Applications & Pathways
Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool
Apr 2023
Publication
The use of fossil fuels has caused many environmental issues including greenhouse gas emissions and associated climate change. Several studies have focused on mitigating this problem. One dynamic direction for emerging sources of future renewable energy is the use of hydrogen energy. In this research we evaluate the sourcing decision for a hydrogen supply chain in the context of a case study in Thailand using group decision making analysis for policy implications. We use an integrative multi-criteria decision analysis (MCDA) tool which includes an analytic hierarchy process (AHP) fuzzy AHP (FAHP) and data envelopment analysis (DEA) to analyze weighted criteria and sourcing alternatives using data collected from a group of selected experts. A list of criteria related to sustainability paradigms and sourcing decisions for possible use of hydrogen energy including natural gas coal biomass and water are evaluated. Our results reveal that political acceptance is considered the most important criterion with a global weight of 0.514 in the context of Thailand. Additionally natural gas is found to be the foreseeable source for hydrogen production in Thailand with a global weight of 0.313. We also note that the analysis is based on specific data inputs and that an alternative with a lower score does not imply that the source is not worth exploring.
Sustainable Hydrogen Energy in Aviation - A Narrative Review
Feb 2023
Publication
In the modern world zero-carbon society has become a new buzzword of the era. Many projects have been initiated to develop alternatives not only to the environmental crisis but also to the shortage of fossil fuels. With successful projects in automobile technology hydrogen fuel is now being tested and utilized as a sustainable green fuel in the aviation sector which will lead to zero carbon emission in the future. From the mid-20th century to the early 21st numerous countries and companies have funded multimillion projects to develop hydrogen-fueled aircraft. Empirical data show positive results for various projects. Consequently large companies are investing in various innovations undertaken by researchers under their supervision. Over time the efficiency of hydrogen-fueled aircraft has improved but the lack of refueling stations large production cost and consolidated carbon market share have impeded the path of hydrogen fuel being commercialized. In addition the Unmanned Aerial Vehicle (UAV) is another important element of the Aviation industry Hydrogen started to be commonly used as an alternative fuel for heavy-duty drones using fuel cell technology. The purpose of this paper is to provide an overview of the chronological development of hydrogen-powered aircraft technology and potential aviation applications for hydrogen and fuel cell technology. Furthermore the major barriers to widespread adoption of hydrogen technology in aviation are identified as are future research opportunities.
Towards Defossilised Steel: Supply Chain Options for a Green European Steel Industry
Mar 2023
Publication
As the European Union intensifies its response to the climate emergency increased focus has been placed on the hard-to-abate energy-intensive industries. Primary among these is the steel industry a cornerstone of the European economy and industry. With the emergence of new hydrogen-based steelmaking options particularly through hydrogen direct reduction the structure of global steel production and supply chains will transition from being based on low-cost coal resources to that based on low-cost electricity and therefore hydrogen production. This study examines the techno-economic options for three European countries of Germany Spain and Finland under five different steel supply chain configurations compared to local production. Results suggest that the high costs of hydrogen transportation make a European steelmaking supply chain cost competitive to steel produced with imported hydrogen with local production costs ranging from 465-545 €/t of crude steel (CS) and 380-494 €/tCS for 2030 and 2040 respectively. Conversely imports of hot briquetted iron and crude steel from Morocco become economically competitive with European supply chains. Given the capital and energy intensive nature of the steel industry critical investment decisions are required in this decade and this research serves to provide a deeper understanding of supply chain options for Europe.
