Publications
Integrated Power and Propulsion System Optimization for a Planetary-Hopping Robot
Aug 2022
Publication
Missions targeting the extreme and rugged environments on the moon and Mars have rich potential for a high science return although several risks exist in performing these exploration missions. The current generation of robots is unable to access these high-priority targets. We propose using teams of small hopping and rolling robots called SphereX that are several kilograms in mass and can be carried by a large rover or lander and tactically deployed for exploring these extreme environments. Considering that the importance of minimizing the mass and volume of these robot platforms translates into significant mission-cost savings we focus on the optimization of an integrated power and propulsion system for SphereX. Hydrogen is used as fuel for its high energy and it is stored in the form of lithium hydride and oxygen in the form of lithium perchlorate. The system design undergoes optimization using Genetic Algorithms integrated with gradient-based search techniques to find optimal solutions for a mission. Our power and propulsion system as we show in this paper is enabling because the robots can travel long distances to perform science exploration by accessing targets not possible with conventional systems. Our work includes finding the optimal mass and volume of SphereX such that it can meet end-to-end mission requirements.
Design and Implementation of an Intelligent Energy Management System for Smart Home Utilizing a Multi-agent System
Jul 2022
Publication
Green Hydrogen Microgrid System has been selected as a source of clean and renewable alternative energy because it is undergoing a global revolution and has been identified as a source of clean energy that may aid the country in achieving net-zero emissions in the coming years. The study proposes an innovative Microgrid Renewable hybrid system to achieve these targets. The proposed hybrid renewable energy system combines a photovoltaic generator (PVG) a fuel cell (FC) a supercapacitor (SC) and a home vehicle power supply (V2H) to provide energy for a predefined demand. The proposed architecture is connected to the grid and is highly dependent on solar energy during peak periods. During the night or shading period it uses FC as a backup power source. The SC assists the FC with high charge power. SC performs this way during load transients or quick load changes. A multi-agent system (MAS) was used to build a real energy management system (RT-HEMS) for intelligent coordination between components (MAS). The scheduling algorithm reduces energy consumption by managing the required automation devices without the need for additional network power. It will meet household energy requirements regardless of weather conditions including bright cloudy or rainy conditions. Implementation and discussion of the RT-HEMS ensures that the GHS is functioning properly and that the charge request is satisfied.
Characterisation, Dispersion and Electrostatic Hazards of Liquid Hydrogen for the PRESLHY Project
Sep 2021
Publication
Liquid hydrogen has the potential to form part of the energy strategy in the future due to the need to decarbonise and replace fossil fuels and therefore could see widespread use. Adoption of LH2 means that the associated hazards need to be understood and managed. In recognition of this the European Union Fuel Cells and Hydrogen Joint Undertaking co-funded project PRESLHY undertook prenormative research for the safe use of cryogenic liquid hydrogen in non-industrial settings. Several key scenarios were identified as knowledge gaps and both theoretical and experimental studies were conducted to provide insight into these scenarios. This included experiments studying the evolution/dispersion of a hydrogen cloud following a liquid release and the generation of electrostatic charges in hydrogen plumes and pipework each of which are described and discussed. In addition assessment of the physical phase of the hydrogen flow within the pipework (i.e. liquid gas or two phase) was investigated. The objectives experimental set up and result summary are provided. Data generated from these experiments is to be used to generate and validate theoretical models and ultimately contribute to the development of regulations codes and standards for the storage handling and use of liquid hydrogen.
Roadmap to Achieving Sustainable Development via Green Hydrogen
Jan 2023
Publication
The conversion to renewable energy can be achieved when cities and communities start to depend on sustainable resources capable of providing for the basic needs of the community along with a reduction in the daily problems and issues that people face. These issues such as poverty hunger sanitation and economic difficulties are highlighted in the Sustainable Development Goals (SDGs) which aim to limit and eradicate these problems along with other environmental obstacles including climate change and Greenhouse Gases (GHGs). These SDGs containing 17 goals target each sector and provide propositions to solve such devastating problems. Hydrogen contributes to the targets of these sustainable developments since through its implementation in different industries the levels of GHG will drop and thus contribute to the climate change which Earth is facing. Further through the usage of such resources many job opportunities will also be developed thus enhancing the economy and lifting the status of society. This paper classifies the four different types of hydrogen and outlines the differences between them. The paper then emphasizes the importance of green hydrogen use within the shipping industry transportation and infrastructure along with economic and social development through job opportunities. Furthermore this paper provides case studies tackling green hydrogen status in the United Kingdom United States of America and European Union as well as Africa United Arab of Emirates and Asia. Finally challenges and recommendations concerning the green hydrogen industry are addressed. This paper aims to relate the use of green hydrogen to the direct and indirect goals of SDG.
