Applications & Pathways
Capacity Configuration and Benefit Assessment of Deep-Sea Wind–Hydrogen System Considering Dynamic Hydrogen Price
Sep 2025
Publication
Against the backdrop of the global transition towards clean energy deep-sea wind-power hydrogen production integrates offshore wind with green hydrogen technology. Addressing the technical coupling complexity and the impact of uncertain hydrogen prices this paper develops a capacity optimization model. The model incorporates floating wind turbine output the technical distinctions between alkaline (ALK) electrolyzers and proton exchange membrane (PEM) electrolyzers and the synergy with energy storage. Under three hydrogen price scenarios the results demonstrate that as the price increases from 26 CNY/kg to 30 CNY/kg the optimal ALK capacity decreases from 2.92 MW to 0.29 MW while the PEM capacity increases from 3.51 MW to 5.51 MW. Correspondingly the system’s Net Present Value (NPV) exhibits an upward trend. To address the limitations of traditional methods in handling multi-dimensional benefit correlations and information ambiguity a comprehensive benefit evaluation framework encompassing economic technical environmental and social synergies was constructed. Sensitivity analysis indicates that the comprehensive benefit level falls within a relatively high-efficiency interval. The numerical characteristics an entropy value of 3.29 and a hyper-entropy of 0.85 demonstrate compact result distribution and robust stability validating the applicability and stability of the proposed offshore wind–hydrogen benefit assessment model.
Sustainable Aviation Fuels: A Review of Current Techno Economic Viability and Life Cycle Impacts
Oct 2025
Publication
Australia has set a new climate target of reducing emissions by 62–70% below 2005 levels by 2035 with sustainable aviation fuel (SAF) central to achieving this goal. This review critically examines techno-economic analysis (TEA) and life cycle assessment (LCA) of Powerto-Liquid (PtL) electrofuels (e-fuels) which synthesize atmospheric CO2 and renewable hydrogen (H2) via Fischer-Tropsch (FT) synthesis. Present PtL pathways require ~0.8 kg of H2 and 3.1 kg of CO2 per kg SAF with ~75% kerosene yield. While third-generation feedstocks could cut greenhouse gas emissions by up to 93% (as low as 8 gCO2e/MJ) real world reductions have been limited (~1.5%) due to variability in technology rollout and feedstock variability. Integrated TEA–LCA studies demonstrate up to 20% energy efficiency improvements and 40% cost reductions but economic viability demands costs below $3/kg. In Australia abundant solar resources vast transport networks and supportive policy frameworks present both opportunities and challenges. This review provides the first comprehensive assessment of PtL-FT SAF for Australian conditions highlighting that large-scale development will require technological advancement feedstock development infrastructure investment and coordinated policy support.
Sustainable Refining: Integrating Renewable Energy and Advanced Technologies
Aug 2025
Publication
Crude oil distillation is one of the most energy-intensive processes in petroleum refining consuming up to 20% of total refinery energy. Improving the energy efficiency of crude distillation units (CDUs) is essential for reducing costs lowering emissions and achieving sustainable refining. Current studies often examine energy savings operational flexibility or renewable energy integration separately. This review brings these aspects together focusing on heat integration advanced control systems and renewable energy options such as solar-assisted preheating and green hydrogen. Advanced column designs including dividing-wall and hybrid systems can cut energy use by 15–30% while AI-based optimization improves process stability and flexibility. Solar-assisted preheating can reduce fossil fuel demand by up to 20% and green hydrogen offers strong potential for decarbonization. Our findings highlight that integrated strategies including advanced simulation tools and machine learning significantly improve CDU performance. We recommend exploring hybrid algorithms renewable energy integration and sustainable technologies to address these challenges and achieve long-term environmental and economic benefits.
Influence of Hydrogen-Based Direct Reduction Shaft Furnace Interior Structure on Shaft Furnace Performance
Oct 2025
Publication
Hydrogen-based direct reduction of iron ore is a promising route to reduce CO2 emissions in steelmaking where uniform particle flow inside shaft furnaces is essential for efficient operation. In this study a full-scale three-dimensional Discrete Element Method (DEM) model of a shaft furnace was developed to investigate the effects of a diverter device on granular flow. By systematically varying the radial width and top/bottom diameters of the diverter particle descent velocity residence time compressive force distribution and collision energy dissipation were analyzed. The results demonstrate that introducing a diverter effectively suppresses funnel flow prolongs residence time and improves radial flow uniformity. Among the tested configurations the smaller central diameter diverter showed the most favorable performance achieving a faster and more uniform descent reduced compressive force concentration and lower collision energy dissipation. These findings highlight the critical role of diverter design in regulating particle dynamics and provide theoretical guidance for optimizing shaft furnace structures to enhance the efficiency of hydrogen-based direct reduction processes.