Evaluating Fuel Cell vs. Battery Electric Trucks: Economic Perspectives in Alignment with China’s Carbon Neutrality Target
Mar 2024
Publication
The electrification of heavy-duty trucks stands as a critical and challenging cornerstone in the low-carbon transition of the transportation sector. This paper employs the total cost of ownership (TCO) as the economic evaluation metric framed within the context of China’s ambitious goals for heavy truck electrification by 2035. A detailed TCO model is developed encompassing not only the vehicles but also their related energy replenishing infrastructures. This comprehensive approach enables a sophisticated examination of the economic feasibility for different deployment contexts of both fuel cell and battery electric heavy-duty trucks emphasizing renewable energy utilization. This study demonstrates that in the context where both fuel cell components and hydrogen energy are costly fuel cell trucks (FCTs) exhibit a significantly higher TCO compared to battery electric trucks (BETs). Specifically for a 16 ton truck with a 500 km range the TCO for the FCT is 0.034 USD/tkm representing a 122% increase over its BET counterpart. In the case of a 49 ton truck designed for a 1000 km range the TCO for the FCT is 0.024 USD/tkm marking a 36% premium compared to the BET model. The technological roadmap suggests a narrowing cost disparity between FCTs and BETs by 2035. For the aforementioned 16 ton truck model the projected TCO for the FCT is expected to be 0.016 USD/tkm which is 58% above the BET and for the 49 ton variant it is anticipated at 0.012 USD per ton-kilometer narrowing the difference to just 4.5% relative to BET. Further analysis within this study on the influences of renewable energy pricing and operational range on FCT and BET costs highlights a pivotal finding: for the 49 ton truck achieving TCO parity between FCTs and BETs is feasible when renewable energy electricity prices fall to 0.022 USD/kWh or when the operational range extends to 1890 km. This underscores the critical role of energy costs and efficiency in bridging the cost gap between FCTs and BETs.
Thermoacoustic Combustion Stability Analysis of a Bluff Body-Stabilized Burner Fueled by Methane–Air and Hydrogen–Air Mixtures
Apr 2023
Publication
Hydrogen can play a key role in the gradual transition towards a full decarbonization of the combustion sector e.g. in power generation. Despite the advantages related to the use of this carbon-free fuel there are still several challenging technical issues that must be addressed such as the thermoacoustic instability triggered by hydrogen. Given that burners are usually designed to work with methane or other fossil fuels it is important to investigate their thermoacoustic behavior when fueled by hydrogen. In this framework the present work aims to propose a methodology which combines Computational Fluid Dynamics CFD (3D Reynolds-Averaged Navier-Stokes (RANS)) and Finite Element Method (FEM) approaches in order to investigate the fluid dynamic and the thermoacoustic behavior introduced by hydrogen in a burner (a lab-scale bluff body stabilized burner) designed to work with methane. The case of CH4 -air mixture was used for the validation against experimental results and benchmark CFD data available in the literature. Numerical results obtained from CFD simulations namely thermofluidodynamic properties and flame characteristics (i.e. time delay and heat release rate) are used to evaluate the effects of the fuel change on the Flame Response Function to the acoustic perturbation by means of a FEM approach. As results in the H2 -air mixture case the time delay decreases and heat release rate increases with respect to the CH4 -air mixture. A study on the Rayleigh index was carried out in order to analyze the influence of H2 -air mixture on thermoacoustic instability of the burner. Finally an analysis of both frequency and growth rate (GR) on the first four modes was carried out by comparing the two mixtures. In the H2 -air case the modes are prone to become more unstable with respect to the same modes of the case fueled by CH4 -air due to the change in flame topology and variation of the heat release rate and time delay fields.
Cold Start Cycling Durability of Fuel Cell Stacks for Commercial Automotive Applications
Sep 2022
Publication
System durability is crucial for the successful commercialization of polymer electrolyte fuel cells (PEFCs) in fuel cell electric vehicles (FCEVs). Besides conventional electrochemical cycling durability during long-term operation the effect of operation in cold climates must also be considered. Ice formation during start up in sub-zero conditions may result in damage to the electrocatalyst layer and the polymer electrolyte membrane (PEM). Here we conduct accelerated cold start cycling tests on prototype fuel cell stacks intended for incorporation into commercial FCEVs. The effect of this on the stack performance is evaluated the resulting mechanical damage is investigated and degradation mechanisms are proposed. Overall only a small voltage drop is observed after the durability tests only minor damage occurs in the electrocatalyst layer and no increase in gas crossover is observed. This indicates that these prototype fuel cell stacks successfully meet the cold start durability targets for automotive applications in FCEVs.