Cost Assessment of Alternative Fuels for Maritime Transportation in Ireland
Aug 2022
Publication
In this study we investigated the cost-effectiveness of four alternatives: Liquified Natural Gas (LNG) methanol green hydrogen and green ammonia for the case of top 20 most frequently calling ships to Irish ports in 2019 through the Net Present Value (NPV) methodology incorporating the benefits incurred through saved external carbon tax and conventional fuel costs. LNG had the highest NPV (€6166 million) followed by methanol (€1705 million) and green hydrogen (€319 million). Green ammonia utilisation (as a hydrogen carrier) looks inviable due to higher operational costs resulting from its excessive consumption (i.e. losses) during the cracking and purifying processes and its lower net calorific value. Green hydrogen remains the best option to meet future decarbonisation targets although a further reduction in its current fuel price (by 60%) or a significant increment in the proposed carbon tax rate (by 275%) will be required to improve its cost-competitiveness over LNG and methanol.
Optimising Air Quality Co-benefits in a Hydrogen Economy: A Case for Hydrogen-specific Standards for NOx Emissions
Jun 2021
Publication
A global transition to hydrogen fuel offers major opportunities to decarbonise a range of different energyintensive sectors from large-scale electricity generation through to heating in homes. Hydrogen can be deployed as an energy source in two distinct ways in electrochemical fuel cells and via combustion. Combustion seems likely to be a major pathway given that it requires only incremental technological change. The use of hydrogen is not however without side-effects and the widely claimed benefit that only water is released as a by-product is only accurate when it is used in fuel cells. The burning of hydrogen can lead to the thermal formation of nitrogen oxides (NOx – the sum of NO + NO2) via a mechanism that also applies to the combustion of fossil fuels. NO2 is a key air pollutant that is harmful in its own right and is a precursor to other pollutants of concern such as fine particulate matter and ozone. Minimising NOx as a by-product from hydrogen boilers and engines is possible through control of combustion conditions but this can lead to reduced power output and performance. After-treatment and removal of NOx is possible but this increases cost and complexity in appliances. Combustion applications therefore require optimisation and potentially lower hydrogen-specific emissions standards if the greatest air quality benefits are to derive from a growth in hydrogen use
Review on the Status of the Research on Power‐to‐Gas Experimental Activities
Aug 2022
Publication
In recent years power‐to‐gas technologies have been gaining ground and are increasingly proving their reliability. The possibility of implementing long‐term energy storage and that of being able to capture and utilize carbon dioxide are currently too important to be ignored. However sys‐ tems of this type are not yet experiencing extensive realization in practice. In this study an overview of the experimental research projects and the research and development activities that are currently part of the power‐to‐gas research line is presented. By means of a bibliographical and sitographical analysis it was possible to identify the characteristics of these projects and their distinctive points. In addition the main research targets distinguishing these projects are presented. This provides an insight into the research direction in this regard where a certain technological maturity has been achieved and where there is still work to be done. The projects found and analyzed amount to 87 mostly at laboratory scale. From these what is most noticeable is that research is currently focusing heavily on improving system efficiency and integration between components.
