Applications & Pathways
New Integrated Process for the Efficient Production of Methanol, Electrical Power, and Heating
Jan 2022
Publication
In this paper a novel process is developed to cogenerate 4741 kg/h of methanol 297.7 kW of electricity and 35.73 ton/h of hot water including a hydrogen purification system an absorption– compression refrigeration cycle (ACRC) a regenerative Organic Rankine Cycle (ORC) and parabolic solar troughs. The heat produced in the methanol reactor is recovered in the ORC and ACRC. Parabolic solar troughs provide thermal power to the methanol distillation tower. Thermal efficiencies of the integrated structure and the liquid methanol production cycle are 78.14% and 60.91% respectively. The process’s total exergy efficiency and irreversibility are 89.45% and 16.89 MW. The solar thermal collectors take the largest share of exergy destruction (34%) followed by heat exchangers (30%) and mixers (19%). Based on the sensitivity analysis D17 (mixture of H2 and low-pressure fuel gas before separation) was the most influential stream affecting the performance of the process. With the temperature decline of stream D17 from −139 to −149 °C the methanol production rate and the total thermal efficiency rose to 4741.2 kg/h and 61.02% respectively. Moreover the growth in the hydrogen content from 55% to 80% molar of the feed gas the flow rate of liquid methanol and the total exergy efficiency declined to 4487 kg/h and 86.05%.
A Study on Electrofuels in Aviation
Feb 2018
Publication
With the growth of aviation traffic and the demand for emission reduction alternative fuels like the so-called electrofuels could comprise a sustainable solution. Electrofuels are understood as those that use renewable energy for fuel synthesis and that are carbon-neutral with respect to greenhouse gas emission. In this study five potential electrofuels are discussed with respect to the potential application as aviation fuels being n-octane methanol methane hydrogen and ammonia and compared to conventional Jet A-1 fuel. Three important aspects are illuminated. Firstly the synthesis process of the electrofuel is described with its technological paths its energy efficiency and the maturity or research need of the production. Secondly the physico-chemical properties are compared with respect to specific energy energy density as well as those properties relevant to the combustion of the fuels i.e. autoignition delay time adiabatic flame temperature laminar flame speed and extinction strain rate. Results show that the physical and combustion properties significantly differ from jet fuel except for n-octane. The results describe how the different electrofuels perform with respect to important aspects such as fuel and air mass flow rates. In addition the results help determine mixture properties of the exhaust gas for each electrofuel. Thirdly a turbine configuration is investigated at a constant operating point to further analyze the drop-in potential of electrofuels in aircraft engines. It is found that electrofuels can generally substitute conventional kerosene-based fuels but have some downsides in the form of higher structural loads and potentially lower efficiencies. Finally a preliminary comparative evaluation matrix is developed. It contains specifically those fields for the different proposed electrofuels where special challenges and problematic points are seen that need more research for potential application. Synthetically-produced n-octane is seen as a potential candidate for a future electrofuel where even a drop-in capability is given. For the other fuels more issues need further research to allow the application as electrofuels in aviation. Specifically interesting could be the combination of hydrogen with ammonia in the far future; however the research is just at the beginning stage.
Study Navigating the Way to a Renewable Future – Solutions to Decarbonise Shipping
Sep 2019
Publication
On average the shipping sector is responsible for 3% of annual global green-house gas emissions on a CO2-equivalent basis. International shipping represents around 9% of the global emissions associated with the transport sector.<br/>This report from the International Renewable Energy Agency (IRENA) explores the impact of maritime shipping on CO2 emissions the structure of the shipping sector and key areas that need to be addressed to reduce the sector’s carbon footprint.<br/>There is no clear-cut path to decarbonisation. Cutting CO2 emissions in half is therefore likely to require a combination of approaches including the use of alternative fuels upgrading of onshore infrastructure and reducing fuel demand by improving operational performance the report finds.<br/>The shipping sector is strategically important for global efforts against climate change and could be crucial in the long-term shift to a zero-carbon economy. Large-scale deployment of low-carbon fuel infrastructure for shipping could also help to build the necessary momentum to decarbonise other sectors.