Probabilistic Modelling of Seasonal Energy Demand Patterns in the Transition from Natural Gas to Hydrogen for an Urban Energy District
May 2023
Publication
The transition to a low-carbon energy system can be depicted as a “great reconfiguration” from a socio-technical perspective that carries the risk of impact shifts. Electrification with the objective of achieving rapidly deep decarbonisation must be accompanied by effective efficiency and flexibility measures. Hydrogen can be a preferred option in the decarbonisation process where electrification of end-uses is difficult or impractical as well as for long-term storage in energy infrastructure characterised by a large penetration of renewable energy sources. Notwithstanding the current uncertainties regarding costs environmental impact and the inherent difficulties of increasing rapidly supply capacity hydrogen can represent a solution to be used in multi-energy systems with combined heat and power (CHP) in particular in urban energy districts. In fact while achieving carbon savings with natural gas fuelled CHP is not possible when low grid carbon intensity factors are present it may still be possible to use it to provide flexibility services and to reduce emissions further with switch from natural gas to hydrogen. In this paper a commercially established urban district energy scheme located in Southampton (United Kingdom) is analysed with the goal of exploring potential variations in its energy demand. The study proposes the use of scalable data-driven methods and probabilistic simulation to generate seasonal energy demand patterns representing the potential short-term and long-term evolution of the energy district.
A Review of the Role of Hydrogen in the Heat Decarbonization of Future Energy Systems: Insights and Perspectives
Apr 2024
Publication
Hydrogen is an emerging technology changing the context of heating with cleaner combustion than traditional fossil fuels. Studies indicate the potential to repurpose the existing natural gas infrastructure offering consumers a sustainable economically viable option in the future. The integration of hydrogen in combined heat and power systems could provide residential energy demand and reduce environmental emissions. However the widespread adoption of hydrogen will face several challenges such as carbon dioxide emissions from the current production methods and the need for infrastructure modification for transport and safety. Researchers indicated the viability of hydrogen in decarbonizing heat while some studies also challenged its long-term role in the future of heating. In this paper a comprehensive literature review is carried out by identifying the following key aspects which could impact the conclusion on the overall role of hydrogen in heat decarbonization: (i) a holistic view of the energy system considering factors such as renewable integration and system balancing; (ii) consumer-oriented approaches often overlook the broader benefits of hydrogen in emission reduction and grid stability; (iii) carbon capture and storage scalability is a key factor for large-scale production of low-emission blue hydrogen; (iv) technological improvements could increase the cost-effectiveness of hydrogen; (v) the role of hydrogen in enhancing resilience especially during extreme weather conditions raises the potential of hydrogen as a flexible asset in the energy infrastructure for future energy supply; and finally when considering the UK as a basis case (vi) incorporating factors such as the extensive gas network and unique climate conditions necessitates specific strategies.
