Publications
Layered Transition Metal Selenophosphites for Visible Light Photoelectrochemical Production of Hydrogen
Jun 2021
Publication
The growing consumption of global energy has posed serious challenges to environmental protection and energy supplies. A promising solution is via introducing clean and sustainable energy sources including photoelectrochemical hydrogen fuel production. 2D materials such as transition metal trichalcogenphosphites (MPCh3) are gaining more and more interest for their potential as photocatalysts. Crystals of transition metal selenophosphites namely MnPSe3 FePSe3 and ZnPSe3 were tested as photocatalysts for the hydrogen evolution reaction (HER). ZnPSe3 is the one that exhibited the lowest overpotential and the higher response to the light during photocurrent experiments in acidic media. For this reason among the crystals in this work it is the most promising for the photocatalyzed production of hydrogen.
Enhanced Hydrogen Generation from Hydrolysis of MgLi Doped with Expanded Graphite
Apr 2021
Publication
Hydrolysis of Mg-based materials is considered as a potential means of safe and convenient real-time control of H2 release enabling efficient loading discharge and utilization of hydrogen in portable electronic devices. At present work the hydrogen generation properties of MgLi-graphite composites were evaluated for the first time. The MgLi-graphite composites with different doping amounts of expanded graphite (abbreviated as EG hereinafter) were synthesized through ball milling and the hydrogen behaviors of the composites were investigated in chloride solutions. Among the above doping systems the 10 wt% EG-doped MgLi exhibited the best hydrogen performance in MgCl2 solutions. In particular the 22 h-milled MgLi-10 wt% EG composites possessed both desirable hydrogen conversion and rapid reaction kinetics delivering a hydrogen yield of 966 mL H2 g−1 within merely 2 min and a maximum hydrogen generation rate of 1147 mL H2 min−1 g−1 as opposed to the sluggish kinetics in the EG-free composites. Moreover the EG-doped MgLi showed superior air-stable ability even under a 75 RH% ambient atmosphere. For example the 22 h-milled MgLi-10 wt% EG composites held a fuel conversion of 89% after air exposure for 72 h rendering it an advantage for Mg-based materials to safely store and transfer in practical applications. The similar favorable hydrogen performance of MgLi-EG composites in (simulate) seawater may shed light on future development of hydrogen generation technologies.
Modifications in the Composition of CuO/ZnO/Al2O3 Catalyst for the Synthesis of Methanol by CO2 Hydrogenation
Jun 2021
Publication
Renewable methanol obtained from CO2 and hydrogen provided from renewable energy was proposed to close the CO2 loop. In industry methanol synthesis using the catalyst CuO/ZnO/Al2O3 occurs at a high pressure. We intend to make certain modification on the traditional catalyst to work at lower pressure maintaining high selectivity. Therefore three heterogeneous catalysts were synthesized by coprecipitation to improve the activity and the selectivity to methanol under mild conditions of temperature and pressure. Certain modifications on the traditional catalyst Cu/Zn/Al2O3 were employed such as the modification of the synthesis time and the addition of Pd as a dopant agent. The most efficient catalyst among those tested was a palladium-doped catalyst 5% Pd/Cu/Zn/Al2O3. This had a selectivity of 64% at 210 °C and 5 bar.
A Direct Synthesis of Platinum/Nickel Co-catalysts on Titanium Dioxide Nanotube Surface from Hydrometallurgical-type Process Streams
Aug 2018
Publication
Solutions that simulate hydrometallurgical base metal process streams with high nickel (Ni) and minor platinum (Pt) concentrations were used to create Pt/Ni nanoparticles on TiO2 nanotube surfaces. For this electrochemical deposition – redox replacement (EDRR) was used that also allowed to control the nanoparticle size density and Pt/Ni content of the deposited nanoparticles. The Pt/Ni nanoparticle decorated titanium dioxide nanotubes (TiO2 nanotubes) become strongly activated for photocatalytic hydrogen (H2) evolution. Moreover EDRR facilitates nanoparticle formation without the need for any additional chemicals and is more effective than electrodeposition alone. Actually a 10000-time enrichment level of Pt took place on the TiO2 surface when compared to Pt content in the solution with the EDRR method. The results show that hydrometallurgical streams offer great potential as an alternative raw material source for industrial catalyst production when coupled with redox replacement electrochemistry.
