in exploring how solar energy can be effectively integrated into both BEV and FCEV systems. The paper examines the potential scope and infrastructure requirements of these vehicle types as well as innovative charging and refuelling strategies. For BEVs charging options include fixed charging stations battery swapping stations and wireless charging. In the context of solar integration photovoltaic (PV) systems can be mounted directly on the vehicle body or used to power charging stations. While current PV efficiency and reliability are insufficient to meet the full energy demand of BEVs they can provide valuable auxiliary power. For FCEVs solar energy can be utilized for hydrogen production enabling the concept of solar-powered FCEVs. Refuelling options include onsite and offsite hydrogen production facilities as well as mobile refuelling units. In both cases land requirements for PV installations are significant. Alternatives to ground-mounted PV such as floating PV or agrivoltaics (agriPV) should be considered to optimize land use. While solar-powered charging or refuelling stations are technically feasible complete reliance on solar power alone is not yet practical. A hybrid approach with grid connections energy storage or backup generation remains necessary to ensure consistent energy availability. For BEVs the cost of charging particularly for long-distance travel where rapid charging is required remains a barrier. For FCEVs challenges include the high cost of hydrogen production and the limited availability of refuelling infrastructure despite their advantage of fast refuelling times. Government policies and incentives are playing a critical role in overcoming these barriers fostering investment in infrastructure and accelerating the transition toward a cleaner transport sector. In summary integrating solar energy into BEV and FCEV infrastructure can advance sustainable mobility by reducing lifecycle emissions. While current PV efficiency storage and hydrogen production limitations require hybrid energy solutions ongoing technological improvements and supportive policies can enable broader adoption. A balanced renewable energy mix with solar as a key component will be essential for realizing truly sustainable zero-emission transport.
Experimental and Numerical Analysis of Hydrogen-Induced Effects in ASTM A131 and A36 Steels for Naval Fuel Systems
Oct 2025
Publication
Hydrogen embrittlement (HE) can degrade the mechanical integrity of steel pipes increasing failure risks in naval fuel systems. This study assesses HE effects on ASTM A131 and A36 steels through tensile testing and numerical modeling. Tests conducted with varying exposure times to hydrogen revealed that A131 outperformed A36 in terms of mechanical strength. However both materials experienced property degradation after six hours. After nine hours a transient increase in strength occurred due to temporary microstructural hardening though the overall trend remained a decline. The maximum reductions in ultimate tensile strength and toughness were 19% and 47% for A131 and 39% and 61% for A36 respectively. Additionally microstructural analysis revealed the presence of inclusions intergranular decohesion and micro-crack in specimens exposed for longer periods. Finally a combined GTN-PLNIH numerical model was implemented demonstrating its effectiveness in predicting the mechanical behavior of structures exposed to hydrogen.
Hydrogen Propulsion Technologies for Aviation: A Review of Fuel Cell and Direct Combustion Systems Towards Decarbonising Medium-Haul Aircraft
Oct 2025
Publication
Hydrogen propulsion technologies are emerging as a key enabler for decarbonizing the aviation sector especially for regional commercial aircraft. The evolution of aircraft propulsion technologies in recent years raises the question of the feasibility of a hydrogen propulsion system for beyond regional aircraft. This paper presents a comprehensive review of hydrogen propulsion technologies highlighting key advancements in component-level performance metrics. It further explores the technological transitions necessary to enable hydrogen-powered aircraft beyond the regional category. The feasibility assessment is based on key performance parameters including power density efficiency emissions and integration challenges aligned with the targets set for 2035 and 2050. The adoption of hydrogen-electric powertrains for the efficient transition from KW to MW powertrains depends on transitions in fuel cell type thermal management systems (TMS) lightweight electric machines and power electronics and integrated cryogenic cooling architectures. While hydrogen combustion can leverage existing gas turbine architectures with relatively fewer integration challenges it presents its technical hurdles especially related to combustion dynamics NOx emissions and contrail formation. Advanced combustor designs such as micromix staged and lean premixed systems are being explored to mitigate these challenges. Finally the integration of waste heat recovery technologies in the hydrogen propulsion system is discussed demonstrating the potential to improve specific fuel consumption by up to 13%.
