Publications
The Hydrogen Safety Program of the US Department of Energy
Sep 2005
Publication
Demonstrated safety in the production distribution and use of hydrogen will be critical to successful implementation of a hydrogen infrastructure. Recognizing the importance of this issue the U.S. Department of Energy has established the Hydrogen Safety Program to ensure safe operations of its hydrogen research and development program as well as to identify and address needs for new knowledge and technologies in the future hydrogen economy. Activities in the Safety Program range across the entire safety spectrum including: R&D devoted to investigation of hydrogen behaviour physical characteristics materials compatibility and risk analysis; inspection and investigation into the safety procedures and practices of all hydrogen projects supported by DOE funds; development of critical technologies for safe hydrogen systems such as sensors and design techniques; and safety training and education for emergency responders code inspectors and the general public. Throughout its activities the Safety Program encourages the open sharing of information to enable widespread benefit from any lessons learned or new information developed.
This paper provides detailed descriptions of the various activities of the DOE Hydrogen Safety Program and includes some example impacts already achieved from its implementation.
This paper provides detailed descriptions of the various activities of the DOE Hydrogen Safety Program and includes some example impacts already achieved from its implementation.
Mixing of Dense or Light Gases with Turbulent Air- a Fast-Running Model for Lumped Parameter Codes
Sep 2005
Publication
The release of gases heavier than air like propane at ground level or lighter than air like hydrogen close to a ceiling can both lead to fire and explosion hazards that must be carefully considered in safety analyses. Even if the simulation of accident scenarios in complex installations and long transients often appears feasible only using lumped parameter computer codes the phenomenon of denser or lighter gas dispersion is not implicitly accounted by these kind of tools. In the aim to set up an ad hoc model to be used in the computer code ECART fluid-dynamic simulations by the commercial FLUENT 6.0 CFD code are used. The reference geometry is related to cavities having variable depth (2 to 4 m) inside long tunnels filled with a gas heavier or lighter than air (propane or hydrogen). Three different geometrical configurations with a cavity width of 3 6 and 9 m are considered imposing different horizontal air stream velocities ranging from 1 to 5 m/s. A stably-stratified flow region is observed inside the cavity during gas shearing. In particular it is found that the density gradient tends to inhibit turbulent mixing thus reducing the dispersion rate. The obtained data are correlated in terms of main dimensionless groups by means of a least squares method. In particular the Sherwood number is correlated as a function of Reynolds a density ratio modified Froude numbers and in terms of the geometrical parameter obtained as a ratio between the depth of the air-dense gas interface and the length of the cavity. This correlation is implemented in the ECART code to add the possibility to simulate large installations during complex transients lasting many hours with reasonable computation time. An example of application to a typical case is presented.
Hydrogen-air Deflagrations in Open Atmosphere- Large Eddy Simulation Analysis of Experimental Data
Sep 2005
Publication
The largest known experiment on hydrogen-air deflagration in the open atmosphere has been analysed by means of the large eddy simulation (LES). The combustion model is based on the progress variable equation to simulate a premixed flame front propagation and the gradient method to decouple the physical combustion rate from numerical peculiarities. The hydrodynamic instability has been partially resolved by LES and unresolved effects have been modelled by Yakhot's turbulent premixed combustion model. The main contributor to high flame propagation velocity is the additional turbulence generated by the flame front itself. It has been modelled based on the maximum flame wrinkling factor predicted by Karlovitz et al. theory and the transitional distance reported by Gostintsev with colleagues. Simulations are in a good agreement with experimental data on flame propagation dynamics flame shape and outgoing pressure wave peaks and structure. The model is built from the first principles and no adjustable parameters were applied to get agreement with the experiment.
H2FC Supergen- The Role of Hydrogen and Fuel Cells in Future Energy Systems
Mar 2017
Publication
This White Paper has been commissioned by the UK Hydrogen and Fuel Cell (H2FC) SUPERGEN Hub to examine the roles and potential benefits of hydrogen and fuel cell technologies in delivering energy security for the UK. The H2FC SUPERGEN Hub is an inclusive network encompassing the entire UK hydrogen and fuel cells research community with around 100 UK-based academics supported by key stakeholders from industry and government. It is funded by the UK EPSRC research council as part of the RCUK Energy Programme. This paper is the second of four that were published over the lifetime of the Hub with the others examining: (i) low-carbon heat; (iii) future energy systems; and (iv) economic impact.
- Fuel cells can contribute to UK energy system security both now and in the future.
