Applications & Pathways
Diffusible Hydrogen Behavior and Delayed Fracture of Cold Rolled Martensitic Steel in Consideration of Automotive Manufacturing Process and Vehicle Service Environment
Oct 2020
Publication
This study aims to elucidate the behavior of diffusible hydrogen and delayed fracture in martensitic steel with 1500 MPa strength during automotive painting process and under vehicle service conditions. A sequential process of automotive pretreatment line and vehicle service environment is simulated to evaluate the hydrogen pick up in each process. In case of the automotive painting line the absorption of hydrogen is within the common range in the process of phosphating treatment and electrodeposition. The baking process plays an effective role for desorbing the diffusible hydrogen absorbed during the automotive pre-treatment such as zinc-phosphating and electrodeposition process. In case of the corrosion environment under the automotive driving conditions hydrogen induced delayed fracture is accelerated as the exposure time increases. Further it is clarified that severe plastic deformation are the significant factors for hydrogen induced delayed fracture under with low pH value and present of chloride ion in a chemical solution parameter. In summary hydrogen is transported constantly during electrodeposition sequential line process of automobile manufacturing below the hydrogen content of 0.5 ppm which is not critical value for leading to hydrogen delayed fracture based on results of slow strain rate tensile tests. However exposure to extreme conditions under service environment of vehicle such as acidic solution and chloride chemistry solution that result in high level of hydrogen absorption severe plastic deformation in the sheared edge and constantly applied internal or external stresses can cause the hydrogen induced delayed fracture in the fully martensitic steels.
Essentials of Hydrogen Storage and Power Systems for Green Shipping
Jan 2025
Publication
This paper establishes a framework of boundary conditions for implementing hydrogen energy systems in ships identifying what is feasible within maritime constraints. To support a comprehensive understanding of hydrogen systems onboard vessels an extensive technical review of hydrogen storage and power systems is provided covering the entire power value chain. Key aspects include equipment arrangement integration of fuel cell powertrain and presentation of the complete storage system in compliance with regulations. Engineering considerations such as material selection and insulation equipment specifications (e.g. pressure relief valves and hydrogen purity) and system configurations are analysed. Key findings reveal that fuel cells must achieve operational lifespans exceeding 46000 h to be viable for maritime applications. Additionally reliance solely on volumetric energy density underestimates storage needs necessitating provisions for cofferdams ullage space tank heels and hydrogen conditioning areas. Regulatory gaps are identified including inadequate safety provisions and inappropriate material guidelines.
Digital Real-Time Simulation and Power Quality Analysis of a Hydrogen-Generating Nuclear-Renewable Integrated Energy System
Feb 2025
Publication
This paper investigates the challenges and solutions associated with integrating a hydrogen-generating nuclear-renewable integrated energy system (NR-IES) under a transactive energy framework. The proposed system directs excess nuclear power to hydrogen production during periods of low grid demand while utilizing renewables to maintain grid stability. Using digital real-time simulation (DRTS) in the Typhoon HIL 404 model the dynamic interactions between nuclear power plants electrolyzers and power grids are analyzed to mitigate issues such as harmonic distortion power quality degradation and low power factor caused by large non-linear loads. A three-phase power conversion system is modeled using the Typhoon HIL 404 model and includes a generator a variable load an electrolyzer and power filters. Active harmonic filters (AHFs) and hybrid active power filters (HAPFs) are implemented to address harmonic mitigation and reactive power compensation. The results reveal that the HAPF topology effectively balances cost efficiency and performance and significantly reduces active filter current requirements compared to AHF-only systems. During maximum electrolyzer operation at 4 MW the grid frequency dropped below 59.3 Hz without filtering; however the implementation of power filters successfully restored the frequency to 59.9 Hz demonstrating its effectiveness in maintaining grid stability. Future work will focus on integrating a deep reinforcement learning (DRL) framework with real-time simulation and optimizing real-time power dispatch thus enabling a scalable efficient NR-IES for sustainable energy markets.
Comparative Study and Optimization of Energy Management Strategies for Hydrogen Fuel Cell Vehicles
Sep 2024
Publication
Fuel cell hybrid systems due to their combination of the high energy density of fuel cells and the rapid response capability of power batteries have become an important category of new energy vehicles. This paper discusses energy management strategies in hydrogen fuel cell vehicles. Firstly a detailed comparative analysis of existing PID control strategies and Adaptive Equivalent Consumption Minimization Strategies (A-ECMSs) is conducted. It was found that although A-ECMS can balance the energy utilization of the fuel cell and power battery well the power fluctuations of the fuel cell are significant leading to increased hydrogen consumption. Therefore this paper proposes an improved Adaptive Low-Pass Filter Equivalent Consumption Minimization Strategy (A-LPF-ECMS). By introducing low-pass filtering technology transient changes in fuel cell power are smoothed effectively reducing fuel consumption. Simulation results show that under the 6*FTP75 cycle the energy loss of A-LPF-ECMS is reduced by 10.89% (compared to the PID strategy) and the equivalent hydrogen consumption is reduced by 7.1%; under the 5*WLTC cycle energy loss is reduced by 5.58% and equivalent hydrogen consumption is reduced by 3.18%. The research results indicate that A-LPF-ECMS performs excellently in suppressing fuel cell power fluctuations under idling conditions significantly enhancing the operational efficiency of the fuel cell and showing high application value.
Application of Levelized and Environmental Cost Accounting Techniques to Demonstrate the Feasibility of Green Hydrogen-Powered Buses in Brazil
Feb 2025
Publication
Background: This study applied levelized cost of hydrogen (LCOH) and environmental cost accounting techniques to evaluate the feasibility of producing green hydrogen (GH2) via alkaline electrolysis for use in a bus fleet in Fortaleza Brazil. Methods: A GH2 plant with a 3 MW wind tower was considered in this financial project. A sensitivity analysis was conducted to assess the economic viability of the project considering the influence of production volume the number of electrolysis kits financing time and other kay economic indices. Revenue was derived from the sale of by-products including green hospital oxygen (GHO2) and excess wind energy. A life cycle assessment (LCA) was performed to quantify material and emission flows throughout the H2 production chain. A zero-net hydrogen price scenario was tested to evaluate the feasibility of its use in urban transportation. Results: The production of GH2 in Brazil using alkaline electrolysis powered by wind energy proved to be economically viable for fueling a hydrogen-powered bus fleet. For production volumes ranging from 8.89 to 88.9 kg H2/h the sensitivity analysis revealed high economic performance achieving a net present value (NPV) between USD 19.4 million and USD 21.8 million a payback period of 1–4 years an internal rate of return (IRR) of 24–90% and a return on investment (ROI) of 300–1400%. The LCOH decreased with increased production ranging from 56 to 25 USD/MWh. Over the project timeline GH2 production and use in the bus fleet reduced CO2 emissions by 53000–287000 t CO2 eq. The fuel cell bus fleet project demonstrated viability through fuel cost savings and revenue from carbon credit sales highlighting the economic social and environmental sustainability of GH2 use in urban transportation in Brazil.
Energy Hub Model for the Massive Adoption of Hydrogen in Power Systems
Sep 2024
Publication
A promising energy carrier and storage solution for integrating renewable energies into the power grid currently being investigated is hydrogen produced via electrolysis. It already serves various purposes but it might also enable the development of hydrogen-based electricity storage systems made up of electrolyzers hydrogen storage systems and generators (fuel cells or engines). The adoption of hydrogen-based technologies is strictly linked to the electrification of end uses and to multicarrier energy grids. This study introduces a generic method to integrate and optimize the sizing and operation phases of hydrogen-based power systems using an energy hub optimization model which can manage and coordinate multiple energy carriers and equipment. Furthermore the uncertainty related to renewables and final demands was carefully assessed. A case study on an urban microgrid with high hydrogen demand for mobility demonstrates the method’s applicability showing how the multi-objective optimization of hydrogen-based power systems can reduce total costs primary energy demand and carbon equivalent emissions for both power grids and mobility down to −145%. Furthermore the adoption of the uncertainty assessment can give additional benefits allowing a downsizing of the equipment.