Enhancement of Microgrid Frequency Stability Based on the Combined Power-to-Hydrogen-to-Power Technology under High Penetration Renewable Units
Apr 2023
Publication
Recently with the large-scale integration of renewable energy sources into microgrid (µGs) power electronics distributed energy systems have gained popularity. However low inertia reduces system frequency stability and anti-disturbance capabilities exposing power quality to intermittency and uncertainty in photovoltaics or wind turbines. To ensure system stability the virtual inertia control (VIC) is presented. This paper proposes two solutions to overcome the low inertia problem and the surplus in capacities resulting from renewable energy sources. The first solution employs superconducting magnetic energy storage (SMES) which can be deemed as an efficient solution for damping the frequency oscillations. Therefore in this work SMES that is managed by a simple proportional-integral-derivative controller (PID) controller is utilized to overcome the low inertia. In the second solution the hydrogen storage system is employed to maintain the stability of the microgrid by storing surplus power generated by renewable energy sources (RESs). Power-to-Power is a method of storing excess renewable energy as chemical energy in the form of hydrogen. Hydrogen can be utilized locally or delivered to a consumption node. The proposed µG operation demonstrates that the integration of the photovoltaics (PVs) wind turbines (WTs) diesel engine generator (DEG) electrolyzer micro gas turbine (µGT) and SMES is adequate to fulfill the load requirements under transient operating circumstances such as a low and high PV output power as well as to adapt to sudden changes in the load demand. The effectiveness of the proposed schemes is confirmed using real irradiance data (Benban City Egypt) using a MATLAB/SIMULINK environment.
X-in-the-Loop Methodology for Proton Exchange Membrane Fuel Cell Systems Design: Review of Advances and Challenges
Jul 2025
Publication
Proton Exchange Membrane Fuel Cells (PEMFCs) are seen as an alternative for heavy-duty transportation electrification. Powered by a green hydrogen source they can provide high efficiency and low carbon emissions compared to traditional fuels. However to be competitive these systems require high reliability when operated in real-life conditions as well as safe and efficient operating management. In order to achieve these goals the X-in-the-loop (also called model-based design) methodology is well suited. It has been largely adopted for PEMFC system development and optimisation as they are complex multi-component systems. In this paper a systematic analysis of the scientific literature is conducted to review the methodology implementation for the design and improvement of the PEMFC systems. It exposes a precise definition of each development step in the methodology. The analysis shows that it can be employed in different ways depending on the subsystems considered and the objectives sought. Finally gaps in the literature and technical challenges for fuel cell systems that should be addressed are identified.
Numerical Study on Hydrogen–Gasoline Dual-Fuel Spark Ignition Engine
Nov 2022
Publication
Hydrogen as a suitable and clean energy carrier has been long considered a primary fuel or in combination with other conventional fuels such as gasoline and diesel. Since the density of hydrogen is very low in port fuel-injection configuration the engine’s volumetric efficiency reduces due to the replacement of hydrogen by intake air. Therefore hydrogen direct in-cylinder injection (injection after the intake valve closes) can be a suitable solution for hydrogen utilization in spark ignition (SI) engines. In this study the effects of hydrogen direct injection with different hydrogen energy shares (HES) on the performance and emissions characteristics of a gasoline port-injection SI engine are investigated based on reactive computational fluid dynamics. Three different injection timings of hydrogen together with five different HES are applied at low and full load on a hydrogen– gasoline dual-fuel SI engine. The results show that retarded hydrogen injection timing increases the concentration of hydrogen near the spark plug resulting in areas with higher average temperatures which led to NOX emission deterioration at −120 Crank angle degree After Top Dead Center (CAD aTDC) start of injection (SOI) compared to the other modes. At −120 CAD aTDC SOI for 50% HES the amount of NOX was 26% higher than −140 CAD aTDC SOI. In the meanwhile an advanced hydrogen injection timing formed a homogeneous mixture of hydrogen which decreased the HC and soot concentration so that −140 CAD aTDC SOI implied the lowest amount of HC and soot. Moreover with the increase in the amount of HES the concentrations of CO CO2 and soot were reduced. Having the HES by 50% at −140 CAD aTDC SOI the concentrations of particulate matter (PM) CO and CO2 were reduced by 96.3% 90% and 46% respectively. However due to more complete combustion and an elevated combustion average temperature the amount of NOX emission increased drastically.