Zero-emission Traction for Rail
Jul 2025
Publication
Replacing the energy density and convenience of diesel fuel for all forms of fossil fuel-powered trains presents significant challenges. Unlike the traditional evolutions of rail which has largely self-optimised to different fuels and cost structures over 150 years the challenges now present with a timeline of just a few decades. Fortunately unlike the mid-1800s simulation and modelling tools are now quite advanced and a full range of scenarios of operations and train trips can be simulated before new traction systems are designed. Full trip simulations of large heavy haul trains or high speed passenger trains are routinely completed controlled by emulations of human drivers or automated control systems providing controls of the “virtual train”. Recent developments in digital twins can be used to develop flexible and dynamic models of passenger and freight rail systems to support the new complexities of decarbonisation efforts. Interactions between many different traction components and the train multibody system can be considered as a system of systems. Adopting this multi-modelling paradigm enables the secure and integrated interfacing of diverse models. This paper demonstrates the application of the multi-modelling approach to develop digital twins for rail decarbonisation traction and it presents physics-based multi-models that include key components required for studying rail decarbonisation problems. Specifically the challenge of evaluating zero-emission options is addressed by adding further layers of modelling to the existing fully detailed multibody dynamics simulations. The additional layers detail control options energy storage the alternate traction system components and energy management systems. These traction system components may include both electrical system and inertia dynamics models to accurately represent the driveline and control systems. This paper presents case study examples of full trip scenarios of both long haul freight trains and higher speed passenger trains. These results demonstrate the many complex scenarios that are difficult to anticipate. Flowing on from this risks can be assessed and practical designs of zero-emission systems can be proposed along with the required recharging or refuelling systems.
Research on the Optimization Decision Method for Hydrogen Load Aggregators to Participate in Peak Shaving Market
Oct 2025
Publication
Zhenya Lei,
Libo Gu,
Zhen Hu and
Tao Shi
This article takes the perspective of Hydrogen Load Aggregator (HLA) to optimize the declaration strategy of peak shaving market improve the flexible regulation capability of power system and HLA economy as the research objectives and proposes an optimization strategy method for HLA to participate in peak shaving market. Firstly an improved Convolutional Neural Networks–Long Short-Term Memory (CNN-LSTM) time series prediction model is developed to address peak shaving demand uncertainty. Secondly a bidding strategy model incorporating dynamic pricing is constructed by comprehensively considering electrolyzer regulation costs market supply–demand relationships and system constraints. Thirdly a market clearing model for peak shaving markets with HLA participation is designed through analysis of capacity contribution and marginal costs among different regulation resources. Finally the capacity allocation model is designed with the goal of minimizing the total cost of peak shaving among various stakeholders within HLA and the capacity won by HLA in the peak shaving market is reasonably allocated. Simulations conducted on a Python3.12-based experimental platform demonstrate the following: the improved CNN-LSTM model exhibits strong adaptability and robustness the bidding model effectively enhances HLA market competitiveness and the clearing model reduces system operator costs by 5.64%.
Investigating Ammonia as an Alternative Marine Fuel: A SWOT Analysis Using the Best–Worst Method
Oct 2025
Publication
The shipping industry remains heavily dependent on heavy fuel oils which account for approximately 77% of fuel consumption and contribute significantly to greenhouse gas (GHG) emissions. In line with the IMO’s decarbonization targets ammonia has emerged as a promising carbon-free alternative. This study evaluates the strategic viability of ammonia especially green production as a marine fuel through a hybrid SWOT–Best–Worst Method (BWM) analysis combining literature insights with expert judgment. Data were collected from 17 maritime professionals with an average of 15.7 years of experience ensuring robust sectoral representation and methodological consistency. The results highlight that opportunities hold the greatest weight (0.352) particularly the criteria “mandatory carbonfree by 2050” (O3:0.106) and “ammonia–hydrogen climate solution” (O2:0.080). Weaknesses rank second (0.270) with “higher toxicity than other marine fuels” (W5:0.077) as the most critical concern. Strengths (0.242) underscore ammonia’s advantage as a “carbonfree and sulfur-free fuel” (S1:0.078) while threats (0.137) remain less influential though “costly green ammonia” (T3:0.035) and “uncertainty of green ammonia” (T1:0.034) present notable risks. Overall the analysis suggests that regulatory imperatives and environmental benefits outweigh safety technical and economic challenges. Ammonia demonstrates strong potential to serve as viable marine fuel in achieving the maritime sector’s long-term decarbonization goals.