Acorn: Developing Full-chain Industrial Carbon Capture and Storage in a Resource- and Infrastructure-rich Hydrocarbon Province
Jun 2019
Publication
Juan Alcalde,
Niklas Heinemann,
Leslie Mabon,
Richard H. Worden,
Heleen de Coninck,
Hazel Robertson,
Marko Maver,
Saeed Ghanbari,
Floris Swennenhuis,
Indira Mann,
Tiana Walker,
Sam Gomersal,
Clare E. Bond,
Michael J. Allen,
Stuart Haszeldine,
Alan James,
Eric J. Mackay,
Peter A. Brownsort,
Daniel R. Faulkner and
Steve Murphy
Research to date has identified cost and lack of support from stakeholders as two key barriers to the development of a carbon dioxide capture and storage (CCS) industry that is capable of effectively mitigating climate change. This paper responds to these challenges through systematic evaluation of the research and development process for the Acorn CCS project a project designed to develop a scalable full-chain CCS project on the north-east coast of the UK. Through assessment of Acorn's publicly-available outputs we identify strategies which may help to enhance the viability of early-stage CCS projects. Initial capital costs can be minimised by infrastructure re-use particularly pipelines and by re-use of data describing the subsurface acquired during oil and gas exploration activity. Also development of the project in separate stages of activity (e.g. different phases of infrastructure re-use and investment into new infrastructure) enables cost reduction for future build-out phases. Additionally engagement of regional-level policy makers may help to build stakeholder support by situating CCS within regional decarbonisation narratives. We argue that these insights may be translated to general objectives for any CCS project sharing similar characteristics such as legacy infrastructure industrial clusters and an involved stakeholder-base that is engaged with the fossil fuel industry.
Adopting Hydrogen Direct Reduction for the Swedish Steel Industry: A Technological Innovation System (TIS) Study
Sep 2019
Publication
The Swedish steel industry stands before a potential transition to drastically lower its CO2 emissions using direct hydrogen reduction instead of continuing with coke-based blast furnaces. Previous studies have identified hydrogen direct reduction as a promising option. We build upon earlier efforts by performing a technological innovation system study to systematically examine the barriers to a transition to hydrogen direct reduction and by providing deepened quantitative empirics to support the analysis. We also add extended paper and patent analysis methodology which is particularly useful for identifying actors and their interactions in a technological system. We conclude that while the innovation system is currently focused on such a transition notable barriers remain particularly in coordination of the surrounding technical infrastructure and the issue of maintaining legitimacy for such a transition in the likely event that policies to address cost pressures will be required to support this development.
Energy Innovation Needs Assessment: Overview
Nov 2019
Publication
This project provides evidence to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation including any future phases of the Department for Business Energy & Industrial Strategy (BEIS) Energy Innovation1 Programme. The BEIS Energy Innovation Programme aims to accelerate the commercialisation of innovative clean energy technologies and processes into the 2020s and 2030s. The current Programme with a budget of £505 million from 2015-2021 consists of six themes and invests in smart systems industry & CCS (Carbon Capture and Storage) the built environment nuclear renewables and support for energy entrepreneurs and green financing.
Vivid Economics was contracted to lead a consortium with technical expertise in each of the Energy Innovation Needs Assessment (EINA) priority areas. The programme relied on evidence from a programme of workshops with over 180 participants energy system modelling and detailed technical advice. Partners include the Carbon Trust E4tech Imperial College London and Fraser-Nash. The Energy Systems Catapult (ESC) provided analytical evidence using their Energy System Modelling Environment (ESME) to support an early pre-screening of technologies.