Impact of Hydrogen Direct Injection on Engine Combustion and Emissions in a GDI Engine
Sep 2023
Publication
The combustion and emission characteristics of a hydrogen engine were investigated through experimental analysis using a GDI engine. To enable hydrogen in-cylinder direct injection a specialized hydrogen gas injector was employed. A comparative analysis of the combustion performance between gasoline and hydrogen fuels in a spark-ignited engine was conducted. Additionally the study experimentally explored the thermal efficiency and emission reduction potential of hydrogen engines in lean combustion modes. The results indicated a significant improvement in the combustion rate when hydrogen fuel was utilized in the spark-ignited engine. However the effective thermal efficiency was found to be lower than that of gasoline fuel due to the delayed MBF50 under stoichiometric conditions. Furthermore when compared to gasoline fuel the reduction of CO and THC emissions was accompanied by an increase in NOx emissions. Nevertheless optimizing the air dilution ratio in hydrogen engines led to an improvement in the effective thermal efficiency. Specifically under medium load conditions a Lambda value of 2.7 resulted in an effective thermal efficiency of 43.5%. Additionally under ultra-lean conditions (Lambda > 2.3) NOx emissions could be reduced to below 50 ppm reaching as low as 44 ppm. This study highlights the potential of improving combustion efficiency and reducing emissions by utilizing hydrogen fuel particularly in lean combustion modes. It contributes to the continuous development of hydrogen engine technology and promotes the implementation of cleaner and more efficient energy solutions.
Low-Carbon Economic Scheduling of Hydrogen-Integrated Energy Systems with Enhanced Bilateral Supply–Demand Response Considering Vehicle to Grid Under Power-to-Gas–Carbon Capture System Coupling
Feb 2025
Publication
Hydrogen-Integrated energy systems (HIESs) are pivotal in driving the transition to a low-carbon energy structure in China. This paper proposes a low-carbon economic scheduling strategy to improve the operational efficiency and reduce the carbon emissions of HIESs. The approach begins with the implementation of a stepwise carbon trading framework to limit the carbon output of the system. This is followed by the development of a joint operational model that combines hydrogen energy use and carbon capture. To improve the energy supply flexibility of HIESs modifications to the conventional combined heat and power (CHP) unit are made by incorporating a waste heat boiler and an organic Rankine cycle. This results in a flexible CHP response model capable of adjusting both electricity and heat outputs. Furthermore a comprehensive demand response model is designed to optimize the flexible capacities of electric and thermal loads thereby enhancing demand-side responsiveness. The integration of electric vehicles (EVs) into the system is analyzed with respect to their energy consumption patterns and dispatch capabilities which improves their potential for flexible scheduling and enables an optimized synergy between the demand-side flexibility and system operations. Finally a low-carbon economic scheduling model for the HIES is developed with the objective of minimizing system costs. The results show that the proposed scheduling method effectively enhances the economy low-carbon performance and flexibility of HIES operation while promoting clean energy consumption deep decarbonization of the system and the synergistic complementarity of flexible supply–demand resources. In the broader context of expanding clean energy and growing EV adoption this study demonstrates the potential of energy-saving emissionreduction systems and vehicle-to-grid (V2G) strategies to contribute to the sustainable and green development of the energy sector.
A Comprehensive Review on the Hydrogen–Natural Gas–Diesel Tri-Fuel Engine Exhaust Emissions
Aug 2024
Publication
Natural gas (NG) is favored for transportation due to its availability and lower CO2 emissions than fossil fuels despite drawbacks like poor lean combustion ability and slow burning. According to a few recent studies using hydrogen (H2 ) alongside NG and diesel in Tri-fuel mode addresses these drawbacks while enhancing efficiency and reducing emissions making it a promising option for diesel engines. Due to the importance and novelty of this the continuation of ongoing research and insufficient literature studies on HNG–diesel engine emissions that are considered helpful to researchers this research has been conducted. This review summarizes the recent research on the HNG–diesel Tri-fuel engines utilizing hydrogen-enriched natural gas (HNG). The research methodology involved summarizing the effect of engine design operating conditions fuel mixing ratios and supplying techniques on the CO CO2 NOx and HC emissions separately. Previous studies show that using natural gas with diesel increases CO and HC emissions while decreasing NOx and CO2 compared to pure diesel. However using hydrogen with diesel reduces CO CO2 and HC emissions but increases NOx. On the other hand HNG–diesel fuel mode effectively mitigates the disadvantages of using these fuels separately resulting in decreased emissions of CO CO2 HC and NOx. The inclusion of hydrogen improves combustion efficiency reduces ignition delay and enhances heat release and in-cylinder pressure. Additionally operational parameters such as engine power speed load air–fuel ratio compression ratio and injection parameters directly affect emissions in HNG–diesel Tri-fuel engines. Overall the Tri-fuel approach offers promising emissions benefits compared to using natural gas or hydrogen separately as dual-fuels.
Research on the Dynamic Energy Conversion and Transmission Model of Renewable Energy DC Off-grid Hydrogen System
Sep 2024
Publication
The dynamic response characteristics between the multiple energy flows of electricity-hydrogen-heat in the renewable energy DC off-grid hydrogen production system are highly coupled and nonlinear which leads to the complexity of its energy conversion and transmission law. This study proposes a model to describe the dynamic nonlinear energy conversion and transmission laws specific to such systems. The model develops a nonlinear admittance framework and a conversion characteristic matrix for multi-heterogeneous energy flow subsystems based on the operational characteristics of each subsystem within the DC off-grid hydrogen production system. Building upon this foundation an energy hub model for the hydrogen production system is established yielding the electrical thermal and hydrogen energy outputs along with their respective conversion efficiencies for each subsystem. By discretizing time the energy flow at each time node within the hydrogen production system is computed revealing the system’s dynamic energy transfer patterns. Experiments were conducted using measured wind speed and irradiance data from a specific location in eastern China. Results from selected typical days were analyzed and discussed revealing that subsystem characteristics exhibit nonlinear variation patterns. This highlights the limitations of traditional models in accurately capturing these dynamics. Finally a simulation platform incorporating practical control methods was constructed to validate the model’s accuracy. Validation results demonstrate that the model possesses high accuracy providing a solid theoretical foundation for further in-depth analysis of DC off-grid hydrogen production systems.
Total Cost of Ownership Analysis for Hydrogen and Battery Powertrains: A Comparative Study in Finnish Heavy-duty Transport
Sep 2024
Publication
The road transport sector is one of the major contributors to greenhouse gas emissions as it still largely relies on traditional powertrain solutions. While some progress has been made in the passenger car sector with the diffusion of battery electric vehicles heavy-duty transport remains predominantly dependent on diesel internal combustion engines. This research aims to evaluate and compare three potential solutions for the decarbonisation of heavy-duty freight transport from an economic perspective: Battery Electric Trucks (BETs) Fuel Cell Electric Trucks (FCETs) and Hydrogen-fuelled Internal Combustion Engine Trucks (H2ICETs). The study focuses on the Finnish market and road network where affordable and low-carbon electricity creates an ideal environment for the development of alternative powertrain vehicles. The analysis employs the Total Cost of Ownership (TCO) method which allows for a comprehensive assessment of all cost components associated with the vehicles throughout their entire lifecycle encompassing both initial expenses and operational costs. Among the several factors affecting the results the impact of the three powertrain technologies on the admissible payloads has been taken into account. The study specifically focuses on the costs directly incurred by the truck owner. Additionally to evaluate the cost effectiveness of the proposed powertrain technologies under different scenarios a sensitivity analysis on electricity and hydrogen prices is conducted. The outcomes of this study reveal that no single powertrain solution emerges as universally optimal as the most cost-effective choice depends strongly on the truck type and its use (i.e. daily mileage). For relatively small trucks (18 t) covering short driving distances (approximately 100 to 200 km/day) BETs prove to be the best solution due to their higher efficiency and lower vehicle costs compared to FCETs. Conversely for larger trucks (42 and 76 t) engaged in longer hauls (>300 km/day) H2ICETs exhibit larger cost benefits due to their lower vehicle costs among the three options under investigation. Finally for small trucks (18 t) travelling long distances (200 km/day or more) FCETs represent a competitive choice due to their high efficiency and costeffective energy storage system. Considering future advancements in FCETs and BETs in terms of improved performance and reduced investment cost the fuel cell-based solution is expected to emerge as the best option across various combinations of truck sizes and daily mileages.