Energy Management in an Insular Region with Renewable Energy Sources and Hydrogen: The Case of Graciosa, Azores
Sep 2025
Publication
Insular regions face unique energy management challenges due to physical isolation. Graciosa (Azores) has high renewable energy sources (RES) potential theoretically enabling a 100% green system. However RES intermittency combined with the lack of energy storage solutions reduces renewable penetration and raises curtailment. This article studies the technical and economic feasibility of producing green hydrogen from curtailment energy in Graciosa through two distinct case studies. Case Study 1 targets maximum renewable penetration with green hydrogen serving as chemical storage converted back to electricity via fuel cells during RES shortages. Case Study 2 focuses on maximum profitability where produced gases are sold to monetize curtailment without additional electricity production. Levelized Cost of Hydrogen (LCOH) values of €3.06/kgH2 and €2.68/kgH2 respectively and Internal Rate of Return (IRR) values of 3.7% and 17.1% were obtained for Case Studies 1 and 2 with payback periods of 15.2 and 6.1 years. Hence only Case Study 2 is economically viable but it does not allow increasing the renewable share in the energy mix. Sensitivity analysis for Case Study 1 shows that overall efficiency and CAPEX are the main factors affecting viability highlighting the need for technological advances and economies of scale as well as the importance of public funding to promote projects like this.
Modeling Gas Producibility and Hydrogen Potential—An Eastern Mediterranean Case Study
Oct 2025
Publication
The transition to low-carbon energy systems demands robust strategies that leverage existing fossil resources while integrating renewable technologies. In this work a single-cycle Gaussian-based producibility model is developed to forecast natural gas production profiles domestic consumption export potential hydrogen production and revenues adaptive for untapped natural gas discoveries. Annual natural gas production is represented by a bell curve defined by peak year and maximum capacity allowing flexible adaptation to different reserve sizes. The model integrates renewable energy adoption and steam–methane reforming to produce hydrogen while tracking revenue streams from domestic sales exports and hydrogen markets alongside carbon taxation. Applicability is demonstrated through a case study of Eastern Mediterranean gas discoveries where combined reserves of 2399 bcm generate a production peak of 100 bcm/year in 2035 and deliver 40.71 billion kg of hydrogen by 2050 leaving 411.87 bcm of reserves. A focused Cyprus scenario with 411 bcm of reserves peaks at 10 bcm/year produces 4.07 billion kg of hydrogen and retains 212.29 bcm of reserves. Cumulative revenues span from USD 84.37 billion under low hydrogen pricing to USD 247.29 billion regionally while the Cyprus-focused case yields USD 1.79 billion to USD 18.08 billion. These results validate the model’s versatility for energy transition planning enabling strategic insights into infrastructure deployment market dynamics and resource management in gas-rich regions.
Carbon Emission Reduction Capability Analysis of Electricity–Hydrogen Integrated Energy Storage Systems
Oct 2025
Publication
Against the dual backdrop of intensifying carbon emission constraints and the large-scale integration of renewable energy integrated electricity–hydrogen energy systems (EH-ESs) have emerged as a crucial technological pathway for decarbonising energy systems owing to their multi-energy complementarity and cross-scale regulation capabilities. This paper proposes an operational optimisation and carbon reduction capability assessment framework for EH-ESs focusing on revealing their operational response mechanisms and emission reduction potential under multi-disturbance conditions. A comprehensive model encompassing an electrolyser (EL) a fuel cell (FC) hydrogen storage tanks and battery energy storage was constructed. Three optimisation objectives—cost minimisation carbon emission minimisation and energy loss minimisation—were introduced to systematically characterise the trade-offs between economic viability environmental performance and energy efficiency. Case study validation demonstrates the proposed model’s strong adaptability and robustness across varying output and load conditions. EL and FC efficiencies and costs emerge as critical bottlenecks influencing system carbon emissions and overall expenditure. Further analysis reveals that direct hydrogen utilisation outperforms the ‘electricity–hydrogen–electricity’ cycle in carbon reduction providing data support and methodological foundations for low-carbon optimisation and widespread adoption of electricity–hydrogen systems.
Hydrogen Direct Reduced Iron Melting in an Electric Arc Furnace: Benefits of In Situ Monitoring
Oct 2025
Publication
The transition toward environmentally friendly steelmaking using hydrogen direct reduced iron as feed material in electric arc furnaces will eventually require process adjustments due to changes in the pellet properties when compared to e.g. blast furnace pellets. To this end the melting of hydrogen direct reduced iron pellets with 68 and 100% reduction degrees and Fe content of 67.24% was investigated in a laboratory-scale electric arc furnace. The presence of iron oxide-rich slag had a significant effect on the arc movement on the melt and an inhibiting effect on iron evaporation. The melting was monitored with video recording and optical emission spectroscopy. The videos were used to monitor the melting behavior whereas optical emissions revealed iron gangue elements and hydrogen from the pellets radiating in the plasma. Furthermore the flow of the melt is well seen in the videos as well as the movement of slag droplets on the melt surface. After the experiments the metal had silica-rich inclusions whereas slag had mostly penetrated into the crucible. The most notable differences in melting behavior can be attributed to the iron oxide-rich slag its interaction with the arc and penetration into the crucible and how it affects the arc movement and heat transfer.