Innovations have been prioritised where there is a strong case for UK Government investment. The prioritisation in this report is based on evidence of the potential benefits to the UK via a lower cost energy system and larger export markets. We also consider whether there is a need for UK Government intervention in addition to private and international efforts.
A distinctive feature of this project is its focus on innovation that benefits the whole energy system. Internationally there are other efforts attempting to answer the question of where to target resources to maximise benefits from innovation2. In selecting priorities we identify innovations that can unlock value across electricity heat transport sectors and the rest of the economy.
Vivid Economics was contracted to lead a consortium with technical expertise in each of the Energy Innovation Needs Assessment (EINA) priority areas. The programme relied on evidence from a programme of workshops with over 180 participants energy system modelling and detailed technical advice. Partners include the Carbon Trust E4tech Imperial College London and Fraser-Nash. The Energy Systems Catapult (ESC) provided analytical evidence using their Energy System Modelling Environment (ESME) to support an early pre-screening of technologies.
Innovations have been prioritised where there is a strong case for UK Government investment. The prioritisation in this report is based on evidence of the potential benefits to the UK via a lower cost energy system and larger export markets. We also consider whether there is a need for UK Government intervention in addition to private and international efforts.
A distinctive feature of this project is its focus on innovation that benefits the whole energy system. Internationally there are other efforts attempting to answer the question of where to target resources to maximise benefits from innovation2. In selecting priorities we identify innovations that can unlock value across electricity heat transport sectors and the rest of the economy.
Assessment of Hydrogen Direct Reduction for Fossil-free Steelmaking
Aug 2018
Publication
Climate policy objectives require zero emissions across all sectors including steelmaking. The fundamental process changes needed for reaching this target are yet relatively unexplored. In this paper we propose and assess a potential design for a fossil-free steelmaking process based on direct reduction of iron ore with hydrogen. We show that hydrogen direct reduction steelmaking needs 3.48 MWh of electricity per tonne of liquid steel mainly for the electrolyser hydrogen production. If renewable electricity is used the process will have essentially zero emissions. Total production costs are in the range of 361–640 EUR per tonne of steel and are highly sensitive to the electricity price and the amount of scrap used. Hydrogen direct reduction becomes cost competitive with an integrated steel plant at a carbon price of 34–68 EUR per tonne CO2 and electricity costs of 40 EUR/MWh. A key feature of the process is flexibility in production and electricity demand which allows for grid balancing through storage of hydrogen and hot-briquetted iron or variations in the share of scrap used.
Hollow CdS-Based Photocatalysts
Oct 2020
Publication
In recent years photocatalytic technology driven by solar energy has been extensively investigated to ease energy crisis and environmental pollution. Nevertheless efficiency and stability of photocatalysts are still unsatisfactory. To address these issues design of advanced photocatalysts is important. Cadmium sulphide (CdS) nanomaterials are one of the promising photocatalysts. Among them hollow-structured CdS featured with enhanced light absorption ability large surface area abundant active sites for redox reactions and reduced diffusion distance of photogenerated carriers reveals a broad application prospect. Herein main synthetic strategies and formation mechanism of hollow CdS photocatalysts are summarized. Besides we comprehensively discuss the current development of hollow-structured CdS nanomaterials in photocatalytic applications including H2 production CO2 reduction and pollutant degradation. Finally brief conclusions and perspectives on the challenges and future directions for hollow CdS photocatalysts are proposed.
Three-dimensional Structures of N2-Diluted Stoichiometric H2-O2 Flames in Narrow Channels
Sep 2021
Publication
Flame propagation and acceleration in unobstructed channels/tubes is usually assumed as symmetric. A fully optically accessible narrow channel that allows to perform simultaneous high-speed schlieren visualization from two mutually perpendicular directions was built to asses the validity of the aforementioned assumption. Here we provide experimental evidence of the interesting three-dimensional structures and asymmetries that develop during the acceleration phase and show how these may control detonation onset in N2-diluted stoichiometric H2-O2 mixtures.