Review of Decompression Damage of the Polymer Liner of the Type IV Hydrogen Storage Tank
May 2023
Publication
The type IV hydrogen storage tank with a polymer liner is a promising storage solution for fuel cell electric vehicles (FCEVs). The polymer liner reduces the weight and improves the storage density of tanks. However hydrogen commonly permeates through the liner especially at high pressure. If there is rapid decompression damage may occur due to the internal hydrogen concentration as the concentration inside creates the pressure difference. Thus a comprehensive understanding of the decompression damage is significant for the development of a suitable liner material and the commercialization of the type IV hydrogen storage tank. This study discusses the decompression damage mechanism of the polymer liner which includes damage characterizations and evaluations influential factors and damage prediction. Finally some future research directions are proposed to further investigate and optimize tanks.
Fuel Cell Systems for Maritime: A Review of Research Development, Commercial Products, Applications, and Perspectives
Dec 2022
Publication
The ambitious targets set by the International Maritime Organization for reducing greenhouse gas emissions from shipping require radical actions by all relevant stakeholders. In this context the interest in high efficiency and low emissions (even zero in the case of hydrogen) fuel cell technology for maritime applications has been rising during the last decade pushing the research developed by academia and industries. This paper aims to present a comparative review of the fuel cell systems suitable for the maritime field focusing on PEMFC and SOFC technologies. This choice is due to the spread of these fuel cell types concerning the other ones in the maritime field. The following issues are analyzed in detail: (i) the main characteristics of fuel cell systems; (ii) the available technology suppliers; (iii) international policies for fuel cells onboard ships; (iv) past and ongoing projects at the international level that aim to assess fuel cell applications in the maritime industry; (v) the possibility to apply fuel cell systems on different ship types. This review aims to be a reference and a guide to state both the limitations and the developing potential of fuel cell systems for different maritime applications.
Low-Carbon Production in China’s Iron and Steel Industry: Technology Choices, Economic Assessment, and Policy
Feb 2025
Publication
The iron and steel industry (ISI) plays a significant role in carbon emissions contributing approximately 15% of the nation’s total emissions in China. Transitioning to low-carbon practices is crucial for achieving the country’s carbon neutrality goals. This paper reviews the current state of China’s ISI and assesses the feasibility of various decarbonization technologies including hydrogen utilization biomass substitution zero-carbon electricity Carbon Capture Utilization and Storage (CCUS) as well as their combinations. The blast furnace–basic oxygen furnace (BF-BOF) process currently dominates the industry with an overwhelming share of around 90% presenting significant challenges for decarbonization. In contrast the Direct Reduced Iron–Electric Arc Furnace (DRI-EAF) process is still at the demonstration project stage but it is rapidly growing and shows great potential for achieving net-zero emissions. Electric arc furnaces (EAFs) that use scrap steel account for about 9% of production and have the lowest energy consumption. However their production capacity is limited by the availability of scrap steel. Among numerous options blue hydrogen carbon-neutral biomass and CCUS technologies have relatively low costs and high technological maturity. Nevertheless no single technology can currently achieve deep decarbonization while significantly reducing costs. The nation needs to select the most suitable decarbonization strategies based on geographical location infrastructure and economic conditions. The government should enact corresponding policies provide economic incentives and ensure mitigation of the environmental and social impacts during the decarbonization transition.
Design Trends and Challenges in Hydrogen Direct Injection (H2DI) Internal Combustion Engines - A Review
Sep 2024
Publication
The hydrogen internal combustion engine (H2-ICE) is proposed as a robust and viable solution to decarbonise the heavy-duty on- and off-road as well as the light-duty automotive sectors of the transportation markets and is therefore the subject of rapidly growing research interest. With the potential for engine performance improvement by controlling the internal mixture formation and avoiding combustion anomalies hydrogen direct injection (H2DI) is a promising combustion mode. Furthermore the H2-ICE poses an attractive proposition for original equipment manufacturers (OEMs) and their suppliers since the fundamental base engine design components and manufacturing processes are largely unchanged. Nevertheless to deliver the highest thermal efficiency and zero-harm levels of tailpipe emissions moderate adaptations are needed to the engine control air path fuel injection and ignition systems. Therefore in this article critical design features fuel-air mixing combustion regimes and exhaust after-treatment systems (EATS) for H2DI engines are carefully assessed.
Green Transformation of Mining towards Energy Self-Sufficiency in a Circular Economy—A Case Study
Jul 2024
Publication
This article presents the concept of green transformation of the coal mining sector. Pump stations that belong to Spółka Restrukturyzacji Kopal´n S.A. (SRK S.A. Bytom Poland) pump out approximately 100 million m3 of mine water annually. These pump stations protect neighboring mines and lower-lying areas from flooding and protect subsurface aquifers from contamination. The largest cost component of maintaining a pumping station is the expenditure for purchasing electricity. Investment towards renewable energy sources will reduce the environmental footprint of pumping station operation by reducing greenhouse gas emissions. The concept of liquidation of an exemplary mining site in the context of a circular economy by proposing the development/revitalization of a coal mine site is presented. This concept involves the construction of a complex consisting of photovoltaic farms combined with efficient energy storage in the form of green hydrogen produced by water electrolysis. For this purpose the potential of liquidated mining sites will be utilized including the use of pumped mine wastewater. This article is conceptual. In order to reach the stated objective a body of literature and legal regulations was analyzed and an empirical study was conducted. Various scenarios for the operation of mine pumping stations have been proposed. The options presented provide full or nearly full energy self-sufficiency of the proposed pumping station operation concept. The effect of applying any option for upgrading the pumping station could result in the creation of jobs that are alternatives to mining jobs and a guarantee of efficient asset management.
Economic and Environmental Analyses of an Integrated Power and Hydrogen Production Systems Based on Solar Thermal Energy
Aug 2024
Publication
This study introduces a novel hybrid solar–biomass cogeneration power plant that efficiently produces heat electricity carbon dioxide and hydrogen using concentrated solar power and syngas from cotton stalk biomass. Detailed exergy-based thermodynamic economic and environmental analyses demonstrate that the optimized system achieves an exergy efficiency of 48.67% and an exergoeconomic factor of 80.65% and produces 51.5 MW of electricity 23.3 MW of heat and 8334.4 kg/h of hydrogen from 87156.4 kg/h of biomass. The study explores four scenarios for green hydrogen production pathways including chemical looping reforming and supercritical water gasification highlighting significant improvements in levelized costs and the environmental impact compared with other solar-based hybrid systems. Systems 2 and 3 exhibit superior performance with levelized costs of electricity (LCOE) of 49.2 USD/MWh and 55.4 USD/MWh and levelized costs of hydrogen (LCOH) of between 10.7 and 19.5 USD/MWh. The exergoenvironmental impact factor ranges from 66.2% to 73.9% with an environmental impact rate of 5.4–7.1 Pts/MWh. Despite high irreversibility challenges the integration of solar energy significantly enhances the system’s exergoeconomic and exergoenvironmental performance making it a promising alternative as fossil fuel reserves decline. To improve competitiveness addressing process efficiency and cost reduction in solar concentrators and receivers is crucial.