Economic and Environmental Assessment of Different Energy Storage Methods for Hybrid Energy Systems
Jul 2025
Publication
Due to the environmental impact of fossil fuels renewable energy such as wind and solar energy is rapidly developed. In energy systems energy storage units are important which can regulate the safe and stable operation of the power system. However different energy storage methods have different environmental and economic impacts in renewable energy systems. This paper proposed three different energy storage methods for hybrid energy systems containing different renewable energy including wind solar bioenergy and hydropower meanwhile. Based on Homer Pro software this paper compared and analyzed the economic and environmental results of different methods in the energy system through the case of a residential community in Baotou City. The result showed that (1) the use of batteries as energy storage in communities posed the lowest energy costs whose NPC was $197396 and LCOE was $0.159 consisting of 20 batteries 19.3 kW PV 6 wind turbines a 12.6 kW converter. (2) Lower fuel cell prices mean lower NPC and the increase in the Electric Load Scaled Average implied a decrease in LCOE and the increase of the NPC. (3) The use of fuel cells also had impacts on the environment such as resulting CO2 and SO2.
Techno-economic and Environmental Optimization of Hydrogen-based Hybrid Energy Systems for Remote Off-grid Australian Communities
Jun 2025
Publication
This study presents a techno-economic and environmental optimization of hydrogen-based hybrid energy systems (HESs) for Broken Hill City Council in New South Wales Australia. Two configurations are evaluated: Configuration 1 includes solar PV battery fuel cell electrolyzer and hydrogen storage while Configuration 2 includes solar PV fuel cell electrolyzer and hydrogen storage but excludes the battery. The system is optimized using advanced metaheuristic algorithms such as Harris Hawks Algorithm (HHA) Red-Tailed Hawk Algorithm and Non-Dominated Sorting Genetic Algorithm-II while ensuring real-time supply–demand balance and system stability through a robust energy management strategy. This integrated approach simultaneously determines the optimal sizes of PV arrays battery storage (where applicable) fuel cells electrolyzers and hydrogen storage units and maintains reliable energy supply. Results show that HHA Configuration 1 achieves the lowest net present cost of $338111 a levelized cost of electricity of $0.185/kWh and a levelized cost of hydrogen of $4.60/kg. Sensitivity analysis reveals that PV module and hydrogen storage costs significantly impact system economics while improving fuel cell efficiency from 40% to 60% can reduce costs by up to 40%. Beyond cost-effectiveness life cycle analysis demonstrates annual CO2 emission reductions exceeding 500000 kg compared to an equivalent diesel generator system meeting the same load demand. Socio-economic assessments further indicate that the HES can support improvements in the Human Development Index by enhancing access to healthcare education and economic opportunities while also creating local jobs in PV installation battery maintenance and hydrogen infrastructure. These findings establish hydrogen-based HES as a scalable cost-effective and environmentally sustainable solution for energy access in remote areas.
Opportunities for Emission Reduction in the Transformation of Petroleum Refining
Sep 2025
Publication
Crude oil accounts for approximately 40% of global energy consumption and the refining sector is a major contributor to greenhouse gas (GHG) emissions particularly through the production of hard-to-abate fuels such as aviation fuel and fuel oil. This study disaggregates the refinery into its key process units to identify decarbonization opportunities along the entire production chain. Units are categorized into combustion-based processes— including crude and vacuum distillation hydrogen production coking and fluid catalytic cracking—and non-combustion processes which exhibit lower emission intensities. The analysis reveals that GHG emissions can be reduced by up to 60% with currently available technologies without requiring major structural changes. Electrification residual heat recovery renewable hydrogen for desulfurization and process optimization through digital twins are identified as priority measures many of which are also economically viable in the short term. However achieving full decarbonization and alignment with net-zero targets will require the deployment of carbon capture technologies. These results highlight the significant potential for emission reduction in refineries and reinforce their strategic role in enabling the transition toward low-carbon fuels.
Optimal Configuration of Hydrogen Energy Storage Systems Considering the Operational Efficiency Characteristics of Multi-Stack Electrolyzers
Sep 2025
Publication
Enhancing the economics of microgrid systems and achieving a balance between energy supply and demand are critical challenges in capacity allocation research. Existing studies often neglect the optimization of electrolyzer efficiency and multi-stack operation leading to inaccurate assessments of system benefits. This paper proposes a capacity allocation model for wind-PV-hydrogen integrated microgrid systems that incorporates hydrogen production efficiency optimization. This paper analyzes the relationship between the operating efficiency of the electrolyzer and the output power regulates power generation-load mismatches through a renewable energy optimization model and establishes a double-layer optimal configuration framework. The inner layer optimizes electrolyzer power allocation across periods to maximize operational efficiency while the outer layer determines configuration to maximize daily system revenue. Based on the data from a demonstration project in Jiangsu Province China a case study is conducted to verify that the proposed method can improve system benefits and reduce hydrogen production costs.