Stronger Together: Multi-annual Variability of Hydrogen Production Supported by Wind Power in Sweden
Mar 2021
Publication
Hydrogen produced from renewable electricity will play an important role in deep decarbonisation of industry. However adding large electrolyser capacities to a low-carbon electricity system also increases the need for additional electricity generation from variable renewable energies. This will require hydrogen production to be variable unless other sources provide sufficient flexibility. Existing sources of flexibility in hydro-thermal systems are hydropower and thermal generation which are both associated with sustainability concerns. In this work we use a dispatch model for the case of Sweden to assess the power system operation with large-scale electrolysers assuming that additional wind power generation matches the electricity demand of hydrogen production on average. We evaluate different scenarios for restricting the flexibility of hydropower and thermal generation and include 29 different weather years to test the impact of variable weather regimes. We show that (a) in all scenarios electrolyser utilisation is above 60% on average (b) the inter-annual variability of hydrogen production is substantial if thermal power is not dispatched for electrolysis and (c) this problem is aggravated if hydropower flexibility is also restricted. Therefore either long-term storage of hydrogen or backup hydrogen sources may be necessary to guarantee continuous hydrogen flows. Large-scale dispatch of electrolysis capacity supported by wind power makes the system more stable if electrolysers ramp down in rare hours of extreme events with low renewable generation. The need for additional backup capacities in a fully renewable electricity system will thus be reduced if wind power and electrolyser operation are combined in the system.
Synthetic Natural Gas Production from CO2 and Renewable H2: Towards Large-scale Production of Ni–Fe Alloy Catalysts for Commercialization
Apr 2020
Publication
Synthetic natural gas (SNG) is one of the promising energy carriers for the excessive electricity generated from variable renewable energy sources. SNG production from renewable H2 and CO2 via catalytic CO2 methanation has gained much attention since CO2 emissions could be simultaneously reduced. In this study Ni–Fe/(MgAl)Ox alloy catalysts for CO2 methanation were prepared via hydrotalcite precursors using a rapid coprecipitation method. The effect of total metal concentration on the physicochemical properties and catalytic behavior was investigated. Upon calcination the catalysts showed high specific surface area of above 230 m2 g−1. Small particle sizes of about 5 nm were obtained for all catalysts even though the produced catalyst amount was increased by 10 times. The catalysts exhibited excellent space-time yield under very high gas space velocity (34000 h−1) irrespective of the metal concentration. The CO2 conversions reached 73–79% at 300 °C and CH4 selectivities were at 93–95%. Therefore we demonstrated the potential of large-scale production of earth-abundant Ni–Fe based catalysts for CO2 methanation and the Power-to-Gas technology.
Self-Supported High-Entropy Alloy Electrocatalyst for Highly Efficient H2 Evolution in Acid Condition
Jul 2020
Publication
Developing non-precious catalysts as Pt substitutes for electrochemical hydrogen evolution reaction (HER) with superior stability in acidic electrolyte is of critical importance for large-scale low-cost hydrogen production from water. Herein we report a CoCrFeNiAl high-entropy alloy (HEA) electrocatalyst with self-supported structure synthesized by mechanical alloying and spark plasma sintering (SPS) consolidation. The HEA after HF treatment and in situ electrochemical activation for 4000 cycles of cyclic voltammetry (HF-HEAa2) presents favourable activity with overpotential of 73 mV to reach a current density of 10 mA cm−2 and a Tafel slope of 39.7 mV dec−1. The alloy effect of Al/Cr with Co/Fe/Ni at atomic level high-temperature crystallization as well as consolidation by SPS endow CoCrFeNiAl HEA with high stability in 0.5 M H2SO4 solution. The superior performance of HF-HEAa2 is related with the presence of metal hydroxides/oxides groups on HEA.