An Intelligent Site Selection Model for Hydrogen Refueling Stations Based on Fuzzy Comprehensive Evaluation and Artificial Neural Network—A Case Study of Shanghai
Feb 2022
Publication
With the gradual popularization of hydrogen fuel cell vehicles (HFCVs) the construction and planning of hydrogen refueling stations (HRSs) are increasingly important. Taking operational HRSs in China’s coastal and major cities as examples we consider the main factors affecting the site selection of HRSs in China from the three aspects of economy technology and society to establish a site selection evaluation system for hydrogen refueling stations and determine the weight of each index through the analytic hierarchy process (AHP). Then combined with fuzzy comprehensive evaluation (FCE) method and artificial neural network model (ANN) FCE method is used to evaluate HRS in operation in China's coastal areas and major cities and we used the resulting data obtained from the comprehensive evaluation as the training data to train the neural network. So an intelligent site selection model for HRSs based on fuzzy comprehensive evaluation and artificial neural network model (FCE-ANN) is proposed. The planned HRSs in Shanghai are evaluated and an optimal site selection of the HRS is obtained. The results show that the optimal HRSs site selected by the FCE-ANN model is consistent with the site selection obtained by the FCE method and the accuracy of the FCE-ANN model is verified. The findings of this study may provide some guidelines for policy makers in planning the hydrogen refueling stations
Consequence-based Safety Distances and Mitigation Measures for Gaseous Hydrogen Refueling Stations
Oct 2010
Publication
With the rapid development of hydrogen vehicle technology and large scale fuel cell vehicle (FCV) demonstration project worldwide more hydrogen refueling stations need to be built. Safety distances of hydrogen refueling stations have always been a public concern and have become a critical issue to further implementation of hydrogen station. In this paper safety distances for 35MPa and 70MPa gaseous hydrogen refueling station are evaluated on the basis of the maximum consequences likely to occur. Four typical consequences of hydrogen release are considered in modeling: physical explosion jet fire flash fire and confined vapor cloud explosion. Results show that physical explosion and the worst case of confined vapor cloud explosion produce the longest harm effect distances for instantaneous and continuous release respectively indicating that they may be considered as leading consequences for the determination of safety distances. For both 35MPa station and 70MPa station safety measures must be implemented because the calculated safety distances of most hydrogen facilities can not meet the criteria in national code if without sufficient mitigation measures. In order to reduce the safety distances to meet the national code some mitigation measures are investigated including elevation of hydrogen facilities using smaller vessel and pipe work and setting enclosure around compressors. Results show that these measures are effective to improve safety but each has different effectiveness on safety distance reduction. The combination of these safety measures may effectively eliminate the hazard of 35MPa station however may be not enough for 70MPa station. Further improvements need to be studied for compressors inside 70MPa station.
Hydrogen Implications for Gas Network Operators
Jan 2021
Publication
Europe has built up one of the best gas distribution infrastructures in the world. There’s one problem though. It distributes natural gas a fuel that we will hardly be able to use if we’re to reach our net zero targets. Can we use the infrastructure instead for clean hydrogen – either blended with natural gas as a stepping stone or with pure hydrogen in the future? In this episode we put aside discussion on the extent to which we should do this – and focus on whether or not we can do this and what’s involved in doing so.
Jon Slowe is joined by Eva Hennig Head of Department for EU Energy Policy at Thüga an alliance of German municipal energy companies (as well as chair of Eurogas’s distribution committee); Keith Owen Head of Systems Development and Energy Strategy at Northern Gas Networks in the UK; and Delta-EE expert Rob Castek.
Jon Slowe is joined by Eva Hennig Head of Department for EU Energy Policy at Thüga an alliance of German municipal energy companies (as well as chair of Eurogas’s distribution committee); Keith Owen Head of Systems Development and Energy Strategy at Northern Gas Networks in the UK; and Delta-EE expert Rob Castek.