- Hydrogen can be produced using a broad range of feedstocks and production processes including renewable electricity.
- Adopting hydrogen as an end-use fuel in the long term increases UK energy diversity.
Impact of Depth on Underground Hydrogen Storage Operations in Deep Aquifers
Mar 2024
Publication
Underground hydrogen storage in geological structures is considered appropriate for storing large amounts of hydrogen. Using the geological Konary structure in the deep saline aquifers an analysis of the influence of depth on hydrogen storage was carried out. Hydrogen injection and withdrawal modeling was performed using TOUGH2 software assuming different structure depths. Changes in the relevant parameters for the operation of an underground hydrogen storage facility including the amount of H2 injected in the initial filling period cushion gas working gas and average amount of extracted water are presented. The results showed that increasing the depth to approximately 1500 m positively affects hydrogen storage (flow rate of injected hydrogen total capacity and working gas). Below this depth the trend was reversed. The cushion gas-to-working gas ratio did not significantly change with increasing depth. Its magnitude depends on the length of the initial hydrogen filling period. An increase in the depth of hydrogen storage is associated with a greater amount of extracted water. Increasing the duration of the initial hydrogen filling period will reduce the water production but increase the cushion gas volume.
Cost-competitive Green Hydrogen: How to Lower the Cost of Electrolysers?
Jan 2022
Publication
The higher cost of green hydrogen in comparison to its competitors is the most important barrier to its increased use. Although the cost of renewable electricity is considered to be the key obstacle challenges associated with electrolysers are another major issue that have important implications for the cost reduction of green hydrogen. This paper analyses the electrolysis process from technological economic and policy perspectives. It first provides a comparative analysis of the main existing electrolyser technologies and identifies key trade-offs in terms of cost scarcity of materials used technology readiness and the ability to operate in a flexible mode (which enables them to be coupled with variable renewables generation). The paper then identifies the main cost drivers for each of the most promising technologies and analyses the opportunities for cost reduction. It also draws upon the experience of solar and wind power generation technologies with respect to gradual cost reduction and evaluates development paths that each of the main electrolyser technology types could take in the future. Finally the paper elaborates on the policy mechanisms that could additionally foster cost reduction and the overall business development of electrolyser technologies.
The research paper can be found on their website
The research paper can be found on their website
Injecting Hydrogen into the Gas Network- A Literature Search
Jan 2015
Publication
Hydrogen injection into the GB gas network is a likely consequence of using excess offshore wind generated electricity to power large-scale onshore electrolysis plants. Government and DECC in particular now have a keen interest in supporting technologies that can take advantage of the continued use of the gas networks. HSE can contribute to the government’s Growth and Green agendas by effectively regulating and safely enabling this technology.
This report will allow HSE to regulate effectively by pulling together scientific and engineering knowledge regarding the hazards of conveying hydrogen/methane mixtures in network pipes and its use in consumer appliances into a single ‘state-of-play’ report. It enables Energy Division to consider and assess submissions for ‘gas quality’ exemptions to the Gas Safety (Management) Regulations 1996 (GSMR).
In particular the report has examined the following hazards:
This report will allow HSE to regulate effectively by pulling together scientific and engineering knowledge regarding the hazards of conveying hydrogen/methane mixtures in network pipes and its use in consumer appliances into a single ‘state-of-play’ report. It enables Energy Division to consider and assess submissions for ‘gas quality’ exemptions to the Gas Safety (Management) Regulations 1996 (GSMR).
In particular the report has examined the following hazards:
- conveyance of H2/CH4 mixtures in network pipes
- use of H2/CH4 mixtures in consumer appliances (domestic/commercial/industrial)
- explosion and damage characteristics (and ignition likelihood) of H2/CH4 mixtures
- effects on odourisation
Aqueous Phase Reforming in a Microchannel Reactor: The Effect of Mass Transfer on Hydrogen Selectivity
Aug 2013
Publication
Aqueous phase reforming of sorbitol was carried out in a 1.7 m long 320 mm ID microchannel reactor with a 5 mm Pt-based washcoated catalyst layer combined with nitrogen stripping. The performance of this microchannel reactor is correlated to the mass transfer properties reaction kinetics hydrogen selectivity and product distribution. Mass transfer does not affect the rate of sorbitol consumption which is limited by the kinetics of the reforming reaction. Mass transfer significantly affects the hydrogen selectivity and the product distribution. The rapid consumption of hydrogen in side reactions at the catalyst surface is prevented by a fast mass transfer of hydrogen from the catalyst site to the gas phase in the microchannel reactor. This results in a decrease of the concentration of hydrogen at the catalyst surface which was found to enhance the desired reforming reaction rate at the expense of the undesired hydrogen consuming reactions. Compared to a fixed bed reactor the selectivity to hydrogen in the microchannel reactor was increased by a factor of 2. The yield of side products (mainly C3 and heavier hydrodeoxygenated species) was suppressed while the yield of hydrogen was increased from 1.4 to 4 moles per mole of sorbitol fed.