Economic Performance of Combined Solid Oxide Fuel Cell System with Carbon Capture and Storage with Methanolation and Methanation by Green Hydrogen
Feb 2025
Publication
In addition to the promotion of pumped storage and electricity storage batteries the minimum use of inexpensive thermal power generation for the regulation of power in Japan and other countries is being considered as a supply-demand stabilization device with the expected widespread introduction of renewable energy by 2050. Therefore this study analyzed the economics related to the introduction of solid oxide fuel cell combined cycle using liquefied natural gas as a regulating power. The commercialization of recovered CO2 has been investigated for reducing the overall system operating costs. This study investigated a combined solid oxide fuel cell CO2 utilization system that employed green hydrogen methanolation and methanation to facilitate the use of the CO2 captured by the system. CO2 was separated from the exhaust gas of the system captured stored and used through methanation and methanolation. Consequently the synthesized methane was used for solid oxide fuel cell power generation and the synthesized methanol was sold. The discounted cash flow method was employed to evaluate the economic performance of the proposed system. At a unit price of 0.7–0.9 USD/kWh for electricity sold rated outputs of 1250 and 390 MW for solid oxide fuel cell combined cycle and photovoltaics respectively carbon capture and storage equipment cost of 800 USD/kWh and discount rate of 0.3 % the simple integrated payback period was obtained as 9 years whereas the dynamic payback period was 11–30 years. Consequently the economic feasibility of the proposed system was demonstrated.
Towards Hydrogen-powered Electric Aircraft: Physics-informed Machine Learning Based Multi-domain Modelling and Real-time Digital Twin Emulation on FPGA
Mar 2025
Publication
In response to environmental concerns related to carbon and nitrogen emissions hydrogen-powered aircraft (HPA) are poised for significant development over the coming decades driven by advances in power electronics technology. However HPA systems present complex multi-domain challenges encompassing electrical hydraulic mechanical and chemical disciplines necessitating efficient modeling and robust validation platforms. This paper introduces a physics-informed machine learning (PIML) approach for multi-domain HPA system modeling enhanced by hardware accelerated parallel hardware emulation to construct a real-time digital twin. It delves into the physical analysis of various HPA subsystems whose equations form the basis for both traditional numerical solution methods like Euler’s and Runge-Kutta methods (RKM) as well as the physics-informed neural networks (PINN) components developed herein. By comparing physics-feature neural networks (PFNN) and PINN with conventional neural network strategies this paper elucidates their advantages and limitations in practical applications. The final implementation on the Xilinx® UltraScale+™ VCU128 FPGA platform showcases the PIML method’s high efficiency accuracy data independence and adherence to established physical laws demonstrating its potential for advancing real-time multi-domain HPA emulation.
Fuel Cell Electric Vehicle Hydrogen Consumption and Battery Cycle Optimization Using Bald Eagle Search Algorithm
Sep 2024
Publication
In this study the Bald Eagle Search Algorithm performed hydrogen consumption and battery cycle optimization of a fuel cell electric vehicle. To save time and cost the digital vehicle model created in Matlab/Simulink and validated with real-world driving data is the main platform of the optimization study. The digital vehicle model was run with the minimum and maximum battery charge states determined by the Bald Eagle Search Algorithm and hydrogen consumption and battery cycle values were obtained. By using the algorithm and digital vehicle model together hydrogen consumption was minimized and range was increased. It was aimed to extend the life of the parts by considering the battery cycle. At the same time the number of battery packs was included in the optimization and its effect on consumption was investigated. According to the study results the total hydrogen consumption of the fuel cell electric vehicle decreased by 57.8% in the hybrid driving condition 23.3% with two battery packs and 36.27% with three battery packs in the constant speed driving condition.
Exhaust Gas Aftertreatment to Minimize Nox Emissions from Hydrogen-fueled Internal Combustion Engines
Oct 2023
Publication
Hydrogen-fueled internal combustion engines are a promising CO2-free and zero-impact emission alternative to battery or fuel cell electric powertrains. Advantages include long service life robustness against fuel impurities and a strong infrastructural base with existing production lines and workshop stations. In order to make hydrogen engines harmless in terms of pollutant emissions as well NOX emissions at the tailpipe must be reduced as low as the zero-impact emission level. Here the application of selective catalytic reduction (SCR) catalysts is a promising solution that can be rapidly adopted from conventional diesel engines. This paper therefore investigates the influences of the hydrogen concentration in the raw exhaust gas of the NO2/NOX ratio and of the space velocity on the performance of two different SCR technologies. The results show that both types of SCR copper-zeolite and vanadium-based have their advantages and drawbacks. Copper-based SCR catalysts have an early light-off temperature and reach maximum efficiencies of up to >99%. On the other hand vanadium systems promise almost no secondary N2O emissions. As a result we combined both approaches to create a superior solution with high efficiency and lowest secondary emissions.
Optimal Integration of Hybrid Renewable Energy Systems for Decarbonized Urban Electrification and Hydrogen Mobility
Aug 2024
Publication
This study addresses cost-optimal sizing and energy management of a grid-integrated solar photovoltaic wind turbine hybrid renewable energy system integrated with electrolyzer and hydrogen storage tank to simultaneously meet electricity and hydrogen demands considering the case study of Dijon France. Mixed Integer Linear Programming optimization problem is formulated to evaluate two objective case scenarios: single objective and multi-objective minimizing total annual costs and grid carbon emission footprint. The study incorporates various technical economic and environmental indicators focusing on the impact of sensitivity lying on various grid electricity purchase rates within the French electricity market prices. The results highlight that rising grid prices drive increased integration of renewable sources while lower prices favor ultimate grid dependency. Constant hydrogen demand necessitates the installation of two electrolyzers. Notably grid electricity prices above 60 e/MWh result increase in the size of the hydrogen tank and electrolyzer operation to prevent renewable energy losses. Grid prices above 140 e/MWh depict 70% of electrical and 80% of electrolyzer demand provided by the renewable generation resulting in a carbon emission below 0.0416 Mt of CO2 and 0.643 kgCO2 /kgH2 . Conversely grid prices below 20 e/MWh lead ultimately to 100% grid dependency with a higher carbon emission of approximately 0.14 Mt of CO2 and 4.13 kgCO2 /kgH2 reducing the total annual cost to 41.63 Million e. Increase in grid prices from 20e/MWh to 180 e/MWh resulted in increase of hydrogen specific costs from 1.23 to 3.58 e/kgH2 . Finally the Pareto front diagram is employed to illustrate the trade-off between total annual cost and carbon emission due to grid imports aiding in informed decision-making.
Research on Energy Management in Hydrogen–Electric Coupled Microgrids Based on Deep Reinforcement Learning
Aug 2024
Publication
Hydrogen energy represents an ideal medium for energy storage. By integrating hydrogen power conversion utilization and storage technologies with distributed wind and photovoltaic power generation techniques it is possible to achieve complementary utilization and synergistic operation of multiple energy sources in the form of microgrids. However the diverse operational mechanisms varying capacities and distinct forms of distributed energy sources within hydrogen-coupled microgrids complicate their operational conditions making fine-tuned scheduling management and economic operation challenging. In response this paper proposes an energy management method for hydrogen-coupled microgrids based on the deep deterministic policy gradient (DDPG). This method leverages predictive information on photovoltaic power generation load power and other factors to simulate energy management strategies for hydrogen-coupled microgrids using deep neural networks and obtains the optimal strategy through reinforcement learning ultimately achieving optimized operation of hydrogen-coupled microgrids under complex conditions and uncertainties. The paper includes analysis using typical case studies and compares the optimization effects of the deep deterministic policy gradient and deep Q networks validating the effectiveness and robustness of the proposed method.