Alternative Fuels in Aero Engine Performance Calculations
Oct 2025
Publication
This paper presents a method for gas turbine performance calculations with alternative fuels with a particular focus on their use in aircraft engines. The effects of various alternative aviation fuels on fuel consumption CO2 emissions and contrail formation are examined in a comparative study. We use the GasTurb performance software and calculate heat release and hot section gas properties using a chemical equilibrium solver. Fuels with complex compositions are included in the calculation via surrogates of a limited number of known species that mimic the relevant properties of the real fuel. An automated method is used for the fuel surrogate formulation. We compare the results of this rigorous approach with the simplified approach of calculating the heat release using an alternative fuel’s heating value while still using the gas properties of conventional Jet A-1. The results show that the latter approach systematically overpredicts fuel consumption by up to 0.2% for aromaticsfree synthetic kerosene (e.g. “biofuels”). Overall aircraft engines running on alternative fuels tend to be more fuel efficient due to their often higher hydrogen contents and thus fuel heating values. We find reductions in fuel consumption of up to 2.8% during cruise when using aromatics-free synthetic kerosene. We further assess how alternative fuels affect contrail formation based on the Schmidt-Appleman criterion. Contrails can form 200 m lower under cruise conditions when burning aromatics-free synthetic kerosene instead of Jet A-1 with identical thrust requirements and under the same atmospheric conditions mainly due to their higher hydrogen content. In summary we present a flexible yet easy-to-use method for studying fuel effects in performance calculations that avoids small but systematic errors by rigorously calculating the heat release and hot section gas properties for each fuel.
Liquid Hydrogen Application for Aero-Engine More-Electrical System: Current Status, Challenges and Future Prospects
Mar 2025
Publication
The integration of more-electric technologies into aero-engines has revolutionized their multi-power architectures substantially improving system maintainability and operational reliability. This advancement has established more-electric systems as a cornerstone of modern aerospace electrification research. Concurrently liquid hydrogen (LH2) emerges as a transformative solution for next-generation power generation systems particularly in enabling the transition from 100 kW to megawatt-class propulsion systems. Beyond its superior energy density LH2 demonstrates dual functionality in thermal management: it serves as both an efficient coolant for power electronics (e.g. controllers) and a cryogenic source for superconducting motor applications. This study systematically investigates the electrification pathway for LH2-fueled aero-engine multi-electric systems. First we delineate the technical framework elucidating its architectural characteristics and associated challenges. Subsequently we conduct a comprehensive analysis of three critical subsystems including LH2 storage and delivery systems cryogenic cooling systems for superconducting motors and Thermal management systems for high-power electronics. Finally we synthesize current research progress and propose strategic directions to accelerate the development of LH2-powered more-electric aero-engines addressing both technical bottlenecks and future implementation scenarios.
The Trans-critical Process Control of Hydrogen Based on a Flow Distribution Method for Enhancement of Heat Transfer
Aug 2025
Publication
The heat transfer performance of the thermal management system plays a crucial role in the hydrogen-powered aviation engine cycle. As an exceptional fuel the thermophysical parameters of hydrogen change drastically with temperature in the trans-critical state. While previous studies on heat transfer enhancement mainly focused on changing the geometrical structure few studies have been conducted on realizing heat transfer enhancement based on the properties of the fluid itself. Utilizing the drastic changes in thermophysical parameters of hydrogen in the trans-critical state to achieve heat transfer enhancement could greatly contribute to the thermal management system of the hydrogen-powered cycle. In this study a trans-critical process control method for heat transfer enhancement based on multidirectional impact flow distribution is proposed. The distributions and variation patterns of temperature density specific heat capacity and equivalent thermal conductivity along the flow directions were investigated the flow and heat transfer performance of the channel optimized by the proposed method was numerically simulated and the control of the trans-critical process and the mechanism of heat transfer enhancement were analyzed. The effects of the key design parameters such as flow distribution ratio number and spacing of gaps on the flow and heat transfer performance of the heat transfer unit were comparatively analyzed by taking various factors into account and finally a relatively optimal combination of key design parameters was obtained.