Releases of Unignited Liquid Hydrogen
Jan 2014
Publication
If the hydrogen economy is to progress more hydrogen fuelling stations are required. In the short term in the absence of a hydrogen distribution network these fuelling stations will have to be supplied by liquid hydrogen road tanker. Such a development will increase the number of tanker offloading operations significantly and these may need to be performed in close proximity to the general public.<br/>The aim of this work is to identify and address hazards relating to the storage and transport of bulk liquid hydrogen (LH2) that are associated with hydrogen refuelling stations located in urban environments. Experimental results will inform the wider hydrogen community and contribute to the development of more robust modelling tools. The results will also help to update and develop guidance for codes and standards.<br/>The first phase of the project was to develop an experimental and modelling strategy for the issues associated with liquid hydrogen spills; this was documented in HSL report XS/10/06[1].<br/>The second phase of the project was to produce a position paper on the hazards of liquid hydrogen which was published in 2009 XS/09/72[2]. This was also published as a HSE research report RR769 in 2010[3].<br/>This report details experiments performed to investigate spills of liquid hydrogen at a rate of 60 litres per minute. Measurements were made on unignited releases which included concentration of hydrogen in air thermal gradient in the concrete substrate liquid pool formation and temperatures within the pool. Computational modelling of the unignited releases has been undertaken at HSL and reported in MSU/12/01 [4]. Ignited releases of hydrogen have also been performed as part of this project; the results and findings from this work are reported in XS/11/77[5].
Achieving High-rate Hydrogen Recovery from Wastewater Using Customizable Alginate Polymer Gel Matrices Encapsulating Biomass
Jul 2018
Publication
In addition to methane gas higher-value resources such as hydrogen gas are produced during anaerobic wastewater treatment. They are however immediately consumed by other organisms. To recover these high-value resources not only do the desired phenotypes need to be retained in the anaerobic reactor but the undesired ones need to be washed out. In this study a well-established alginate-based polymer gel with and without a coating layer was used to selectively encapsulate hydrogen-producing biomass in beads to achieve high-rate recovery of hydrogen during anaerobic wastewater treatment. The effect of cross-linking agents Ca2+ Sr2+ and Ba2+ as well as a composite coating on the beads consisting of alternating layers of polyethylenimine and silica hydrogel were investigated with respect to their performance specifically their mass transfer characteristics and their differential ability to retain the encapsulated biomass. Although the coating reduced the escape rate of encapsulated biomass from the beads all alginate polymer matrices without coating effectively retained biomass. Fast diffusion of dissolved organic carbon (DOC) through the polymer gel was observed in both Ca-alginate and Sr-alginate without coating. The coating however decreased either the diffusivity or the permeability of the DOC depending on whether the DOC was from synthetic wastewater (more lipids and proteins) or real brewery wastewater (more sugars). Consequently the encapsulation system with coating became diffusion limited when brewery wastewater with high chemical oxygen demand was fed resulting in a lower hydrogen production rate than the uncoated encapsulation systems. In all cases the encapsulated biomass was able to produce hydrogen even at a hydraulic residence time of 45 min. Although there are limitations to this system the used of encapsulated biomass for resource recovery from wastewater shows promise particularly for high-rate systems in which the retention of specific phenotypes is desired.
New Insights into the Electrochemical Behaviour of Porous Carbon Electrodes for Supercapacitors
Aug 2018
Publication
Activated carbons with different surface chemistry and porous textures were used to study the mechanism of electrochemical hydrogen and oxygen evolution in supercapacitor devices. Cellulose precursor materials were activated with different potassium hydroxide (KOH) ratios and the electrochemical behaviour was studied in 6 M KOH electrolyte. In situ Raman spectra were collected to obtain the structural changes of the activated carbons under severe electrochemical oxidation and reduction conditions and the obtained data were correlated to the cyclic voltammograms obtained at high anodic and cathodic potentials. Carbon-hydrogen bonds were detected for the materials activated at high KOH ratios which form reversibly under cathodic conditions. The influence of the specific surface area narrow microporosity and functional groups in the carbon electrodes on their chemical stability and hydrogen capture mechanism in supercapacitor applications has been revealed.