Thermodynamic Performance and Creep Life Assessment Comparing Hydrogen- and Jet-Fueled Turbofan Aero Engine
Apr 2021
Publication
There is renewed interest in hydrogen as an alternative fuel for aero engines due to their perceived environmental and performance benefits compared to jet fuel. This paper presents a cycle thermal performance energy and creep life assessment of hydrogen compared with jet fuel using a turbofan aero engine. The turbofan cycle performance was simulated using a code developed by the authors that allows hydrogen and jet fuel to be selected as fuel input. The exergy assessment uses both conservations of energy and mass and the second law of thermodynamics to understand the impact of the fuels on the exergy destruction exergy efficiency waste factor ratio environmental effect factor and sustainability index for a turbofan aero engine. Finally the study looks at a top-level creep life assessment on the high-pressure turbine hot section influenced by the fuel heating values. This study shows performance (64% reduced fuel flow rate better SFC) and more extended blade life (15% increase) benefits using liquefied hydrogen fuel which corresponds with other literary work on the benefits of LH2 over jet fuel. This paper also highlights some drawbacks of hydrogen fuel based on previous research work and gives recommendations for future work aimed at maturing the hydrogen fuel concept in aviation.
Improving the Economics of Fossil-free Steelmaking via Co-production of Methanol
Mar 2022
Publication
Steelmaking is responsible for 7% of the global net emissions of carbon dioxide and heavily reducing emissions from currently dominating steelmaking processes is difficult and costly. Recently new steelmaking processes based on the reduction of iron ore with hydrogen (H2) produced via water electrolysis have been suggested. If the electricity input to such processes is fossil-free near-zero carbon dioxide emissions steelmaking is achievable. However the high electricity demand of electrolysis is a significant implementation barrier. A H2 storage may alleviate this via allowing a larger share of H2 to be produced at low electricity prices. However accurately forecasting the dynamics of electricity markets is challenging. This increases the risk of investment in a H2 storage. Here we evaluate a novel methanol-based H2 storage concept for a H2-based steelmaking process that also allows for the coproduction of methanol. During electricity price peaks the methanol can be reformed to produce H2 for the steelmaking process. During prolonged periods of low electricity prices excess methanol can be produced and sold off thus improving the prospects of storage profitability. We use historical electricity prices and a process model to evaluate methanol-fossil-free steel co-production schemes. Methanol coproduction has the potential to improve the economics of H2 supply to a fossil-free steelmaking process by up to an average of 0.40 €/kg H2 across considered scenarios equivalent to a reduction in H2 production electricity costs of 25.0%
Application and Limitations of Batteries and Hydrogen in Heavy Haul Rail using Australian Case Studies
Oct 2022
Publication
Decarbonisation of heavy haul rail is an essential contributor to a zero-emissions future. However the transition from diesel to battery locomotives is not always practical given the unique characteristics of each haul. This paper demonstrates the limitations of state-of-the-art batteries using real-world data from multiple locomotives operating in Australian rail freight. An energy model was developed to assess each route’s required energy and potential regenerated energy. The tractive and regenerative battery energy mass and cost were determined using data from the energy model coupled with battery specifications. The feasibility of implementing lithium iron phosphate (LFP) nickel manganese cobalt (NMC) and lithium titanium oxide (LTO) chemistries was explored based on cost energy density cycle lifespan and locomotive data. LFP was identified as the most suitable current battery solution based on current chemistries. Further examination of the energy demands and associated mass/volume constraints concluded that three platforms are required for heavy haul rail decarbonisation i) a battery electric locomotive for low-energy demands which can be coupled with either ii) a battery electric tender for medium energy demands or iii) a hydrogen fuel cell electric tender for higher energy demands. A future-looking techno-economic assessment of battery and hydrogen fuel cell platforms concludes that the lowest cost solution for low-energy hauls is a battery-only system and for high-energy hauls a battery-hydrogen system.