Evaluation of Performance Characteristics of a Novel Hydrogen-fuelled Free-piston Engine Generator
Mar 2020
Publication
In this work we present the experimental results obtained from hydrogen fuelled spark-ignited dual piston free-piston engine generator (FPEG) prototype operated in two-stroke and four-stroke mode. The FPEG testing was successfully conducted at 3.7 compression ratio engine speed between 5 Hz and 11 Hz and with different equivalence ratios. The FPEG technical details experimental set-up and operational control are explained in detail. Performance indicators show that both equivalence ratio and engine speed affect the engine operation characteristics. For every set of specified FPEG parameters appropriate range of equivalence ratio is recommended to prevent unwanted disturbance to electric generator operation. Both two-stroke and four-stroke cycle mode were tested and the results showed different combustion characteristics with the two thermodynamic cycles. Four-stroke cycle mode could operate with indicated thermal efficiency gain up to 13.2% compared with the two-stroke cycle.
Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies
Jan 2021
Publication
With the development of technologies in recent decades and the imposition of international standards to reduce greenhouse gas emissions car manufacturers have turned their attention to new technologies related to electric/hybrid vehicles and electric fuel cell vehicles. This paper focuses on electric fuel cell vehicles which optimally combine the fuel cell system with hybrid energy storage systems represented by batteries and ultracapacitors to meet the dynamic power demand required by the electric motor and auxiliary systems. This paper compares the latest proposed topologies for fuel cell electric vehicles and reveals the new technologies and DC/DC converters involved to generate up-to-date information for researchers and developers interested in this specialized field. From a software point of view the latest energy management strategies are analyzed and compared with the reference strategies taking into account performance indicators such as energy efficiency hydrogen consumption and degradation of the subsystems involved which is the main challenge for car developers. The advantages and disadvantages of three types of strategies (rule-based strategies optimization-based strategies and learning-based strategies) are discussed. Thus future software developers can focus on new control algorithms in the area of artificial intelligence developed to meet the challenges posed by new technologies for autonomous vehicles.
Strategic Research and Innovation Agenda
Jul 2020
Publication
The FCH1JU and FCH2JU have proven effective in developing hydrogen technologies to a high Technology Readiness Level (TRL) allowing for large-scale deployment. Yet there is still an important work to be performed in terms of Research and Innovation in order to develop the next generation of products as well as technologies that did not reach a sufficiently high TRL to envisage a large-scale deployment.<br/><br/>Within the framework of the preparation of the foreseen Clean Hydrogen for Europe (the third public-private partnership continuation of the FCH2JU) Hydrogen Europe and Hydrogen Europe Research have prepared their Strategic Research and Innovation Agenda (SRIA) which is made of a set of approximately 20 roadmaps. This SRIA represents the view of the private partner and will be used as a basis to develop the Multi Annual Work Plan (MAWP) of the Clean Hydrogen for Europe partnership. The current version (July 2020) is the final draft that has been submitted to the European Commission.
Soft-linking of a Behavioral Model for Transport with Energy System Cost optimization Applied to Hydrogen in EU
Sep 2019
Publication
Fuel cell electric vehicles (FCEV) currently have the challenge of high CAPEX mainly associated to the fuel cell. This study investigates strategies to promote FCEV deployment and overcome this initial high cost by combining a detailed simulation model of the passenger transport sector with an energy system model. The focus is on an energy system with 95% CO2 reduction by 2050. Soft-linking by taking the powertrain shares by country from the simulation model is preferred because it considers aspects such as car performance reliability and safety while keeping the cost optimization to evaluate the impact on the rest of the system. This caused a 14% increase in total cost of car ownership compared to the cost before soft-linking. Gas reforming combined with CO2 storage can provide a low-cost hydrogen source for FCEV in the first years of deployment. Once a lower CAPEX for FCEV is achieved a higher hydrogen cost from electrolysis can be afforded. The policy with the largest impact on FCEV was a purchase subsidy of 5 k€ per vehicle in the 2030–2034 period resulting in 24.3 million FCEV (on top of 67 million without policy) sold up to 2050 with total subsidies of 84 bln€. 5 bln€ of R&D incentives in the 2020–2024 period increased the cumulative sales up to 2050 by 10.5 million FCEV. Combining these two policies with infrastructure and fuel subsidies for 2030–2034 can result in 76 million FCEV on the road by 2050 representing more than 25% of the total car stock. Country specific incentives split of demand by distance or shift across modes of transport were not included in this study.