In Situ Irradiated X-Ray Photoelectron Spectroscopy on Ag-WS2 Heterostructure For Hydrogen Production Enhancement
Oct 2020
Publication
The hot electron transition of noble materials to catalysis accelerated by localized surface plasmon resonances (LSPRs) was detected by in situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) in this article. This paper synthesized an Ag Nanowire (AgNW) @ WS2 core-shell structure with an ultra-thin shell of WS2(3 ∼ 7 nm) and characterized its photocatalytic properties. The AgNW@WS2 core-shell structure exhibited different surface-enhanced Raman spectroscopy (SERS) effects by changing shell thickness indicating that the effect of AgNW could be controlled by WS2 shell. Furthermore the hydrogen production of AgNW@WS2 could reach to 356% of that of pure WS2. The hot electrons arising from the LSPRs effect broke through the Schottky barrier between WS2 and AgNW and transferred to the WS2 shell whose photocatalytic effect was thus enhanced. In addition when the LSPRs effect was intensified by reducing the shell thickness the hot electron transition of noble materials to catalysis was accelerated.
Energy Saving Technologies and Mass-thermal Network Optimization for Decarbonized Iron and Steel Industry: A Review
Jul 2020
Publication
The iron and steel industry relies significantly on primary energy and is one of the largest energy consumers in the manufacturing sector. Simultaneously numerous waste heat is lost and discharged directly into the environment in the process of steel production. Thus considering conservation of energy energy-efficient improvement should be a holistic target for iron and steel industry. The research gap is that almost all the review studies focus on the primary energy saving measures in iron and steel industry whereas few work summarize the secondary energy saving technologies together with former methods. The objective of this paper is to develop the concept of mass-thermal network optimization in iron and steel industry which unrolls a comprehensive map to consider current energy conservation technologies and low grade heat recovery technologies from an overall situation. By presenting an overarching energy consumption in the iron and steel industry energy saving potentials are presented to identify suitable technologies by using mass-thermal network optimization. Case studies and demonstration projects around the world are also summarized. The general guideline is figured out for the energy optimization in iron and steel industry while the improved mathematical models are regarded as the future challenge.
Development of Technical Regulations for Fuel Cell Motorcycles in Japan—Hydrogen Safety
Jul 2019
Publication
Hydrogen fuel cell vehicles are expected to play an important role in the future and thus have improved significantly over the past years. Hydrogen fuel cell motorcycles with a small container for compressed hydrogen gas have been developed in Japan along with related regulations. As a result national regulations have been established in Japan after discussions with Japanese motorcycle companies stakeholders and experts. The concept of Japanese regulations was proposed internationally and a new international regulation on hydrogen-fueled motorcycles incorporating compressed hydrogen storage systems based on this concept are also established as United Nations Regulation No. 146. In this paper several technical regulations on hydrogen safety specific to fuel cell motorcycles incorporating compressed hydrogen storage systems are summarized. The unique characteristics of these motorcycles e.g. small body light weight and tendency to overturn easily are considered in these regulations.
Membrane-Based Electrolysis for Hydrogen Production: A Review
Oct 2021
Publication
Hydrogen is a zero-carbon footprint energy source with high energy density that could be the basis of future energy systems. Membrane-based water electrolysis is one means by which to produce high-purity and sustainable hydrogen. It is important that the scientific community focus on developing electrolytic hydrogen systems which match available energy sources. In this review various types of water splitting technologies and membrane selection for electrolyzers are discussed. We highlight the basic principles recent studies and achievements in membrane-based electrolysis for hydrogen production. Previously the NafionTM membrane was the gold standard for PEM electrolyzers but today cheaper and more effective membranes are favored. In this paper CuCl–HCl electrolysis and its operating parameters are summarized. Additionally a summary is presented of hydrogen production by water splitting including a discussion of the advantages disadvantages and efficiencies of the relevant technologies. Nonetheless the development of cost-effective and efficient hydrogen production technologies requires a significant amount of study especially in terms of optimizing the operation parameters affecting the hydrogen output. Therefore herein we address the challenges prospects and future trends in this field of research and make critical suggestions regarding the implementation of comprehensive membrane-based electrolytic systems.