Comparative Life Cycle Assessment of Sustainable Energy Carriers Including Production, Storage, Overseas Transport and Utilization
Aug 2020
Publication
Countries are under increasing pressure to reduce greenhouse gas emissions as an act upon the Paris Agreement. The essential emission reductions can be achieved by environmentally friendly solutions in particular the introduction of low carbon or carbon-free fuels. This study presents a comparative life cycle assessment of various energy carriers namely; liquefied natural gas methanol dimethyl ether liquid hydrogen and liquid ammonia that are produced from natural gas or renewables to investigate greenhouse gas emissions generated from the complete life cycle of energy carriers accounting for the leaks as well as boil-off gas occurring during storage and transportation. The entire fuel life cycle is considered consisting of production storage transportation via an ocean tanker to different distances and finally utilization in an internal combustion engine of a road vehicle. The results show that using natural gas as a feedstock total greenhouse gas emissions during production ocean transportation (over 20000 nmi) by a heavy fuel oil-fueled ocean tanker and utilization in an internal combustion engine are 73.96 95.73 93.76 50.83 and 100.54 g CO2 eq. MJ1 for liquified natural gas methanol dimethyl ether liquid hydrogen and liquid ammonia respectively. Liquid hydrogen produced from solar electrolysis is the cleanest energy carrier (42.50 g CO2 eq. MJ1 fuel). Moreover when liquid ammonia is produced via photovoltaic-based electrolysis (60.76 g CO2 eq. MJ1 fuel) it becomes cleaner than liquified natural gas. Although producing methanol and dimethyl ether from biomass results in a large reduction in total greenhouse gas emissions compared to conventional methanol and dimethyl ether production with a value of 73.96 g CO2 eq. per MJ liquified natural gas still represents a cleaner option than methanol and dimethyl ether considering the full life cycle.
Everything About Hydrogen Podcast: So, What's the Big Deal with Hydrogen?
Aug 2019
Publication
This episode is a whistle-stop tour of the hydrogen world. The team explore why hydrogen is making a resurgence as an energy carrier how decarbonising the existing hydrogen market is a huge opportunity and how fuel cells fit into the story.
The podcast can be found on their website
The podcast can be found on their website
Two-Dimensional Photocatalysts for Energy and Environmental Applications
Jun 2022
Publication
The depletion of fossil fuels and onset of global warming dictate the achievement of efficient technologies for clean and renewable energy sources. The conversion of solar energy into chemical energy plays a vital role both in energy production and environmental protection. A photocatalytic approach for H2 production and CO2 reduction has been identified as a promising alternative for clean energy production and CO2 conversion. In this process the most critical parameter that controls efficiency is the development of a photocatalyst. Two-dimensional nanomaterials have gained considerable attention due to the unique properties that arise from their morphology. In this paper examples on the development of different 2D structures as photocatalysts in H2 production and CO2 reduction are discussed and a perspective on the challenges and required improvements is given.
Powertrain Design and Energy Management Strategy Optimization for a Fuel Cell Electric Intercity Coach in an Extremely Cold Mountain Area
Sep 2022
Publication
Facing the challenge that the single-motor electric drive powertrain cannot meet the continuous uphill requirements in the cold mountainous area of the 2022 Beijing Winter Olympics the manuscript adopted a dual-motor coupling technology. Then according to the operating characteristics and performance indicators of the fuel cell (FC)–traction battery hybrid power system the structure design and parameter matching of the vehicle power system architecture were carried out to improve the vehicle’s dynamic performance. Furthermore considering the extremely cold conditions in the Winter Olympics competition area and the poor low-temperature tolerance of core components of fuel cell electric vehicles (FCEV) under extremely cold conditions such as the reduced capacity and service life of traction batteries caused by the rapid deterioration of charging and discharging characteristics the manuscript proposed a fuzzy logic control-based energy management strategy (EMS) optimization method for the proton exchange membrane fuel cell (PEMFC) to reduce the power fluctuation hydrogen consumption and battery charging/discharging times and at the same time to ensure the hybrid power system meets the varying demand under different conditions. In addition the performance of the proposed approach was investigated and validated in an intercity coach in real-world driving conditions. The experimental results show that the proposed powertrain with an optimal control strategy successfully alleviated the fluctuation of vehicle power demand reduced the battery charging/discharging times of traction battery and improved the energy efficiency by 20.7%. The research results of this manuscript are of great significance for the future promotion and application of fuel cell electric coaches in all climate environments especially in an extremely cold mountain area.
Everything About Hydrogen Podcast: Hydrogen 101
Aug 2019
Publication
A 10-minute tour of hydrogen industry technology and terminology for those who are new to the sector or who would simply like a quick review of the basics behind this burgeoning energy source.