Recent Developments in Carbon-Based Nanocomposites for Fuel Cell Applications: A Review
Jan 2022
Publication
Carbon-based nanocomposites have developed as the most promising and emerging materials in nanoscience and technology during the last several years. They are microscopic materials that range in size from 1 to 100 nanometers. They may be distinguished from bulk materials by their size shape increased surface-to-volume ratio and unique physical and chemical characteristics. Carbon nanocomposite matrixes are often created by combining more than two distinct solid phase types. The nanocomposites that were constructed exhibit unique properties such as significantly enhanced toughness mechanical strength and thermal/electrochemical conductivity. As a result of these advantages nanocomposites have been used in a variety of applications including catalysts electrochemical sensors biosensors and energy storage devices among others. This study focuses on the usage of several forms of carbon nanomaterials such as carbon aerogels carbon nanofibers graphene carbon nanotubes and fullerenes in the development of hydrogen fuel cells. These fuel cells have been successfully employed in numerous commercial sectors in recent years notably in the car industry due to their cost-effectiveness eco-friendliness and long-cyclic durability. Further; we discuss the principles reaction mechanisms and cyclic stability of the fuel cells and also new strategies and future challenges related to the development of viable fuel cells.
The Emotional Dimensions of Energy Projects: Anger, Fear, Joy and Pride About the First Hydrogen Fuel Station in the Netherlands
May 2018
Publication
Citizens’ emotional responses to energy technology projects influence the success of the technology’s implementation. Contrary to popular belief these emotions can have a systematic base. Bringing together insights from appraisal theory and from technology acceptance studies this study develops and tests hypotheses regarding antecedents of anger fear joy and pride about a local hydrogen fuel station (HFS). A questionnaire study was conducted among 271 citizens living near the first publicly accessible HFS in the Netherlands around the time of its implementation. The results show that anger is significantly explained by (from stronger to weaker effects) perceived procedural and distributive unfairness and fear by distributive unfairness perceived safety procedural unfairness gender and prior awareness. Joy is significantly explained by perceived environmental outcomes and perceived usefulness and pride by prior awareness perceived risks trust in industry and perceived usefulness. The study concludes that these predictors are understandable practical and moral considerations which can and should be taken into account when developing and executing a project.
Fostering a Blue Economy: Offshore Renewable Energy
Dec 2020
Publication
Offshore renewable energy – including offshore wind and solar power as well as emerging ocean energy technologies – could support sustainable long-term development and drive a vibrant blue economy. For countries and communities around the world offshore renewables can provide reliable stable electricity as well as support water desalination and aquaculture.
This report from the International Renewable Energy Agency (IRENA) considers the status and prospects of offshore renewable sources and recommends key actions to accelerate their uptake.
The development of renewable sources and technologies at sea promises to spur new industries and create jobs in line with the global energy transition. Offshore wind towers with either fixed or floating foundations and floating solar photovoltaic (PV) arrays offer clear technological and logistical synergies with the existing offshore oil and gas industry.
Offshore renewables could provide clean power and ensure energy security for small island developing states (SIDS) and many of the least-developed countries (LDCs).
Among other findings:
This report from the International Renewable Energy Agency (IRENA) considers the status and prospects of offshore renewable sources and recommends key actions to accelerate their uptake.
The development of renewable sources and technologies at sea promises to spur new industries and create jobs in line with the global energy transition. Offshore wind towers with either fixed or floating foundations and floating solar photovoltaic (PV) arrays offer clear technological and logistical synergies with the existing offshore oil and gas industry.
Offshore renewables could provide clean power and ensure energy security for small island developing states (SIDS) and many of the least-developed countries (LDCs).
Among other findings:
- The predictability of power generation from ocean energy technologies complements the variable character solar PV and wind.
- Desalination of seawater using renewable energy sources – including solar and wind power but also direct solar and geothermal heat – can further enhance the sustainable blue economy.
- Renewable-based shipping powered with advanced biofuels hydrogen or synthetic fuels as alternatives to oil offer further synergies with offshore renewable energy.