Challenges in the Use of Hydrogen for Maritime Applications
Jan 2021
Publication
Maritime shipping is a key factor that enables the global economy however the pressure it exerts on the environment is increasing rapidly. In order to reduce the emissions of harmful greenhouse gasses the search is on for alternative fuels for the maritime shipping industry. In this work the usefulness of hydrogen and hydrogen carriers is being investigated as a fuel for sea going ships. Due to the low volumetric energy density of hydrogen under standard conditions the need for efficient storage of this fuel is high. Key processes in the use of hydrogen are discussed starting with the production of hydrogen from fossil and renewable sources. The focus of this review is different storage methods and in this work we discuss the storage of hydrogen at high pressure in liquefied form at cryogenic temperatures and bound to liquid or solid-state carriers. In this work a theoretical introduction to different hydrogen storage methods precedes an analysis of the energy-efficiency and practical storage density of the carriers. In the final section the major challenges and hurdles for the development of hydrogen storage for the maritime industry are discussed. The most likely challenges will be the development of a new bunkering infrastructure and suitable monitoring of the safety to ensure safe operation of these hydrogen carriers on board the ship.
Ignited Releases of Liquid Hydrogen
Jan 2014
Publication
If the hydrogen economy is to progress more hydrogen fuelling stations are required. In the short term in the absence of a hydrogen distribution network these fuelling stations will have to be supplied by liquid hydrogen (LH2) road tanker. Such a development will increase the number of tanker offloading operations significantly and these may need to be performed in close proximity to the general public.<br/>Several research projects have been undertaken already at HSL with the aim of identifying and addressing hazards relating to the storage and transport of bulk LH2 that are associated with hydrogen refuelling stations located in urban environments.<br/>The first phase of the research was to produce a position paper on the hazards of LH2 (Pritchard and Rattigan 2009). This was published as an HSE research report RR769 in 2010. <br/>The second phase developed an experimental and modelling strategy for issues associated with LH2 spills and was published as an internal report HSL XS/10/06. The subsequent experimental work is a direct implementation of that strategy. LH2 was first investigated experimentally (Royle and Willoughby 2012 HSL XS/11/70) as large-scale spills of LH2 at a rate of 60 litres per minute. Measurements were made on unignited releases which included the concentration of hydrogen in air thermal gradients in the concrete substrate liquid pool formation and temperatures within the pool. Computational modelling on the un-ignited spills was also performed (Batt and Webber 2012 HSL MSU/12/01).<br/>The experimental work on ignited releases of LH2 detailed in this report is a direct continuation of the work performed by Royle and Willoughby.<br/>The aim of this work was to determine the hazards and severity of a realistic ignited spill of LH2 focussing on; flammability limits of an LH2 vapour cloud flame speeds through an LH2 vapour cloud and subsequent radiative heat and overpressures after ignition. The results of the experimentation will inform the wider hydrogen community and contribute to the development of more robust modelling tools. The results will also help to update and develop guidance for codes and standards.
Path to Hydrogen Competitiveness: A Cost Perspective
Jan 2020
Publication
This latest Hydrogen Council report shows that the cost of hydrogen solutions will fall sharply within the next decade – and sooner than previously expected. As scale up of hydrogen production distribution equipment and component manufacturing continues cost is projected to decrease by up to 50% by 2030 for a wide range of applications making hydrogen competitive with other low-carbon alternatives and in some cases even conventional options.
Significant cost reductions are expected across different hydrogen applications. For more than 20 of them such as long-distance and heavy-duty transportation industrial heating and heavy industry feedstock which together comprise roughly 15% of global energy consumption the hydrogen route appears the decarbonisation option of choice – a material opportunity.
The report attributes this trajectory to scale-up that positively impacts the three main cost drivers:
To deliver on this opportunity supporting policies will be required in key geographies together with investment support of around $70 billion in the lead up to 2030 in order to scale up and achieve hydrogen competitiveness. While this figure is sizable it accounts for less than 5% of annual global spending on energy. For comparison support provided to renewables in Germany totalled roughly $30 billion in 2019.