Integrated Home Energy Management with Hybrid Backup Storage and Vehicle-to-Home Systems for Enhanced Resilience, Efficiency, and Energy Independence in Green Buildings
Sep 2024
Publication
This study presents an innovative home energy management system (HEMS) that incorporates PV WTs and hybrid backup storage systems including a hydrogen storage system (HSS) a battery energy storage system (BESS) and electric vehicles (EVs) with vehicle-to-home (V2H) technology. The research conducted in Liaoning Province China evaluates the performance of the HEMS under various demand response (DR) scenarios aiming to enhance resilience efficiency and energy independence in green buildings. Four DR scenarios were analyzed: No DR 20% DR 30% DR and 40% DR. The findings indicate that implementing DR programs significantly reduces peak load and operating costs. The 40% DR scenario achieved the lowest cumulative operating cost of $749.09 reflecting a 2.34% reduction compared with the $767.07 cost in the No DR scenario. The integration of backup systems particularly batteries and fuel cells (FCs) effectively managed energy supply ensuring continuous power availability. The system maintained a low loss of power supply probability (LPSP) indicating high reliability. Advanced optimization techniques particularly the reptile search algorithm (RSA) are crucial in enhancing system performance and efficiency. These results underscore the potential of hybrid backup storage systems with V2H technology to enhance energy independence and sustainability in residential energy management.
Sustainable Integration of Green Hydrogen in Renewable Energy Systems for Residential and EV Applications
Jan 2024
Publication
The surge in interest surrounding renewable energy stems from concerns regarding pollution and the finite supply ofnonrenewable resources. Solar PV and wind hybrid renewable energy systems (HRES) are increasingly recognized as practicaland cost-effective solutions particularly in remote areas. However the intermittent nature of solar and wind power presents achallenge. To address this incorporating a hydrogen source into the system has been proposed. This study focuses onmodelling and sizing a hybrid energy system tailored for remote areas accommodating both home and electric vehicle loads.The simulation is conducted for Siliguri West Bengal India with the goal of optimizing productivity minimizing expensesand considering economic factors using HOMER Pro software. The integration of green hydrogen-based power generationwith photovoltaic and wind HRES emerges as an effective solution. Solar power in particular showcases promisingopportunities for the electrolysis process and HRES systems. The presented work facilitates the modelling of a green hydrogen-based green energy system taking into account capacity cost and emission constraints. Various case studies are conducted toenhance system efficiency and reduce the costs of energy (COE). In this paper three cases of grid-connected and three cases ofoff-grid or grid-disconnected systems are considered for highlighting the benefits of hydrogen energy incorporation in bothtypes of systems. This research contributes to sustainable energy solutions advancing a greener and more efficient energylandscape especially in addressing the recent development in load combinations of home and electric vehicle loads in bothgrid-connected as well as grid-disconnected system.
Fuelling a Clean Future: A Systematic Review of Techno-Economic and Life Cycle Assessments in E-Fuel Development
Aug 2024
Publication
The transition to sustainable energy has ushered in the era of electrofuels (e-fuels) which are synthesised using electricity from renewable sources water and CO2 as a sustainable alternative to fossil fuels. This paper presents a systematic review of the techno-economic (TEA) and life cycle assessments (LCAs) of e-fuel production. We critically evaluate advancements in production technologies economic feasibility environmental implications and potential societal impacts. Our findings indicate that while e-fuels offer a promising solution to reduce carbon emissions their economic viability depends on optimising production processes and reducing input material costs. The LCA highlights the necessity of using renewable energy for hydrogen production to ensure the genuine sustainability of e-fuels. This review also identifies knowledge gaps suggesting areas for future research and policy intervention. As the world moves toward a greener future understanding the holistic implications of e-fuels becomes paramount. This review aims to provide a comprehensive overview to guide stakeholders in their decision-making processes.
A Review of the Use of Hydrogen in Compression Ignition Engines with Dual-Fuel Technology and Techniques for Reducing NOx Emissions
Apr 2024
Publication
The use of compression ignition engines (CIEs) is associated with increased greenhouse gas emissions. It is therefore necessary to research sustainable solutions and reduce the negative environmental impact of these engines. A widely studied alternative is the use of H2 in dual-fuel mode. This review has been developed to include the most recent studies on the subject to collect and compare their main conclusions on performance and emissions. Moreover this study includes most relevant emission control strategies that have not been extensively analyzed in other reviews on the subject. The main conclusion drawn from the literature is the negative effect of the addition of H2 on NOx. This is due to the increase in temperature during combustion which increases NOx formation as the thermal mechanism predominates. Therefore to reduce these emissions three strategies have been studied namely exhaust gas recirculation (EGR) water injection (WI) and compression ratio (CR) reduction. The effect of these techniques on NOx reduction together with their effect on other analyzed performance parameters have been deeply analyzed. The studies reviewed in this work indicate that hydrogen is an alternative fuel for CIEs when used in conjunction with techniques that have proven to be effective in reducing NOx.
Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives
Sep 2024
Publication
Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address these issues this paper proposes a novel method for optimizing the parameter configuration of FCHPS. First the power and energy requirements of the vehicle are determined through traction calculations and a real-time energy management strategy is used to ensure efficient power distribution. On this basis a multi-objective parameter configuration optimization model is developed which comprehensively considers economic cost and system weight and uses a particle swarm optimization (PSO) algorithm to determine the optimal configuration of each power source. The optimization results show that the system economic cost is reduced by 8.76% and 18.05% and the weight is reduced by 11.47% and 9.13% respectively compared with the initial configuration. These results verify the effectiveness of the proposed optimization strategy and demonstrate its potential to improve the overall performance of the FCHPS.
The Use of Alternative Fuels for Maritime Decarbonization: Special Marine Environmental Risks and Solutons from an International Law Perspective
Jan 2023
Publication
The introduction of several alternative marine fuels is considered an important strategy for maritime decarbonization. These alternative marine fuels include liquefied natural gas (LNG) liquefied biogas (LBG) hydrogen ammonia methanol ethanol hydrotreated vegetable oil (HVO) etc. In some studies nuclear power and electricity are also included in the scope of alternative fuels for merchant ships. However the operation of alternative-fuel-powered ships has some special risks such as fuel spills vapor dispersion and fuel pool fires. The existing international legal framework does not address these risks sufficiently. This research adopts the method of legal analysis to examine the existing international legal regime for regulating the development of alternative-fuel-powered ships. From a critical perspective it evaluates and predicts the consequences of these policies together with their shortcomings. Also this research explores the potential solutions and countermeasures that might be feasible to deal with the special marine environmental risks posed by alternative-fuel-powered ships in the future.
Green Hydrogen and Wind Synergy: Assessing Economic Benefits and Optimal Operational Strategies
Aug 2024
Publication
Volatile electricity prices have raised concerns about the economic feasibility of wind projects in Finland. This study assesses the economic viability and optimal operational strategies for integrating wind-powered green hydrogen production systems. Utilizing modeling and optimization this research evaluates various wind farms in Western Finland over electricity market scenarios from 2019 to 2022 with forecasts extending to 2030. Key economic metrics considered include internal rate of return future value net present value (NPV) and the levelized cost of hydrogen (LCOH). Results indicate that integration of hydrogen production with wind farms shows economic benefits over standalone wind projects potentially reducing LCOH to €2.0/kgH2 by 2030 in regular and low electricity price scenarios and to as low as €0.6/kgH2 in high-price scenarios. The wind farm with the highest capacity factor achieves 47% reductions in LCOH and 22% increases in NPV underscoring the importance of strategic site selection and operational flexibility.