Podcast can be found on their website
Podcast can be found on their website
Production of High-purity Hydrogen from Paper Recycling Black Liquor via Sorption Enhanced Steam Reforming
Jul 2020
Publication
Environmentally friendly and energy saving treatment of black liquor (BL) a massively produced waste in Kraft papermaking process still remains a big challenge. Here by adopting a Ni-CaO-Ca12Al14O33 bifunctional catalyst derived from hydrotalcite-like materials we demonstrate the feasibility of producing high-purity H2 (∼96%) with 0.9 mol H2 mol-1 C yield via the sorption enhanced steam reforming (SESR) of BL. The SESRBL performance in terms of H2 production maintained stable for 5 cycles but declined from the 6th cycle. XRD Raman spectroscopy elemental analysis and energy dispersive techniques were employed to rationalize the deactivation of the catalyst. It was revealed that gradual sintering and agglomeration of Ni and CaO and associated coking played important roles in catalyst deactivation and performance degradation of SESRBL while deposition of Na and K from the BL might also be responsible for the declined performance. On the other hand it was demonstrated that the SESRBL process could effectively reduce the emission of sulfur species by storing it as CaSO3. Our results highlight a promising alternative for BL treatment and H2 production thereby being beneficial for pollution control and environment governance in the context of mitigation of climate change.
Progress in Electrical Energy Storage System: A Critical Review
Jan 2009
Publication
Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage compressed air energy storage battery flow battery fuel cell solar fuel superconducting magnetic energy storage flywheel capacitor/supercapacitor and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics applications and deployment status.
Towards 2050 Net Zero Carbon Infrastructure: A Critical Review of Key Decarbonisation Challenges in the Domestic Heating Sector in the UK
Nov 2023
Publication
One of the most challenging sectors to meet “Net Zero emissions” target by 2050 in the UK is the domestic heating sector. This paper provides a comprehensive literature review of the main challenges of heating systems transition to low carbon technologies in which three distinct categories of challenges are discussed. The first challenge is of decarbonizing heat at the supply side considering specifically the difficulties in integrating hydrogen as a low-carbon heating substitute to the dominant natural gas. The next challenge is of decarbonizing heat at the demand side and research into the difficulties of retrofitting the existing UK housing stock of digitalizing heating energy systems as well as ensuring both retrofits and digitalization do not disproportionately affect vulnerable groups in society. The need for demonstrating innovative solutions to these challenges leads to the final focus which is the challenge of modeling and demonstrating future energy systems heating scenarios. This work concludes with recommendations for the energy research community and policy makers to tackle urgent challenges facing the decarbonization of the UK heating sector.
A Preliminary Study on an Alternative Ship Propulsion System Fueled by Ammonia: Environmental and Economic Assessments
Mar 2020
Publication
The shipping industry is becoming increasingly aware of its environmental responsibilities in the long-term. In 2018 the International Maritime Organization (IMO) pledged to reduce greenhouse gas (GHG) emissions by at least 50% by the year 2050 as compared with a baseline value from 2008. Ammonia has been regarded as one of the potential carbon-free fuels for ships based on these environmental issues. In this paper we propose four propulsion systems for a 2500 Twenty-foot Equivalent Unit (TEU) container feeder ship. All of the proposed systems are fueled by ammonia; however different power systems are used: main engine generators polymer electrolyte membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Further these systems are compared to the conventional main engine propulsion system that is fueled by heavy fuel oil with a focus on the economic and environmental perspectives. By comparing the conventional and proposed systems it is shown that ammonia can be a carbon-free fuel for ships. Moreover among the proposed systems the SOFC power system is the most eco-friendly alternative (up to 92.1%) even though it requires a high lifecycle cost than the others. Although this study has some limitations and assumptions the results indicate a meaningful approach toward solving GHG problems in the maritime industry.
Towards the Efficient and Time-accurate Simulations of Early Stages of Industrial Explosions
Sep 2021
Publication
Combustion during a nuclear reactor accident can result in pressure loads that are potentially fatal for the structural integrity of the reactor containment or its safety equipment. Enabling efficient modelling of such safety-critical scenarios is the goal of ongoing work. In this paper attention is given to capturing early phases of flame propagation. Transient simulations that are not prohibitively expensive for use at industrial scale are required given that a typical flame propagation study takes a large number of simulation time steps to complete. An improved numerical method used in this work is based on explicit time integration by means of Strong Stability Preserving (SSP) Runge-Kutta schemes. These allow an increased time step size for a given level of accuracy—reducing the overall computational effort. Furthermore a wide range of flow conditions is encountered in analysis of accelerating flames: from incompressible to potentially supersonic. In contrast numerical schemes for spatial discretization would often prove lacking in either stability or accuracy outside the intended flow regime—with density-based schemes being traditionally designed and applied to compressible (Ma>0.3) flows. In the present work a formulation of an all-speed density-based numerical flux scheme is used for simulation of slow flames starting from ignition. Validation was carried out using experiments with spherical lean hydrogen flames at laboratory scale. Turbulence conditions in the experiments correspond to those that can arise in a nuclear reactor containment during an accident. Results show that the new numerical method has the potential to predict flame speed and pressure rise at a reduced computational effort.