The study is based on real industry data with 25000 data points gathered and analysed from 30 companies using a rigorous methodology. The data was collected and analytical support provided by McKinsey & Company and it represents the entire hydrogen value chain across four key geographies (US Europe Japan/Korea and China). Data was also reviewed by an independent advisory group comprised of recognised hydrogen and energy transition experts.
You can download the full report from the Hydrogen Council website here
The executive summary can be found here
Significant cost reductions are expected across different hydrogen applications. For more than 20 of them such as long-distance and heavy-duty transportation industrial heating and heavy industry feedstock which together comprise roughly 15% of global energy consumption the hydrogen route appears the decarbonisation option of choice – a material opportunity.
The report attributes this trajectory to scale-up that positively impacts the three main cost drivers:
- Strong fall in the cost of producing low carbon and renewable hydrogen;
- Lower distribution and refuelling costs thanks to higher load utilisation and scale effect on infrastructure utilisation; and
- Dramatic drop in the cost of components for end-use equipment under scaling up of manufacturing.
To deliver on this opportunity supporting policies will be required in key geographies together with investment support of around $70 billion in the lead up to 2030 in order to scale up and achieve hydrogen competitiveness. While this figure is sizable it accounts for less than 5% of annual global spending on energy. For comparison support provided to renewables in Germany totalled roughly $30 billion in 2019.
The study is based on real industry data with 25000 data points gathered and analysed from 30 companies using a rigorous methodology. The data was collected and analytical support provided by McKinsey & Company and it represents the entire hydrogen value chain across four key geographies (US Europe Japan/Korea and China). Data was also reviewed by an independent advisory group comprised of recognised hydrogen and energy transition experts.
You can download the full report from the Hydrogen Council website here
The executive summary can be found here
To Adopt CCU Technology or Not? An Evolutionary Game between Local Governments and Coal-Fired Power Plants
Apr 2022
Publication
Carbon dioxide capture and utilization (CCU) technology is a significant means by which China can achieve its ambitious carbon neutrality goal. It is necessary to explore the behavioral strategies of relevant companies in adopting CCU technology. In this paper an evolutionary game model is established in order to analyze the interaction process and evolution direction of local governments and coal-fired power plants. We develop a replicator dynamic system and analyze the stability of the system under different conditions. Based on numerical simulation we analyze the impact of key parameters on the strategies of stakeholders. The simulation results show that the unit prices of hydrogen and carbon dioxide derivatives have the most significant impact: when the unit price of hydrogen decreases to 15.9 RMB/kg or the unit price of carbon dioxide derivatives increases to 3.4 RMB/kg the evolutionary stabilization strategy of the system changes and power plants shift to adopt CCU technology. The results of this paper suggest that local governments should provide relevant support policies and incentives for CCU technology deployment as well as focusing on the synergistic development of CCU technology and renewable energy hydrogen production technology
H21- Hydrogen Boilers Installed in Demonstration Houses
Nov 2020
Publication
Hydrogen boilers have been developed by Worcester Bosch and Baxi and are being trialled in demonstration houses. They look and feel just like the boilers we use today. Hydrogen produces no carbon when used and a hydrogen gas network could provide the least disruptive route to a net zero carbon future.
Egypt’s Low Carbon Hydrogen Development Prospects
Nov 2021
Publication
Egypt has one of the largest economies in the Middle East and North Africa (MENA) region and several of its industries are large sources of greenhouse gas (GHG) emissions. As part of its contribution to mitigate GHG emissions within the framework of the 2015 Paris Agreement on climate change Egypt is focusing on the development of an ambitious renewable energy programme.
Some of Egypt’s main industries are big consumers of hydrogen which is produced locally using indigenous natural gas without abatement of the CO2 emissions resulting from this production process. In the long-term the production and consumption of this unabated hydrogen known as grey hydrogen could become a serious challenge for Egypt’s exports of manufactured products. Thus the Egyptian government is planning to develop low carbon hydrogen alternatives and has set up an inter-ministerial committee to prepare a national hydrogen strategy for Egypt.
This paper explores the prospects for low carbon hydrogen (blue and green hydrogen) developments in Egypt focusing on the potential replacement of Egypt’s large domestic production of grey hydrogen with cleaner low carbon hydrogen alternatives.
The research paper can be found on their website
Some of Egypt’s main industries are big consumers of hydrogen which is produced locally using indigenous natural gas without abatement of the CO2 emissions resulting from this production process. In the long-term the production and consumption of this unabated hydrogen known as grey hydrogen could become a serious challenge for Egypt’s exports of manufactured products. Thus the Egyptian government is planning to develop low carbon hydrogen alternatives and has set up an inter-ministerial committee to prepare a national hydrogen strategy for Egypt.