Green Hydrogen Viability in the Transition to a Fully-Renewable Energy Grid
Sep 2025
Publication
With the transition to a fully renewable energy grid arises the need for a green source of stability and baseload support which classical renewable generation such as wind and solar cannot offer due to their uncertain and highly-variable generation. In this paper we study whether green hydrogen can close this gap as a source of supplemental generation and storage. We design a two-stage mixed-integer stochastic optimization model that accounts for uncertainties in renewable generation. Our model considers the investment in renewable plants and hydrogen storage as well as the operational decisions for running the hydrogen storage systems. For the data considered we observe that a fully renewable network driven by green hydrogen has a greater potential to succeed when wind generation is high. In fact the main investment priorities revealed by the model are in wind generation and in liquid hydrogen storage. This long-term storage is more valuable for taking full advantage of hydrogen than shorter-term intraday hydrogen gas storage. In addition we note that the main driver for the potential and profitability of green hydrogen lies in the electricity demand and prices as opposed to those for gas. Our model and the investment solutions proposed are robust with respect to changes in the investment costs. All in all our results show that there is potential for green hydrogen as a source of baseload support in the transition to a fully renewable-powered energy grid.
Decarbonising Agriculture with Green Hydrogen: A Stakeholder Guided Feasibility Study
Oct 2025
Publication
Green hydrogen offers a promising yet underexplored pathway for agricultural decarbonisation requiring technological readiness and coordinated action from policymakers industry and farmers. This paper integrates techno-economic modelling with stakeholder engagement (semi-structured interviews and an expert workshop) to assess its potential. Analyses were conducted for farms of 123 hectares and clusters of 10 farms complemented by seven interviews and a workshop with nine sector experts. Findings show both opportunities and barriers. While on-farm hydrogen production is technically feasible it remains economically uncompetitive due to high levelised costs shaped by seasonal demand variability and low utilisation of electrolysers and storage. Pooling demand across multiple users is essential to improve cost-effectiveness. Stakeholders identified three potential business models: fertiliser production via ammonia synthesis cooperative-based models and local refuelling stations. Of these cooperative hydrogen hubs emerged as the most promising enabling clusters of farms to jointly invest in renewable-powered electrolysers storage and refuelling facilities thereby reducing costs extending participation to smaller farms and mitigating risks through collective investment. By linking techno-economic feasibility with stakeholder perspectives and business model considerations the results contribute to socio-technical transition theory by showing how technological institutional and social factors interact in shaping hydrogen adoption in agriculture. With appropriate policy support cooperative hubs could lower costs ease concerns over affordability and complexity and position hydrogen as a practical driver of agricultural decarbonisation and rural resilience. Keywords: green
Scaling of Automotive Fuel Cells in Terms of Operating Indicators
Oct 2025
Publication
The search for alternatives to fossil fuels has led to hydrogen becoming an important factor in the powering means of transportation. Its most effective application is in fuel cells. A single fuel cell is not a sufficient source of power which is why a stack of fuel cells is the more common solution. Fuel cells are tested using single units as this allows all cell parameters (the current density flow rates and efficiency) to be evaluated. Therefore the scalability of fuel cells is an essential factor. This paper analyses the scalability of fuel cells with a power of approximately 100 kW and 1.2 kW. Road tests of the fuel cells were compared with stationary tests which allowed the load to be reproduced and scaled. This provided a representation of the scaled current and the scalable power of the fuel cell. The research provided voltage–current characteristics of fuel cell stacks and their individual equivalents. It was concluded that regardless of the power scaling or current values the characteristics obtain similar patterns. A very important element of the research is the awareness of the properties of these cells (the number of cells and active charge exchange area) in order to compare the unit characteristics of fuel cells.
Thermochemical Aspects of Substituting Natural Gas by Hydrogen in Blister Copper Deoxidation
Aug 2025
Publication
This study employs computational thermodynamics to evaluate the feasibility of replacing methane with hydrogen as both burner fuel and reductant during blister copper deoxidation aiming to enhance deoxidation efficiency and reduce CO2 emissions. A comprehensive thermodynamic model was developed using FactSage 8.3 for dilute Cu–O and Cu–S–O melts containing trace impurities (Fe Ni Pb Zn) incorporating methane thermal decomposition and temperature-dependent variations in liquid copper density with oxygen and sulfur content. Model parameters were optimized against over 105 deoxidation simulation data points yielding temperature- and composition-dependent expressions for rapid density estimates. Benchmarking against existing literature models demonstrated improved accuracy. Key findings include: (1) increasing impurities contents from electronics waste recycling (Fe Ni Pb Zn) reduces oxygen activity deteriorating the deoxidation efficiency; (2) under global equilibrium methane provides greater reducing power per mole than hydrogen due to full thermal cracking but real-world mass transfer limitations render hydrogen more consistently effective up to 1200 C with methane gas needing to achieve at least 472 C to match hydrogen’s performance; (3) adiabatic flame equilibrium studies show that O2/H2 ratios of 0.5 to 1 yield liquid copper oxygen activities comparable to industrial O2/CH4 ratios of 2 to 3 supporting the direct substitution of methane with hydrogen in oxy-fuel anode furnace burners without compromising metal quality.