- Islands and coastal territories could adopt renewable-based electric propulsion for short-distance (< 100 km) sea transport.
- Two reports released concurrently examine the potential for offshore renewables:
Green Hydrogen Cost Reduction
Dec 2020
Publication
Scaling up renewables to meet the 1.5ºC climate goal
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
- Electrolyser design and construction: Increased module size and innovation with increased stack manufacturing have significant impacts on cost. Increasing plant size from 1 MW (typical in 2020) to 20 MW could reduce costs by over a third. Optimal system designs maximise efficiency and flexibility.
- Economies of scale: Increasing stack production with automated processes in gigawatt-scale manufacturing facilities can achieve a step-change cost reduction. Procurement of materials: Scarcity of materials can impede electrolyser cost reduction and scale-up.
- Efficiency and flexibility in operations: Power supply incurs large efficiency losses at low load limiting system flexibility from an economic perspective.
- Industrial applications: Design and operation of electrolysis systems can be optimised for specific applications in different industries. Learning rates: Based on historic cost declines for solar photovoltaics (PV) the learning rates for fuel cells and electrolysers – whereby costs fall as capacity expands – could reach values between 16% and 21%.
- Ambitious climate mitigation: An ambitious energy transition aligned with key international climate goals would drive rapid cost reduction for green hydrogen. The trajectory needed to limit global warming at 1.5oC could make electrolysers an estimated 40% cheaper by 2030.
Integration of Water Electrolysis for Fossil-free Steel Production
Sep 2020
Publication
This study investigates the integration of water electrolysis technologies in fossil-free steelmaking via the direct reduction of iron ore followed by processing in an electric arc furnace (EAF). Hydrogen (H2) production via low or high temperature electrolysis (LTE and HTE) is considered for the production of carbon-free direct reduced iron (DRI). The introduction of carbon into the DRI reduces the electricity demand of the EAF. Such carburization can be achieved by introducing carbon monoxide (CO) into the direct reduction process. Therefore the production of mixtures of H2 and CO using either a combination of LTE coupled with a reverse water-gas shift reactor (rWGS-LTE) or high-temperature co-electrolysis (HTCE) was also investigated. The results show that HTE has the potential to reduce the specific electricity consumption (SEC) of liquid steel (LS) production by 21% compared to the LTE case. Nevertheless due to the high investment cost of HTE units both routes reach similar LS production costs of approximately 400 €/tonne LS. However if future investment cost targets for HTE units are reached a production cost of 301 €/tonne LS is attainable under the conditions given in this study. For the production of DRI containing carbon a higher SEC is calculated for the LTE-rWGS system compared to HTCE (4.80 vs. 3.07 MWh/tonne LS). Although the use of HTCE or LTE-rWGS leads to similar LS production costs future cost reduction of HTCE could result in a 10% reduction in LS production cost (418 vs. 375 €/tonne LS). We show that the use of HTE either for the production of pure H2 or H2 and CO mixtures may be advantageous compared to the use of LTE in H2 -based steelmaking although results are sensitive to electrolyzer investment costs efficiencies and electricity prices.
Renewable Energy Policies in a Time of Transition: Heating and Cooling
Nov 2020
Publication
Heating and cooling accounts for almost half of global energy consumption. With most of this relying fossil fuels however it contributes heavily to greenhouse gas emissions and air pollution. In parts of the world lacking modern energy access meanwhile inefficient biomass use for cooking also harms people’s health damages the environment and reduces social well-being.
The transition to renewable-based energy-efficient heating and cooling could follow several possible pathways depending on energy demand resource availability and the needs and priorities of each country or region. Broad options include electrification with renewable power renewable-based gases (including “green” hydrogen) sustainable bioenergy use and the direct use of solar and geothermal heat.
This report developed jointly by the International Renewable Energy Agency (IRENA) the International Energy Agency (IEA) and the Renewable Energy Policy Network for the 21st Century (REN21) outlines the infrastructure and policies needed with each transition pathway. This edition focused on renewable-based heating and cooling follows a broader initial study Renewable Energy Policies in a Time of Transition (IRENA IEA and REN21 2018).