This paper explores the prospects for low carbon hydrogen (blue and green hydrogen) developments in Egypt focusing on the potential replacement of Egypt’s large domestic production of grey hydrogen with cleaner low carbon hydrogen alternatives.
The research paper can be found on their website
Technologies and Infrastructures Underpinning Future CO2 Value Chains: A Comprehensive Review and Comparative Analysis
Feb 2018
Publication
In addition to carbon capture and storage efforts are also being focussed on using captured CO2 both directly as a working fluid and in chemical conversion processes as a key strategy for mitigating climate change and achieving resource efficiency. These processes require large amounts of energy which should come from sustainable and ideally renewable sources. A strong value chain is required to support the production of valuable products from CO2 . A value chain is a network of technologies and infrastructures (such as conversion transportation storage) along with its associated activities (such as sourcing raw materials processing logistics inventory management waste management) required to convert low-value resources to high-value products and energy services and deliver them to customers. A CO2 value chain involves production of CO2 (involving capture and purification) technologies that convert CO2 and other materials into valuable products sourcing of low-carbon energy to drive all of the transformation processes required to convert CO2 to products (including production of hydrogen syngas methane etc.) transport of energy and materials to where they are needed managing inventory levels of resources and delivering the products to customers all in order to create value (economic environmental social etc.).
Technologies underpinning future CO2 value chains were examined. CO2 conversion technologies such as urea production Sabatier synthesis Fischer-Tropsch synthesis hydrogenation to methanol dry reforming hydrogenation to formic acid and electrochemical reduction were assessed and compared based on key performance indicators such as: CAPEX OPEX electricity consumption TRL product price net CO2 consumption etc. Technologies for transport and storage of key resources are also discussed. This work lays the foundation for a comprehensive whole-system value chain analysis modelling and optimisation.
Technologies underpinning future CO2 value chains were examined. CO2 conversion technologies such as urea production Sabatier synthesis Fischer-Tropsch synthesis hydrogenation to methanol dry reforming hydrogenation to formic acid and electrochemical reduction were assessed and compared based on key performance indicators such as: CAPEX OPEX electricity consumption TRL product price net CO2 consumption etc. Technologies for transport and storage of key resources are also discussed. This work lays the foundation for a comprehensive whole-system value chain analysis modelling and optimisation.
Energy Innovation Needs Assessment: Hydrogen & Fuel Cells
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a system level approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
Study on Fuel Cells Hydrogen Trucks
Dec 2020
Publication
Fuel cell and hydrogen (FCH) technology is a very promising zero-emission powertrain solution for the heavy-duty trucking industry. The FCH 2 JU subcontracted this study to analyse the state-of-the-art of the technology its surrounding policy and regulatory regime ongoing trial and demonstrations projects and its total cost of ownership and market potential. Furthermore specific case studies and industry experts identified remaining technological and non-technological barriers for FCH technology in different trucking use cases.
The study projects a potential fuel cell trucks sales share of approx. 17% of new trucks sold in 2030 based on a strong technology cost-reduction trajectory. With scaled-up production of FCH trucks and hydrogen offered below 6 EUR/kg FCH heavy-duty trucks (FCH HDT) provide the operational performance most comparable to diesel trucks regarding daily range refuelling time payload capacity and TCO. Nine case studies were developed as first tangible business opportunity blueprints for the industry. They also provide a view on current limitations of real-life operations. In conclusion 22 barriers have been identified that successfully tackled will unlock the full commercial potential of FCH HDT for the trucking and logistics industry. The study proposes tailored R&I projects and policy recommendations that address such remaining barriers in the short-term.
The study projects a potential fuel cell trucks sales share of approx. 17% of new trucks sold in 2030 based on a strong technology cost-reduction trajectory. With scaled-up production of FCH trucks and hydrogen offered below 6 EUR/kg FCH heavy-duty trucks (FCH HDT) provide the operational performance most comparable to diesel trucks regarding daily range refuelling time payload capacity and TCO. Nine case studies were developed as first tangible business opportunity blueprints for the industry. They also provide a view on current limitations of real-life operations. In conclusion 22 barriers have been identified that successfully tackled will unlock the full commercial potential of FCH HDT for the trucking and logistics industry. The study proposes tailored R&I projects and policy recommendations that address such remaining barriers in the short-term.
No more items...