Analysis of the Efficiency of Hydrogen Fuel Cell Vehicle (HFCV) Applications in Manufacturing Processes Using Computer Simulation
Oct 2025
Publication
Implementing innovative solutions in the internal transport of manufacturing enterprises is becoming an important element of improving operational efficiency and reducing greenhouse gas emissions. This article assesses the potential of hydrogen fuel cell (HFCV) forklifts in a steel products manufacturing plant. The verification was carried out using a computer simulation which enabled the comparison of electric combustion and HFCV fleets under identical logistical conditions. The results showed that the HFCV fleet allowed for shorter process execution times and higher utilization compared to electric and combustion variants mainly due to the elimination of charging and refueling interruptions. Additionally when powered by green hydrogen the HFCV fleet offered clear environmental benefits and lower operating costs. The study confirms that HFCV technology can improve the efficiency of internal transport and reduce energy-related operating expenses although the costs of hydrogen refueling infrastructure were not included and should be addressed in future research.
Techno-Economic Optimization of Hybrid Renewable Energy Systems (HRESs) and Feasibility Study on Replacing Diesel and Photovoltaic Systems with Hydrogen for Electrical and Small Deferrable Loads: Case Study of Cameroon
Oct 2025
Publication
To reduce the amount of harmful gases produced by fossil fuels more environmentally friendly and sustainable alternatives are being proposed around the world. As a result technologies for manufacturing hydrogen fuel cells and producing green hydrogen are becoming more widespread with an impact on energy production and environmental protection. In many countries around the world and in Africa in particular leaders scientists and populations are considering switching from fossil fuels to so-called green energies. Hydrogen is therefore an interesting alternative that deserves to be explored especially since both rural and urban populations have shown an interest in using it in the near future which would reduce pollution and the proliferation of greenhouse gases thereby mitigating global warming. The aim of this paper is to determine the hybrid energy system best suited to addressing the energy problem in the study area and then to make successive substitutions of different energy sources starting with the most polluting in order to assess the possibilities for transitioning the energy used in the area to green hydrogen. To this end this study began with a technical and economic analysis which based on climatic parameters led to the proposal of a PV/DG-BATTery system configuration with a Net Present Cost (NPC) of USD 19267 and an average Cost Of Energy (COE) of USD 0.4 and with a high proportion of CO2 emissions compared with the PV/H2GEN-BATT and H2GEN systems. The results of replacing fossil fuel generators with hydrogen generators are beneficial in terms of environmental protection and lead to a reduction in energy-related expenses of around 2.1 times the cost of diesel and a reduction in mass of around 2.7 times the mass of diesel. The integration of H2GEN at high duty percentages increases the Cost Of Energy whether in a hybrid PV/H2GEN system or an H2GEN system. This shows the interest in the study country in using favorable duty proportions to make the use of hydrogen profitable.
Transforming Ports for a Low-carbon Future: Nexus Modeling of Hydrogen Infrastructure, Employment, and Resource Management in Contrasting Climates
Aug 2025
Publication
This research study highlights a transformative approach to port development for a lowcarbon future by integrating Climate Land Energy and Water Systems (CLEWs) and Water-Energy-Food (WEF) frameworks. The proposed nexus model integrates the hydrogen infrastructure with green employment and resource management in contrasting climates. The scenarios analyzed include Business As Usual (BAU) Balanced Reduction Approach (BRA) and Maximal Sustainability Push (MSP) which focuses mainly on energy efficiency resource utilization and workforce sustainability. By BRA it is estimated that carbon emissions will decline by 30% in cold climates and 20% in warm climates without changing renewable power plants producing 45% and 30% of the electricity supply mix. In the MSP scenario emission reductions rise to 90% in cold and 40% in warm climates with renewables providing 62% and 40% of the electricity mix. Under the whole capacity of Municipal Solid Waste (MSW) and fish waste under anaerobic digestion and fish waste rendering by 2040 across all BRA and MSP scenarios. In transport 44% replacement of marine vehicles and 87% of land vehicles with hydrogen electric and carbon capture and storage (CCS)-equipped vehicles is made under the BRA scenario. These percentages increase to 100% under the MSP scenario in cold climates while remaining at 87% in warm climates. By this integrated framework the present study demonstrates the potential of ports to be powerful engines for sustainable economic growth optimized resource efficiency and the creation of resilient green employment systems in diverse environmental contexts.