The shift to renewables for heating and cooling requires enabling infrastructure (e.g. gas grids district heating and cooling networks) as well as various combinations of deployment integrating and enabling policies. The policy framework can demonstrate a country’s commitment to the energy transition level the playing field with fossil fuels and create the necessary enabling conditions to attract investments.
Along with highlighting country experiences and best practices the study identifies barriers and highlights policy options for renewable heating and cooling.
Key recommendations include:
The transition to renewable-based energy-efficient heating and cooling could follow several possible pathways depending on energy demand resource availability and the needs and priorities of each country or region. Broad options include electrification with renewable power renewable-based gases (including “green” hydrogen) sustainable bioenergy use and the direct use of solar and geothermal heat.
This report developed jointly by the International Renewable Energy Agency (IRENA) the International Energy Agency (IEA) and the Renewable Energy Policy Network for the 21st Century (REN21) outlines the infrastructure and policies needed with each transition pathway. This edition focused on renewable-based heating and cooling follows a broader initial study Renewable Energy Policies in a Time of Transition (IRENA IEA and REN21 2018).
The shift to renewables for heating and cooling requires enabling infrastructure (e.g. gas grids district heating and cooling networks) as well as various combinations of deployment integrating and enabling policies. The policy framework can demonstrate a country’s commitment to the energy transition level the playing field with fossil fuels and create the necessary enabling conditions to attract investments.
Along with highlighting country experiences and best practices the study identifies barriers and highlights policy options for renewable heating and cooling.
Key recommendations include:
- Setting specific targets and developing an integrated long-term plan for the decarbonisation of heating and cooling in all end-uses including buildings industry and cooking and productive uses in areas with limited energy access.
- Creating a level playing field by phasing out fossil-fuel subsidies and introducing other fiscal policies to internalise environmental and socio-economic costs.
- Combining the electrification of heating and cooling with increasingly cost-competitive renewable power generation scaling up solar and wind use and boosting system flexibility via energy storage heat pumps and efficient electric appliances.
- Harnessing existing gas networks to accommodate renewable gases such as biogas and green hydrogen.
- Introducing standards certification and testing policies to promote the sustainable use of biomass combining efficient systems and bioenergy solutions such as pellets briquettes bioethanol or anaerobic digestion.
- Reducing investment risks for geothermal exploration and scaling up direct use of geothermal heat.
- Improving district heating and cooling networks through energy efficiency measures and the integration of low-temperature solar thermal geothermal and other renewable-based heat sources.
- Supporting clean cooking and introducing renewable-based food drying in areas lacking energy access with a combination of financing mechanisms capacity building and quality standards aimed at improving livelihoods and maximising socio-economic benefits.
The Renewable Hydrogen–Methane (RHYME) Transportation Fuel: A Practical First Step in the Realization of the Hydrogen Economy
Feb 2022
Publication
The permanent introduction of green hydrogen into the energy economy would require that a discriminating selection be made of its use in the sectors where its value is optimal in terms of relative cost and life cycle reduction in carbon dioxide emissions. Consequently hydrogen can be used as an energy storage medium when intermittent wind and solar power exceed certain penetration in the grid likely above 40% and in road transportation right away to begin displacing gasoline and diesel fuels. To this end the proposed approach is to utilize current technologies represented by PHEV in light-duty and HEV in heavy-duty vehicles where a high-performance internal combustion engine is used with a fuel comprised of 15–20% green hydrogen and 85–89% green methane depending on vehicle type. This fuel designated as RHYME takes advantage of the best attributes of hydrogen and methane results in lower life cycle carbon dioxide emissions than BEVs or FCEVs and offers a cost-effective and pragmatic approach both locally as well as globally in establishing hydrogen as part of the energy economy over the next ten to thirty years.