Gas Switching Reforming for Flexible Power and Hydrogen Production to Balance Variable Renewables
May 2019
Publication
Variable renewable energy (VRE) is expected to play a major role in the decarbonization of the electricity sector. However decarbonization via VRE requires a fleet of flexible dispatchable plants with low CO2 emissions to supply clean power during times with limited wind and sunlight. These plants will need to operate at reduced capacity factors with frequent ramps in electricity output posing techno-economic challenges. This study therefore presents an economic assessment of a new near-zero emission power plant designed for this purpose. The gas switching reforming combined cycle (GSR-CC) plant can produce electricity during times of low VRE output and hydrogen during times of high VRE output. This product flexibility allows the plant to operate continuously even when high VRE output makes electricity production uneconomical. Although the CO2 avoidance cost of the GSR-CC plant (€61/ton) was similar to the benchmark post-combustion CO2 capture plant under baseload operation GSR-CC clearly outperformed the benchmark in a more realistic scenario where continued VRE expansion forces power plants into mid-load operation (45% capacity factor). In this scenario GSR-CC promises a 5 %-point higher annualized investment return than the post-combustion benchmark. GSR-CC therefore appears to be a promising concept for a future scenario with high VRE market share and CO2 prices provided that a large market for clean hydrogen is established.
Expectations, Attitudes, and Preferences Regarding Support and Purchase of Eco-friendly Fuel Vehicles
Apr 2019
Publication
This study analyses public expectations attitudes and preferences to support and purchase eco-friendly fuel vehicles. The study used a telephone survey of a sample of residents in Greater Stavanger Norway. Two cluster analyses were conducted to group the individuals based on expectations and attitudes toward eco-friendly fuel vehicles. In addition two multivariate analyses were performed to explore the determinants of support and willingness to purchase eco-friendly fuel vehicles. The study found three components of expectation to support eco-friendly fuel vehicles namely cost comfort and safety. The analysis further found four components to explain attitudes to support eco-friendly fuel vehicles: personal norm pro-technology awareness of priority and environmental degradation. Multivariate analyses confirmed that age gender and the number of cars in the household are likely to influence public preferences to support and purchase eco-friendly fuel vehicles. The results reveal that individuals tend to support the eco-friendly vehicles when the technologies meet their expectations towards cost and safety but the cost expectation is the significant factor that results in the decision to purchase the eco-friendly vehicles. The study also found that the pro-technology attitude has influenced the propensity to support and purchase the eco-friendly fuel vehicles.
SGN Project Report - Flame Visibility Risk Assessment
Feb 2021
Publication
This report contains information on the relative risks of natural gas and hydrogen fires particularly regarding their visibility. The fires considered are those that could occur on the H100 Fife trial network. The H100 Fife project will connect a number of residential houses to 100% hydrogen gas supply. The project includes hydrogen production storage and a new distribution network. From a review of large and small-scale tests and incidents it is concluded that hydrogen flames are likely to be clearly visible for releases above 2 bar particularly for larger release rates. At lower pressures hydrogen flame visibility will be affected by ambient lighting background colour and release orientation although this is also the case for natural gas. Potential safety implications from lack of flame visibility are that SGN workers other utility workers or members of the public could inadvertently come into contact with an ignited release. However some releases would be detected through noise thrown soil or interaction with objects. From a workshop and review of risk reduction measures and analysis of historical interference damage incidents it is concluded that flames with the potential for reduced visibility are adequately controlled. This is due to the likelihood of such scenarios occurring being low and that the consequences of coming into contact with such a flame are unlikely to be severe. These conclusions are supported by cost-benefit analysis that shows that no additional risk mitigation measures are justified for the H100 project. It is recommended that the cost-benefit analysis is revisited before applying the approach to a network wider than the H100 project. It was observed that the addition of odorant at relevant concentrations did not have an effect on the visibility of hydrogen flames.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
No more items...