Exploring the Potential of Ammonia as a Fuel: Advances in Combustion Understanding and Large-scale Furnace Applications
Sep 2025
Publication
From an environmental standpoint carbon-free energy carriers such as ammonia and hydrogen are essential for future energy systems. However their hightemperature chemical behavior remains insufficiently understood posing challenges for the development and optimization of advanced combustion technologies. Ammonia in particular is globally available and cost-effective especially for energy-intensive industries. The addition of ammonia or hydrogen to methane significantly reduces the accuracy of existing predictive models. Therefore validated and detailed data are urgently needed to enable reliable design and performance predictions. This review highlights the compatibility of ammonia with existing combustion infrastructure facilitating a smoother transition to more sustainable heating methods without the need for entirely new systems. Applications in high-temperature heating processes such as metal processing ceramics and glass production and power generation are of particular interest. This review focuses on the systematic assessment of alternative fuel mixtures comprising ammonia and hydrogen as well as natural gas with particular consideration of existing safety-related parameters and combustion characteristics. Fundamental quantities such as the laminar burning velocity are discussed in the context of their relevance for fuel mixtures and their scalability toward turbulent flame propagation which is of critical importance for industrial burner and reactor design. The influence of fuel composition on ignition limits is examined as these are essential parameters for safety margin definitions and operational boundary conditions. Furthermore flame stability in mixed-fuel systems is addressed to evaluate the practical feasibility and robustness of combustion under varying process conditions. A detailed overview of current diagnostic and analysis methods follows encompassing both pollutant measurement techniques and the detection of key radical species. These diagnostics form the experimental basis for reaction kinetics modeling and mechanism validation. Given the importance of emission formation in combustion systems a dedicated subsection summarizes major emission trends even though a comprehensive treatment would exceed the scope of this review. Thermal radiation effects which are highly relevant for heat transfer and system efficiency in large-scale applications are then reviewed. In parallel current developments in numerical simulation approaches for industrial-scale combustion systems are presented including aspects of model accuracy boundary conditions and computational efficiency. The review also incorporates insights from materials engineering particularly regarding high-temperature material performance corrosion resistance and compatibility with combustion products. Based on these interdisciplinary findings operational strategies for high-temperature furnaces are outlined and selected industrial reference systems are briefly presented. This integrated approach aims to support the design optimization and safe operation of next-generation combustion technologies utilizing carbon-free or low-carbon fuels.
Catalytic Hydrogen Combustion as Heat Source for the Dehydrogenation of Liquid Organic Hydrogen Carriers using a Novel Compact Autothermal Reactor
Sep 2025
Publication
The experimental performance of an autothermal hydrogen release unit comprising a perhydro benzyltoluene (H12-BT) dehydrogenation chamber and a catalytic hydrogen combustion (CHC) chamber in thermal contact is discussed. In detail the applied set-up comprised a multi-tubular CHC heating based on seven parallel tubes with the reactor shell containing a commercial dehydrogenation catalyst. In this way the CHC heated the endothermal LOHC dehydrogenation using a part of the hydrogen generated in the dehydrogenation. The proposed heating concept for autothermal LOHC dehydrogenation offers several advantages over state-of-the-art heating concepts including minimized space consumption high efficiency and zero NOx emissions. During performance tests the process reached a minimum hydrogen combustion fraction of 37 % while the minimum heat requirement for the dehydrogenation reaction for industrial scale plants is 33 %. The reactor orientation (vertical vs horizontal) and the flow configuration (counter-current vs. co-current) showed very little influence on the performance demonstrating the robustness of the proposed reactor design.
The Concept of an Infrastructure Location to Supply Buses with Hydrogen: A Case Study of the West Pomeranian Voivodeship in Poland
Jun 2025
Publication
The growing energy crisis and increasing threat of climate change are driving the need to take action regarding the use of alternative fuels in transport including public transport. Hydrogen is undoubtedly a fuel which is environmentally friendly and constitutes an alternative to fossil fuels. The wider deployment of hydrogen-powered vehicles involves the need to adapt infrastructure to support the operation of these vehicles. Such infrastructure includes refuelling stations for hydrogen-powered vehicles. The widespread use of hydrogen-powered vehicles is dependent on the development of a network of hydrogen refuelling stations. The aim of this article is to propose the conceptual location of infrastructure for fuelling public transport vehicles with hydrogen in selected cities of the West Pomeranian Voivodeship in particular the cities of Szczecin and Koszalin. The methodology used to determine the number of refuelling stations is described and the concept of the location for the refuelling stations has been proposed. Based on a set assumptions it was stated that two stations may be located in the Voivodeship in 2025 and seven stations in 2040. The research results will be of interest to infrastructure developers public transport companies and municipalities involved in making decisions related to the purchase and operation of hydrogen-powered buses.