Sensitivity Analysis of Geological Parameters to Evaluate Uncertainty in Underground Hydrogen Storage Performance for a Saline Aquifer at Ketzin (Germany)
May 2025
Publication
A numerical sensitivity analysis of a hydrogen pore storage system is carried out on a reservoir-scale geological model of the Ketzin site (Germany) to analyze the influence of uncertainty in geological parameters and fluid properties on storage performance. Therefore the following physical geological parameters and fluid properties were investigated: Porosity and permeability of the reservoir rock the brine salinity relative permeability and capillary pressure and mechanical dispersion. The range of the applied parameters is based on experimental and field data of the chosen location obtained during the former CO2 storage projects at the Ketzin site from 2008 to 2013. Using the open-source reservoir software MUFITS for the numerical simulations strong differences between the results can be observed. The results were evaluated based on measures to quantify performance such as the ratio of produced hydrogen mass to produced cushion gas (nitrogen) productivity index and sustainability index. The strongest impact on the performance parameters was observed with variations in the capillary pressure and the relative permeability curves followed by the absolute permeabilities while the least impact was seen with changes in the porosity and salinity of the brine. This work is not only crucial as a pre-feasibility study for the Ketzin storage site for hydrogen storage but also as a basis for decision-making for other potential storage sites in sedimentary basins.
Mapping Hydrogen Demand for Heavy-duty Vehicles: A Spatial Disaggregation Approach
Jul 2025
Publication
Hydrogen is the key to decarbonising heavy-duty transport. Understanding the distribution of hydrogen demand is crucial for effective planning and development of infrastructure. However current data on future hydrogen demand is often coarse and aggregated limiting its utility for detailed analysis and decision-making. This study developed a spatial disaggregation approach to estimating hydrogen demand for heavy-duty trucks and mapping the spatial distribution of hydrogen demand across multiple scales in Australia. By integrating spatial datasets with economic factors market penetration rates and technical specifications of hydrogen fuel cell vehicles the approach disaggregates the projected demand into specific demand centres allowing for the mapping of regional hydrogen demand patterns and the identification of key centres of hydrogen demand based on heavy-duty truck traffic flow projections under different scenarios. This approach was applied to Australia and the findings offered valuable insights that can help policymakers and stakeholders plan and develop hydrogen infrastructure such as optimising hydrogen refuelling station locations and support the transition to a low-carbon heavy-duty transport sector.
Techno-Economic Assessment of Carbon-Neutral Ammonia Fuel for Ships from Renewable Wind Energy
Oct 2025
Publication
Climate change is fuelled by the continued growth of global carbon emissions with the widespread use of fossil fuels being the main driver. To achieve a decarbonisation transition of the energy mix the development of clean and renewable fuels has become crucial. Ammonia is seen as an important option for decarbonisation in the transport and energy sectors due to its zero-carbon emission potential and renewable energy compatibility. However the high energy consumption and carbon emissions of the conventional Haber– Bosch method limit its sustainability. A green ammonia synthesis system was designed using ECLIPSE and Excel simulations in the study. Results show that at a recirculation ratio of 70% the system’s annual total energy consumption is 426.22 GWh with annual ammonia production reaching 8342.78 t. The optimal system configuration comprises seven 12 MW offshore wind turbines integrated with a 460 MWh lithium battery and 240 t of hydrogen storage capacity. At this configuration the LCOE is approximately £5956.58/t. It shows that incorporating renewable energy can significantly reduce greenhouse gas emissions but further optimisation of energy storage configurations and reaction conditions is needed to lower costs. This research provides a reference for the industrial application of green ammonia in the transportation sector.
Comparative Techno-Economic and Life Cycle Assessment of Stationary Energy Storage Systems: Lithium-Ion, Lead-Acid, and Hydrogen
Oct 2025
Publication
This study presents a comparative techno-economic and environmental assessment of three leading stationary energy storage technologies: lithium-ion batteries lead-acid batteries and hydrogen systems (electrolyzer–tank–fuel cell). The analysis integrates Life Cycle Assessment (LCA) and Levelized Cost of Storage (LCOS) to provide a holistic evaluation. The LCA covers the full cradle-to-grave stages while LCOS accounts for capital and operational expenditures efficiency and cycling frequency. The results indicate that lithium-ion batteries achieve the lowest LCOS (120–180 EUR/MWh) and high round-trip efficiency (90–95%) making them optimal for short- and medium-duration storage. Lead-acid batteries though characterized by low capital expenditures (CAPEX) and high recyclability (>95%) show limited cycle life and lower efficiency (75–80%). Hydrogen systems remain costly (>250 EUR/MWh) and less efficient (30–40%) yet they demonstrate clear advantages for long-term and seasonal storage particularly under scenarios with “green” hydrogen production and reduced CAPEX. These findings provide practical guidance for policymakers investors and industry stakeholders in selecting appropriate storage solutions aligned with decarbonization and sustainability goals.
No more items...