Economic Dispatch Model of Nuclear High-Temperature Reactor with Hydrogen Cogeneration in Electricity Market
Dec 2021
Publication
Hydrogen produced without carbon emissions could be a useful fuel as nations look to decarbonize their electricity transport and industry sectors. Using the iodine–sulfur (IS) cycle coupled with a nuclear heat source is one method for producing hydrogen without the use of fossil fuels. An economic dispatch model was developed for a nuclear-driven IS system to determine hydrogen sale prices that would make such a system profitable. The system studied is the HTTR GT/H2 a design for power and hydrogen cogeneration at the Japan Atomic Energy Agency’s High Temperature Engineering Test Reactor. This study focuses on the development of the economic model and the role that input data plays in the final calculated values. Using a historical price duration curve shows that the levelized cost of hydrogen (LCOH) or breakeven sale price of hydrogen would need to be 98.1 JPY/m3 or greater. Synthetic time histories were also used and found the LCOH to be 67.5 JPY/m3 . The price duration input was found to have a significant effect on the LCOH. As such great care should be used in these economic dispatch analyses to select reasonable input assumptions.
Far Off-shore Wind Energy-based Hydrogen Production: Technological Assessment and Market Valuation Designs
Jan 2020
Publication
This article provides a techno-economic study on coupled offshore wind farm and green hydrogen production via sea water electrolysis (OWF-H2). Offshore wind energy wind farms (OWF) and water electrolysis (WE) technologies are described. MHyWind (the tool used to perform simulations and optimisations of such plants) is presented as well as the models of the main components in the study. Three case studies focus on offshore wind farms either stand-alone or connected to the grid via export cables coupled with a battery and electrolysis systems either offshore or onshore. Exhaustive searches and optimisations performed allowed for rules of thumb to be derived on the sizing of coupled OWF-H2 plants that minimize costs of hydrogen production (LCoH2 in €/kgH2): Non-connected OWF-H2 coupled to a battery offers the lowest LCoH2 without the costs of H2 transportation when compared to cases where the WE is installed onshore and connected to the OWF. Using a simple power distribution heuristic increasing the number of installed WE allows the system to take advantage of more OWF energy but doesn’t improve plant efficiency whereas a battery always does. Finally within the scope of this study it is observed that power ratios of optimized plant architectures (leading to the lowest LCoH2) are between 0.8-0.9 for PWE/POWF and 0.3-0.35 for PBattery/POWF.
Hydrogen Stratification in Enclosures in Dependence of the Gas Release Momentum
Sep 2021
Publication
The hydrogen dispersion phenomenon in an enclosure depends on the ratio of the gas buoyancy induced momentum. Random diffusive motions of individual gas particles become dominative when the release momentum is low. Then a uniform hydrogen concentration appears in the enclosure instead of the gas stratification below the ceiling. The paper justifies this hypothesis by demonstrating fullscale experimental results of hydrogen dispersion within a confined space under six different release variations. During the experiments hydrogen was released into the test room of 60 m3 volume in two methods: through a nozzle and through 21 points evenly distributed on the emission box cover (multipoint release). Each release method was tested with three different hydrogen volume flow rates (3.17·10−3 m3/s 1.63·10−3 m3/s 3.34·10−4 m3/s). The tests confirm the increase of hydrogen convective upward flow and its stratification tendency relative to increased volume flow. A tendency of more uniform hydrogen cloud distribution when Mach Reynolds and Froud number values decreased was demonstrated. Because the hydrogen dispersion phenomena impact fire and explosive hazards the presented experimental results could help fire protection systems be in an enclosure designed allowing their effectiveness optimization.
No more items...