Hydrogen Application as a Fuel in Internal Combustion Engines
Mar 2023
Publication
Hydrogen is the energy vector that will lead us toward a more sustainable future. It could be the fuel of both fuel cells and internal combustion engines. Internal combustion engines are today the only motors characterized by high reliability duration and specific power and low cost per power unit. The most immediate solution for the near future could be the application of hydrogen as a fuel in modern internal combustion engines. This solution has advantages and disadvantages: specific physical chemical and operational properties of hydrogen require attention. Hydrogen is the only fuel that could potentially produce no carbon carbon monoxide and carbon dioxide emissions. It also allows high engine efficiency and low nitrogen oxide emissions. Hydrogen has wide flammability limits and a high flame propagation rate which provide a stable combustion process for lean and very lean mixtures. Near the stoichiometric air–fuel ratio hydrogen-fueled engines exhibit abnormal combustions (backfire pre-ignition detonation) the suppression of which has proven to be quite challenging. Pre-ignition due to hot spots in or around the spark plug can be avoided by adopting a cooled or unconventional ignition system (such as corona discharge): the latter also ensures the ignition of highly diluted hydrogen–air mixtures. It is worth noting that to correctly reproduce the hydrogen ignition and combustion processes in an ICE with the risks related to abnormal combustion 3D CFD simulations can be of great help. It is necessary to model the injection process correctly and then the formation of the mixture and therefore the combustion process. It is very complex to model hydrogen gas injection due to the high velocity of the gas in such jets. Experimental tests on hydrogen gas injection are many but never conclusive. It is necessary to have a deep knowledge of the gas injection phenomenon to correctly design the right injector for a specific engine. Furthermore correlations are needed in the CFD code to predict the laminar flame velocity of hydrogen–air mixtures and the autoignition time. In the literature experimental data are scarce on air–hydrogen mixtures particularly for engine-type conditions because they are complicated by flame instability at pressures similar to those of an engine. The flame velocity exhibits a non-monotonous behavior with respect to the equivalence ratio increases with a higher unburnt gas temperature and decreases at high pressures. This makes it difficult to develop the correlation required for robust and predictive CFD models. In this work the authors briefly describe the research path and the main challenges listed above.
Low-Carbon Transition Pathway Planning of Regional Power Systems with Electricity-Hydrogen Synergy
Nov 2022
Publication
Hydrogen energy leads us in an important direction in the development of clean energy and the comprehensive utilization of hydrogen energy is crucial for the low-carbon transformation of the power sector. In this paper the demand for hydrogen energy in various fields is predicted based on the support vector regression algorithm which can be converted into an equivalent electrical load when it is all produced from water electrolysis. Then the investment costs of power generators and hydrogen energy equipment are forecast considering uncertainty. Furthermore a planning model is established with the forecast data initial installed capacity and targets for carbon emission reduction as inputs and the installed capacity as well as share of various power supply and annual carbon emissions as outputs. Taking Gansu Province of China as an example the changes of power supply structure and carbon emissions under different scenarios are analysed. It can be found that hydrogen production through water electrolysis powered by renewable energy can reduce carbon emissions but will increase the demand for renewable energy generators. Appropriate planning of hydrogen storage can reduce the overall investment cost and promote a low carbon transition of the power system
Assessment of Hydrogen Energy Industry Chain Based on Hydrogen Production Methods, Storage, and Utilization
Apr 2024
Publication
To reach climate neutrality by 2050 a goal that the European Union set itself it is necessary to change and modify the whole EU’s energy system through deep decarbonization and reduction of greenhouse-gas emissions. The study presents a current insight into the global energy-transition pathway based on the hydrogen energy industry chain. The paper provides a critical analysis of the role of clean hydrogen based on renewable energy sources (green hydrogen) and fossil-fuels-based hydrogen (blue hydrogen) in the development of a new hydrogen-based economy and the reduction of greenhouse-gas emissions. The actual status costs future directions and recommendations for low-carbon hydrogen development and commercial deployment are addressed. Additionally the integration of hydrogen production with CCUS technologies is presented.
The Impact of Sustainable Energy Technologies and Demand Response Programs on the Hub's Planning by the Practical Consideration of Tidal Turbines as a Novel Option
Apr 2023
Publication
This paper investigates a multi-objective optimal energy planning strategy for a hub incorporating renewable and non-renewable resources like PV tidal turbine fuel-cell CHP boiler micro-turbine reactor reformer electrolyzer and energy storage by utilizing the time of use program (TOU). In this strategy tidal turbine fuel-cell and reformer technologies are considered novel technologies that simultaneously reduce the proposed hub’s cost and pollution. The hub’s total cost and pollution are considered objective functions. To make the results more realistic characteristics of the tidal turbine are investigated by utilizing the manufactory’s company information. The problem is then modeled as real mixed integer programming (RMIP) and is solved in GAMS software using a CPLEX solver. Epsilon constraints method and fuzzy satisfying approach are used to select the optimal solution based on the proposed model. Finally a sensitivity analysis is performed to assess the effective parameters that affect the planning’s results. The results show that the overall pollution is reduced by about 9% by assuming the proposed planning and the total profit is increased by about 30%.
The Market Introduction of Hydrogen Focussing on Bus Refueling
Dec 2023
Publication
Public transport plays a prominent role with respect to mitigating transport-related environmental effects by improving passenger transport efficiency and the quality of life in cities. Batteries and fuel cells are at the forefront of the technological shift to zero-emission powertrains. Within the scope of the German-funded project BIC H2 corresponding systems analysis research focuses on the market introduction of fuel cell–electric buses in the Rhine–Ruhr Metropolitan Region through 2035. This study presents the related methods and major outcomes of this techno-economic research which spans spatially-resolved hydrogen demand modeling of all relevant sectors to hydrogen refueling stations and upstream infrastructure modeling to scenario-based analyses. The latter builds upon an empirical study supporting the development of the Hydrogen Roadmap of the State of North Rhine–Westphalia (NRW). Our results show that the demand in NRW alone is expected to account for one third of total German hydrogen use. Hydrogen bus refueling could substantially support market introduction during its early phases. In the long term however hydrogen demand in industry is significantly higher compared to that in the transport sector. Furthermore spatial analysis identifies regions with pronounced hydrogen demands that could therefore be candidates for initial infrastructure investments. With the Cologne area showing the highest hydrogen demand levels such regions can offer particularly high infrastructure utilization e.g. for bus refueling. On the infrastructure side trailers for transporting gaseous hydrogen to refueling stations are the most favorable option through 2035. Pipelines would be the preferred solution soon after 2035 due to increased hydrogen demand. If effectively deployed converted natural gas pipelines would be the most cost-effective option even earlier.
How to Connect Energy Islands: Trade-offs Between Hydrogen and Electricity Infrastructure
Apr 2023
Publication
In light of offshore wind expansions in the North and Baltic Seas in Europe further ideas on using offshore space for renewable-based energy generation have evolved. One of the concepts is that of energy islands which entails the placement of energy conversion and storage equipment near offshore wind farms. Offshore placement of electrolysers will cause interdependence between the availability of electricity for hydrogen production and for power transmission to shore. This paper investigates the trade-offs between integrating energy islands via electricity versus hydrogen infrastructure. We set up a combined capacity expansion and electricity dispatch model to assess the role of electrolysers and electricity cables given the availability of renewable energy from the islands. We find that the electricity system benefits more from connecting close-to-shore wind farms via power cables. In turn electrolysis is more valuable for far-away energy islands as it avoids expensive long-distance cable infrastructure. We also find that capacity investment in electrolysers is sensitive to hydrogen prices but less to carbon prices. The onshore network and congestion caused by increased activity close to shore influence the sizing and siting of electrolysers.
Hydrogen Refueling Method for Heavy-duty FCV with Pressure Loss Compensation
Apr 2024
Publication
Current hydrogen stations are using a constant dispenser pressure ramp rate method. When a flow rate increases for heavy duty vehicle a large pressure loss occurs and it slows down refueling. This study developed a new method (cTPR method) that has the constant pressure ramp rate in the tank by compensating for the tube pressure loss without any feedback from the vehicle. A refueling simulation confirmed that a refueling was shortened − 49s with a lower ending gas temperature. Testing confirmed that the cTPR method can be realized simply by changing the control without any hardware modification.