Decarbonizing Primary Steel Production : Techno-economic Assessment of a Hydrogen Based Green Steel Production Plant in Norway
Mar 2022
Publication
High electricity cost is the biggest challenge faced by the steel industry in transitioning to hydrogen based steelmaking. A steel plant in Norway could have access to cheap emission free electricity high-quality iron ore skilled manpower and the European market. An open-source model for conducting techno-economic assessment of a hydrogen based steel manufacturing plant operating in Norway has been developed in this work. Levelized cost of production (LCOP) for two plant configurations; one procuring electricity at a fixed price and the other procuring electricity from the day-ahead electricity markets with different electrolyzer capacity were analyzed. LCOP varied from $622/tls to $722/tls for the different plant configurations. Procuring electricity from the day-ahead electricity markets could reduce the LCOP by 15%. Increasing the electrolyzer capacity reduced the operational costs but increased the capital investments reducing the overall advantage. Sensitivity analysis revealed that electricity price and iron ore price are the major contributors to uncertainty for configurations with fixed electricity prices. For configurations with higher electrolyzer capacity changes in the iron ore price and parameters related to capital investment were found to affect the LCOP significantly.
Refueling of LH2 Aircraft—Assessment of Turnaround Procedures and Aircraft Design Implication
Mar 2022
Publication
Green liquid hydrogen (LH2) could play an essential role as a zero-carbon aircraft fuel to reach long-term sustainable aviation. Excluding challenges such as electrolysis transportation and use of renewable energy in setting up hydrogen (H2) fuel infrastructure this paper investigates the interface between refueling systems and aircraft and the impacts on fuel distribution at the airport. Furthermore it provides an overview of key technology design decisions for LH2 refueling procedures and their effects on the turnaround times as well as on aircraft design. Based on a comparison to Jet A-1 refueling new LH2 refueling procedures are described and evaluated. Process steps under consideration are connecting/disconnecting purging chill-down and refueling. The actual refueling flow of LH2 is limited to a simplified Reynolds term of v · d = 2.35 m2/s. A mass flow rate of 20 kg/s is reached with an inner hose diameter of 152.4 mm. The previous and subsequent processes (without refueling) require 9 min with purging and 6 min without purging. For the assessment of impacts on LH2 aircraft operation process changes on the level of ground support equipment are compared to current procedures with Jet A-1. The technical challenges at the airport for refueling trucks as well as pipeline systems and dispensers are presented. In addition to the technological solutions explosion protection as applicable safety regulations are analyzed and the overall refueling process is validated. The thermodynamic properties of LH2 as a real compressible fluid are considered to derive implications for airport-side infrastructure. The advantages and disadvantages of a subcooled liquid are evaluated and cost impacts are elaborated. Behind the airport storage tank LH2 must be cooled to at least 19 K to prevent two-phase phenomena and a mass flow reduction during distribution. Implications on LH2 aircraft design are investigated by understanding the thermodynamic properties including calculation methods for the aircraft tank volume and problems such as cavitation and two-phase flows. In conclusion the work presented shows that LH2 refueling procedure is feasible compliant with the applicable explosion protection standards and hence does not impact the turnaround procedure. A turnaround time comparison shows that refueling with LH2 in most cases takes less time than with Jet A-1. The turnaround at the airport can be performed by a fuel truck or a pipeline dispenser system without generating direct losses i.e. venting to the atmosphere.
Transition to a Low-carbon Building Stock. Techno-economic and Spatial Optimization of Renewables‑hydrogen Strategies in Spain
Oct 2022
Publication
Europe has set ambitious targets to reduce the final energy consumption of buildings in concerning the degree of electrification energy efficiency and penetration of renewable energy sources (RES). So far hydrogen is becoming an increasingly important energy vector offering huge opportunities to promote the share of intermittent RES. Thus this manuscript proposes an energy model for the complete decarbonization of the estimated electricity consumed by the Spanish building stock in 2030 and 2050 scenarios; the model is based on the combination of photovoltaic and wind primary sources and hydrogen technologies considering both distributed and centralized configurations applying also geospatial criteria for their optimal allocation. Large-scale RES generation centralized hydrogen production and re-electrification along with underground hydrogen storage result in the lowest levelized cost of energy (LCOE) hydrogen production costs (HPC) and the highest overall efficiency (μSYS). Wind energy is mainly harvested in the north of Spain while large PV farms are deployed in the mid-south. Furthermore reinforcement of underground hydrogen storage enhances the overall system performance reducing surplus energy and the required RES generation capacity. Finally all the considered scenarios achieve LCOE below the Spanish utility grid benchmark apart from accomplishing the decarbonization goals established for the year 2030.