A Review of Cleaner Alternative Fuels for Maritime Transportation
Apr 2021
Publication
Environmental regulations have always been an essential component in the natural gas supply chain with recent and greater emphasis on shipping operations. Recently more stringent regulations have been imposed by the International Maritime Organization on global maritime shipping operations. This review explores the challenges and opportunities associated with substituting heavy fuel oils used for maritime transportation with relatively cleaner fuels. First the review considers the feasibility and environmental dimensions of different bunker fuels including liquefied natural gas hydrogen and ammonia. Also the operational viability and optimal conditions for these fuels are examined. Secondly the review considers the entire supply chain with an emphasis on how liquefied natural gas exporters can establish synergies across the supply chain to also deliver the end-product required by customers instead of delivering only liquefied natural gas. Finally measures that can support ship operators to comply with environmental regulations are suggested. The outcomes of this review supports the notion that the demand for alternative fuels will continue to increase as the transportation sector moves towards integrating cleaner fuels to comply with increasing environmental regulations.
Sequential Combustion in Steam Methane Reformers for Hydrogen and Power Production With CCUS in Decarbonized Industrial Clusters
Aug 2020
Publication
In future energy supply systems hydrogen and electricity may be generated in decarbonized industrial clusters using a common infrastructure for natural gas supply electricity grid and transport and geological storage of CO2. The novel contribution of this article consists of using sequential combustion in a steam methane reforming (SMR) hydrogen plant to allow for capital and operating cost reduction by using a single post-combustion carbon capture system for both the hydrogen process and the combined cycle gas turbine (CCGT) power plant plus appropriate integration for this new equipment combination. The concept would be widely applied to any post-combustion CO2 capture process. A newly developed rigorous gPROMs model of two hydrogen production technologies covering a wide range of hydrogen production capacities thermodynamically integrated with commercially available gas turbine engines quantifies the step change in thermal efficiency and hydrogen production efficiency. It includes a generic post-combustion capture technology – a conventional 30%wt MEA process - to quantify the reduction in size of CO2 absorber columns the most capital intensive part of solvent-based capture systems. For a conventional SMR located downstream of an H-class gas turbine engine followed by a three-pressure level HRSG and a capture plant with two absorbers the integrated system produces ca. 696400 Nm3/h of H2 with a net power output of 651 MWe at a net thermal efficiency of 38.9%LHV. This corresponds to 34 MWe of additional power increasing efficiency by 4.9% points and makes one absorber redundant compared to the equivalent non-integrated system producing the same volume of H2. For a dedicated gas heated reformer (GHR) located downstream of an aeroderivative gas turbine engine followed by a two-pressure level HRSG and a capture plant with one absorber the integrated system produces ca. 80750 Nm3/h of H2 with a net power output of 73 MWe and a net thermal efficiency of 54.7%LHV. This corresponds to 13 MWe of additional power output increasing efficiency by 13.5% points and also makes one absorber redundant. The article also presents new insights for the design and operation of reformers integrated with gas turbines and with CO2 capture.
Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas
May 2020
Publication
The hydrogen economy refers to an economic and industrial structure that uses hydrogen as its main energy source replacing traditional fossil-fuel-based energy systems. In particular the widespread adoption of hydrogen fuel cell vehicles (HFCVs) is one of the key factors enabling a hydrogen economy and aggressive investment in hydrogen refuelling infrastructure is essential to make large-scale adoption of HFCVs possible. In this study we address the problem of effectively designing a hydrogen supply network for refuelling HFCVs in urban areas relatively far from a large hydrogen production site such as a petrochemical complex. In these urban areas where mass supply of hydrogen is not possible hydrogen can be supplied by reforming city gas. In this case building distributed hydrogen production bases that extract large amounts of hydrogen from liquefied petroleum gas (LPG) or compressed natural gas (CNG) and then supply hydrogen to nearby hydrogen stations may be a cost-effective option for establishing a hydrogen refuelling infrastructure in the early stage of the hydrogen economy. Therefore an optimization model is proposed for effectively deciding when and where to build hydrogen production bases and hydrogen refuelling stations in an urban area. Then a case study of the southeastern area of Seoul known as a commercial and residential center is discussed. A variety of scenarios for the design parameters of the hydrogen supply network are analyzed based on the target of the adoption of HFCVs in Seoul by 2030. The proposed optimization model can be effectively used for determining the time and sites for building hydrogen production bases and hydrogen refuelling stations.
No more items...