Green Hydrogen for Heating and its Impact on the Power System
Jun 2021
Publication
With a relatively high energy density hydrogen is attracting increasing attention in research commercial and political spheres specifically as a fuel for residential heating which is proving to be a difficult sector to decarbonise in some circumstances. Hydrogen production is dependent on the power system so any scale use of hydrogen for residential heating will impact various aspects of the power system including electricity prices and renewable generation curtailment (i.e. wind solar). Using a linearised optimal power flow model and the power infrastructure on the island of Ireland this paper examines least cost optimal investment in electrolysers in the presence of Ireland's 70% renewable electricity target by 2030. The introduction of electrolysers in the power system leads to an increase in emissions from power generation which is inconsistent with some definitions of green hydrogen. Electricity prices are marginally higher with electrolysers whereas the optimal location of electrolysers is driven by a combination of residential heating demand and potential surplus power supplies at electricity nodes.
Can Hydrogen Production Be Economically Viable on the Existing Gas-Fired Power Plant Location? New Empirical Evidence
Apr 2023
Publication
The paper provides an economic model for the assessment of hydrogen production at the site of an existing thermal power plant which is then integrated into the existing gas grid. The model uses projections of electricity prices natural gas prices and CO2 prices as well as estimates of the cost of building a power-to-gas system for a 25-year period. The objective of this research is to calculate the yellow hydrogen production price for each lifetime year of the Power-to-gas system to evaluate yellow hydrogen competitiveness compared to the fossil alternatives. We test if an incentive scheme is needed to make this technology economically viable. The research also provides several sensitivity scenarios of electricity natural gas and CO2 price changes. Our research results clearly prove that yellow hydrogen is not yet competitive with fossil alternatives and needs incentive mechanisms for the time being. At given natural gas and CO2 prices the incentive for hydrogen production needs to be 52.90 EUR/MWh in 2025 and 36.18 EUR/MWh in 2050. However the role of hydrogen in the green transition could be very important as it provides ancillary services and balances energy sources in the power system.
A Physics Constrained Methodology for the Life Cycle Assessment of Sustainable Aviation Fuel Production
May 2024
Publication
Feedstock-to-fuel conversion or “Fuel Production” is a major contributor to greenhouse gas (GHG) emissions in life cycle assessment (LCA) of sustainable aviation fuels (SAF) from wastes. Here we construct and demonstrate an original mass and energy conserved chemically rigorous LCA methodology for the production of Hydroprocessed Esters and Fatty Acids-Synthetic Paraffinic Kerosene (HEFA-SPK) from Used Cooking Oil (UCO). This study proposes and demonstrates the use of; (i) the chemical composition of the UCO (ii) the ASTM properties of HEFA-SPK and (iii) the elemental mass and energy conserved reaction mechanism which converts one to the other as physical constraints for the specific LCA of any UCO derived HEFA-SPK. With application of these constraints the emissions embodied in UCO HEFA-SPK Fuel Production is found to range from 4.2 to 15.7 gCO2e/MJSAF depending on the renewability of the energy and hydrogen utilized. Imposition of (i)-(iii) as modelling constraints derives a HEFA-SPK yield of 49 mass% a priori. This finding aligns with experimental literature but brings attention to the higher yield estimations of 70–81% observed in current LCA tools. We show that this impacts the end LCA significantly as it adjusts allocation of emissions. A replication study of CORSIA’s (10.5 gCO2e/MJSAF) default core LCA value for Fuel Production quantifies the increase at +5.3 gCO2e/MJSAF or 15.8 gCO2e/MJSAF as total for Fuel Production. As the embodied emissions are significantly dependent on the specifics of the scenario assessed we highlight reporting a definitive GHG intensity for any UCO derived HEFA-SPK as generic will be inaccurate to an extent.
Optimal Capacity Configuration of Wind–Solar Hydrogen Storage Microgrid Based on IDW-PSO
Aug 2023
Publication
Because the new energy is intermittent and uncertain it has an influence on the system’s output power stability. A hydrogen energy storage system is added to the system to create a wind light and hydrogen integrated energy system which increases the utilization rate of renewable energy while encouraging the consumption of renewable energy and lowering the rate of abandoning wind and light. Considering the system’s comprehensive operation cost economy power fluctuation and power shortage as the goal considering the relationship between power generation and load assigning charging and discharging commands to storage batteries and hydrogen energy storage and constructing a model for optimal capacity allocation of wind–hydrogen microgrid system. The optimal configuration model of the wind solar and hydrogen microgrid system capacity is constructed. A particle swarm optimization with dynamic adjustment of inertial weight (IDW-PSO) is proposed to solve the optimal allocation scheme of the model in order to achieve the optimal allocation of energy storage capacity in a wind–hydrogen storage microgrid. Finally a microgrid system in Beijing is taken as an example for simulation and solution and the results demonstrate that the proposed approach has the characteristics to optimize the economy and improve the capacity of renewable energy consumption realize the inhibition of the fluctuations of power reduce system power shortage and accelerate the convergence speed.
Assessing the Sustainability of Liquid Hydrogen for Future Hypersonic Aerospace Flight
Dec 2022
Publication
This study explored the applications of liquid hydrogen (LH2 ) in aerospace projects followed by an investigation into the efficiency of ramjets scramjets and turbojets for hypersonic flight and the impact of grey blue and green hydrogen as an alternative to JP-7 and JP-8 (kerosene fuel). The advantage of LH2 as a propellant in the space sector has emerged from the relatively high energy density of hydrogen per unit volume enabling it to store more energy compared to conventional fuels. Hydrogen also has the potential to decarbonise space flight as combustion of LH2 fuel produces zero carbon emissions. However hydrogen is commonly found in hydrocarbons and water and thus it needs to be extracted from these molecular compounds before use. Only by considering the entire lifecycle of LH2 including the production phase can its sustainability be understood. The results of this study compared the predicted Life Cycle Assessment (LCA) emissions of the production of LH2 using grey blue and green hydrogen for 2030 with conventional fuel (JP-7 and JP-8) and revealed that the total carbon emissions over the lifecycle of LH2 were greater than kerosene-derived fuels.
Profitability of Hydrogen-Based Microgrids: A Novel Economic Analysis in Terms of Electricity Price and Equipment Costs
Oct 2023
Publication
The current need to reduce carbon emissions makes hydrogen use essential for selfconsumption in microgrids. To make a profitability analysis of a microgrid the influence of equipment costs and the electricity price must be known. This paper studies the cost-effective electricity price (EUR/kWh) for a microgrid located at ‘’La Rábida Campus” (University of Huelva south of Spain) for two different energy-management systems (EMSs): hydrogen-priority strategy and batterypriority strategy. The profitability analysis is based on one hand on the hydrogen-systems’ cost reduction (%) and on the other hand considering renewable energy sources (RESs) and energy storage systems (ESSs) on cost reduction (%). Due to technological advances microgrid-element costs are expected to decrease over time; therefore future profitable electricity prices will be even lower. Results show a cost-effective electricity price ranging from 0.61 EUR/kWh to 0.16 EUR/kWh for hydrogen-priority EMSs and from 0.4 EUR/kWh to 0.17 EUR/kWh for battery-priority EMSs (0 and 100% hydrogen-system cost reduction respectively). These figures still decrease sharply if RES and ESS cost reductions are considered. In the current scenario of uncertainty in electricity prices the microgrid studied may become economically competitive in the near future
Technological Pathways for Decarbonizing Petroleum Refining
Sep 2021
Publication
This paper discusses the technical specifications of how U.S. petroleum refineries can reduce facility emissions and shift to produce low-carbon fuels for hard to abate sectors by utilizing existing innovative technologies.