Towards Sustainable Transport: Techno-Economic Analysis of Investing in Hydrogen Buses in Public Transport in the Selected City of Poland
Dec 2022
Publication
The production storage and use of hydrogen for energy purposes will become increasingly important during the energy transition. One way to use hydrogen is to apply it to power vehicles. This green technological solution affects low-emissions transport which is beneficial and important especially in cities. The authors of this article analyzed the use of hydrogen production infrastructure for bus propulsion in the city of Katowice (Poland). The methods used in the study included a greedy algorithm and cost methods which were applied for the selection of vehicles and identification of the infrastructure for the production storage and refueling of hydrogen as well as to conduct the economic analysis during this term. The article presented the complexity of the techno-economic analysis of the infrastructure and its installation. The key element was the selection of the number of vehicles to the hydrogen production possibilities of an electrolyser and capabilities of the storage and charging infrastructure.
Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union
Jan 2023
Publication
Energy Intensive Industries (EII) are high users of energy and some of these facilities are extremely dependent on Natural Gas for processing heat production. In European countries where Natural Gas is mostly imported from external producers the increase in international Natural Gas prices is making it difficult for some industries to deliver the required financial results. Therefore they are facing complex challenges that could cause their delocalization in regions with lower energy costs. European countries lack on-site Natural Gas resources and the plans to reduce greenhouse gas emissions in the industrial sector make it necessary to find an alternative. Many different processes cannot be electrified and in these cases synthetic methane is one of the solutions and also represents an opportunity to reduce external energy supply dependency. This study analyzes the current development of power-to-gas technological solutions that could be implemented in large industrial consumers to produce Synthetic Methane using Green Hydrogen as a raw source and using Renewable Energy electricity mainly produced with photovoltaic or wind energy. The study also reviews the triple bottom line impact and the current development status and associated costs for each key component of a power-to-gas plant and the requirements to be fulfilled in the coming years to develop a cost-competitive solution available for commercial use.
Aluminium Redox Cycle in Comparison to Pressurized Hydrogen for the Energy Supply of Multi-family Houses
Nov 2022
Publication
Power-to-X technologies that convert renewable electricity to chemically stored energy in “X” may provide a gaseous liquid or solid fuel that can be used in winter to provide both heat and electricity and thus replace fossil fuels that are currently used in many countries with cold winters. This contribution compares two options for power-to-X technologies for providing heat and electricity supply of buildings with high solar photovoltaic coverage at times of low solar availability. The option “compressed hydrogen” is based on water electrolysis that produces hydrogen on-site. This hydrogen is subsequently compressed and stored at high pressure (350 bar) for use in winter by a fuel cell. The option “aluminium redox-cycle” includes an inert electrode high temperature electrolysis process that is carried out at industrial scale. Produced aluminium is subseqeuntly transported to the site of use and converted to hydrogen and heat – and finally to electricity and heat - by aluminium-water reaction in combination with a fuel cell. Results of cost and LCA analysis show that the overall energetic efficiency of the compressed hydrogen process is slightly higher than for the aluminium redox cycle. However the aluminium redox-cycles needs far less on-site storage volume and is likely to become available at lower investment cost for the end user. Total annual cost of ownership and global warming potential of the two options are quite similar.
No more items...