Techno-Economic Analysis of a Hydrogen-Based Power Supply Backup System for Tertiary Sector Buildings: A Case Study in Greece
May 2023
Publication
In view of the European Union’s strategy on hydrogen for decarbonization and buildings’ decarbonization targets the use of hydrogen in buildings is expected in the future. Backup power in buildings is usually provided with diesel generators (DGs). In this study the use of a hydrogen fuel cell (HFC) power supply backup system is studied. Its operation is compared to a DG and a techno-economic analysis of the latter’s replacement with an HFC is conducted by calculating relevant key performance indicators (KPIs). The developed approach is presented in a case study on a school building in Greece. Based on the school’s electricity loads which are calculated with a dynamic energy simulation and power shortages scenarios the backup system’s characteristics are defined and the relevant KPIs are calculated. It was found that the HFC system can reduce the annual CO2 emissions by up to 400 kg and has a lower annual operation cost than a DG. However due to its high investment cost its levelized cost of electricity is higher and the replacement of an existing DG is unviable in the current market situation. The techno-economic study reveals that subsidies of around 58–89% are required to foster the deployment of HFC backup systems in buildings.
Optimal Sizing of a Stand-Alone Hybrid Power System Based on Battery/Hydrogen with an Improved Ant Colony Optimization
Sep 2016
Publication
A distributed power system with renewable energy sources is very popular in recent years due to the rapid depletion of conventional sources of energy. Reasonable sizing for such power systems could improve the power supply reliability and reduce the annual system cost. The goal of this work is to optimize the size of a stand-alone hybrid photovoltaic (PV)/wind turbine (WT)/battery (B)/hydrogen system (a hybrid system based on battery and hydrogen (HS-BH)) for reliable and economic supply. Two objectives that take the minimum annual system cost and maximum system reliability described as the loss of power supply probability (LPSP) have been addressed for sizing HS-BH from a more comprehensive perspective considering the basic demand of load the profit from hydrogen which is produced by HS-BH and an effective energy storage strategy. An improved ant colony optimization (ACO) algorithm has been presented to solve the sizing problem of HS-BH. Finally a simulation experiment has been done to demonstrate the developed results in which some comparisons have been done to emphasize the advantage of HS-BH with the aid of data from an island of Zhejiang China.
Optimal Energy Management of an Integrated Energy System with Multiple Hydrogen Sources
Sep 2023
Publication
Hydrogen is considered a promising alternative to fossil fuels in an integrated energy system (IES). In order to reduce the cost of hydrogen energy utilization and the carbon emissions of the IES this paper proposes a low-carbon dispatching strategy for a coordinated integrated energy system using green hydrogen and blue hydrogen. The strategy takes into account the economic and low-carbon complementarity between hydrogen production by water electrolysis and hydrogen production from natural gas. It introduces the green hydrogen production–storage–use module (GH-PSUM) and the blue hydrogen production–storage–use module (BH-PSUM) to facilitate the refined utilization of different types of hydrogen energy. Additionally the flexibility in hydrogen load supply is analyzed and the dynamic response mechanism of the hydrogen load supply structure (DRM-HLSS) is proposed to further reduce operating costs and carbon emissions. Furthermore a carbon trading mechanism (CTM) is introduced to constrain the carbon emissions of the integrated energy system. By comprehensively considering the constraints of each equipment the proposed model aims to minimize the total economic cost which includes wind power operation and curtailment penalty costs energy purchase costs blue hydrogen purification costs and carbon transaction costs. The rationality of the established scheduling model is verified through a comparative analysis of the scheduling results across multiple operating scenarios.
Energy and Economic Advantages of Using Solar Stills for Renewable Energy-Based Multi-Generation of Power and Hydrogen for Residential Buildings
Apr 2024
Publication
The multi-generation systems with simultaneous production of power by renewable energy in addition to polymer electrolyte membrane electrolyzer and fuel cell (PEMFC-PEMEC) energy storage have become more and more popular over the past few years. The fresh water provision for PEMECs in such systems is taken into account as one of the main challenges for them where conventional desalination technologies such as reverse osmosis (RO) and mechanical vapor compression (MVC) impose high electricity consumption and costs. Taking this point into consideration as a novelty solar still (ST) desalination is applied as an alternative to RO and MVC for better techno-economic justifiability. The comparison made for a residential building complex in Hawaii in the US as the case study demonstrated much higher technical and economic benefits when using ST compared with both MVC and RO. The photovoltaic (PV) installed capacity decreased by 11.6 and 7.3 kW compared with MVC and RO while the size of the electrolyzer declined by 9.44 and 6.13% and the hydrogen storage tank became 522.1 and 319.3 m3 smaller respectively. Thanks to the considerable drop in the purchase price of components the payback period (PBP) dropped by 3.109 years compared with MVC and 2.801 years compared with RO which is significant. Moreover the conducted parametric study implied the high technical and economic viability of the system with ST for a wide range of building loads including high values.
A Techno-economic Analysis of Ammonia-fuelled Powertrain Systems for Rail Freight
Apr 2023
Publication
All diesel-only trains in the UK will be removed from services by 2040. High volumetric density rapid refuelling ability and sophisticated experience in infrastructure and logistics make ammonia a perfect hydrogen carrying fuel for rail freight which urgently requires an economically viable solution. This study conducted a novel techno-economic study of ammonia-fuelled fuel cell powertrains to be compared with current diesel engine-based system and emerging direct hydrogen-fuelled fuel cell system. The results demonstrate that hydrogen-fuelled Proton Exchange Membrane Fuel Cells (PEMFCs) and ammonia-fuelled PEMFCs (using an ammonia cracker) are more cost-effective in terms of Levelized Cost of Electricity. The ammonia fuel storage requires 61.5-75 % less space compared to the hydrogen storage. Although the ammonia-fuelled Solid Oxide Fuel Cells (SOFCs) powertrain has the highest electricity generation efficiency (56%) the overall cost requires a major reduction by 70% before it could be considered as an economically viable solution.
The Future Role of Offshore Renewable Energy Technologies in the North Sea Energy System
Jul 2024
Publication
Offshore renewables are expected to play a significant role in achieving the ambitious emission targets set by the North Sea countries. Among other factors energy technology costs and their cost reduction potential determine their future role in the energy system. While fixed-bottom offshore wind is well-established and competitive in this region generation costs of other emerging offshore renewable technologies remain high. Hence it is vital to better understand the future role of offshore renewables in the North Sea energy system and the impact of technological learning on their optimal deployments which is not well-studied in the current literature. This study implements an improved framework of integrated energy system analysis to overcome the stated knowledge gap. The approach applies detailed spatial constraints and opportunities of energy infrastructure deployment in the North Sea and also technology cost reduction forecasts of offshore renewables. Both of these parameters are often excluded or overlooked in similar analyses leading to overestimation of benefits and technology deployments in the energy system. Three significant conclusions are derived from this study. First offshore wind plays a crucial role in the North Sea power sector where deployment grows to a maximum of 498 GW by 2050 (222 GW of fixed-bottom and 276 GW of floating wind) from 100 GW in 2030 contributing up to 51% of total power generation and declining cumulative system cost of power and hydrogen system by 4.2% (approx. 40 billion EUR in cost savings) when compared with the slow learning and constrained space use case. Second floating wind deployment is highly influenced by its cost reduction trend and ability to produce hydrogen offshore; emphasizing the importance of investing in floating wind in this decade as the region lacks commercial deployments that would stimulate its cost reduction. Also the maximum floating wind deployment in the North Sea energy system declined by 70% (162 GW from 276 GW) when offshore hydrogen production was avoided while fixed-bottom offshore wind deployment remains unchanged. Lastly the role of other emerging offshore renewables remains limited in all scenarios considered as they are expensive compared to other technology choices in the system. However around 8 GW of emerging technologies was observed in Germany and the Netherlands when the deployment potential of fixed-bottom offshore wind became exhausted.
No more items...