Prospective Life Cycle Assessment of Future Swedish Hydrogen-powered Aviation Pathways
Jun 2025
Publication
Hydrogen-powered aviation is promoted as a low-carbon alternative for future long-distance air travel but its broader environmental impacts remain unclear. This study evaluates the potential environmental impacts of six future air travel pathways in Sweden including e-kerosene liquid hydrogen and fossil kerosene using prospective life cycle assessment. Results show that hydrogen-powered aviation has lower global warming potential than fossil kerosene but higher impacts on other environmental issues such as toxicity and land use. Key hotspots include resources in energy infrastructure and energy use in fuel production and airport operations however resource substitutions and energy efficiency improvements have limits. This study highlights the potential environmental benefits and tradeoffs of hydrogen-powered aviation and also the dependency of aviation on other sectors. Further research should integrate technological innovations in long-distance air travel pathways with scenarios that account for demand-side measures as well as regulatory political and economic barriers.
The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry
Jun 2025
Publication
The chemical industry faces major challenges worldwide. Since 1950 production has increased 50-fold and is projected to continue growing particularly in Asia. It is one of the most energy- and resource-intensive industries contributing significantly to greenhouse gas emissions and the depletion of finite resources. This development exceeds planetary boundaries and calls for a sustainable transformation of the industry. The key transformation areas are as follows: (1) Non-Fossil Energy Supply: The industry must transition away from fossil fuels. Renewable electricity can replace natural gas while green hydrogen can be used for high-temperature processes. (2) Circularity: Chemical production remains largely linear with most products ending up as waste. Sustainable product design and improved recycling processes are crucial. (3) Non-Fossil Feedstock: To achieve greenhouse gas neutrality oil gas and coal must be replaced by recycling plastics renewable biomaterials or CO2-based processes. (4) Sustainable Chemical Production: Energy and resource savings can be achieved through advancements like catalysis biotechnology microreactors and new separation techniques. (5) Sustainable Chemical Products: Chemicals should be designed to be “Safe and Sustainable by Design” (SSbD) meaning they should not have hazardous properties unless essential to their function. (6) Sufficiency: Beyond efficiency and circularity reducing overall material flows is essential to stay within planetary boundaries. This shift requires political economic and societal efforts. Achieving greenhouse gas neutrality in Europe by 2050 demands swift and decisive action from industry governments and society. The speed of transformation is currently too slow to reach this goal. Science can drive innovation but international agreements are necessary to establish a binding framework for action.
Day-Ahead Dispatch Optimization of an Integrated Hydrogen–Electric System Considering PEMEL/PEMFC Lifespan Degradation and Fuzzy-Weighted Dynamic Pricing
Sep 2025
Publication
Integrated Hydrogen–Energy Systems (IHES) have attracted widespread attention; however distributed energy sources such as photovoltaics (PV) and wind turbines (WT) within these systems exhibit significant uncertainty and intermittency posing key challenges to scheduling complexity and system instability. As a core mechanism for the integrated operation of IHES electricity price regulation can promote the absorption of renewable energy optimize resource allocation and enhance operational economy. Nevertheless uncertainties in IHES hinder the formulation of accurate electricity prices which easily lead to delays in scheduling responses and an increase in cumulative operating costs. To address these issues this study develops lifespan models for Proton Exchange Membrane Electrolyzers (PEMELs) and Proton Exchange Membrane Fuel Cells (PEMFCs) constructs dynamic equations for the demand side and response side and proposes a fuzzy-weighted dynamic pricing strategy. Simulation results show that compared with fixed pricing the proposed dynamic pricing strategy reduces economic indicators by an average of 15.3% effectively alleviates energy imbalance and optimizes the energy supply of components. Additionally it reduces the lifespan degradation of PEMELs by 21.59% and increases the utilization rate of PEMFCs by 54.8%.
Effect of Injection Timing on Gas Jet Developments in a Hydrogen Low-pressure Direct-injection Spark-ignition Engine
Sep 2025
Publication
Injection timing in low-pressure hydrogen direct injection (H2LPDI) engines plays a critical role in optimising gas jet structure and mixture formation due to the complex and transient nature of ambient air flow and density inside the cylinder. This study systematically investigates the macroscopic characteristics of gas jet development at five distinct injection timings from 210 to 120 ◦CA bTDC with the intake valve closure (IVC) as a reference point in a motored inline four-cylinder spark-ignition engine at 2000 rpm and 160 Nm load using low-pressure injection of 3.5 MPa. Optical access was made with two endoscopes: one for high-speed imaging and the other for laser insertion to realise laser shadowgraph imaging of the gas jet delivered using a side-mounted outwardopening pintle nozzle injector. The experimental results reveal spatial and temporal variations in jet morphology penetration spreading angle and mixture dispersion as a function of injection timing. Pre-IVC injection (210 ◦CA bTDC) produced a narrow mean cone angle of ~40◦ and the highest penetration-rate proxy (0.49) whereas postIVC injection (120 ◦CA bTDC) retained a wider ~53◦ cone yet reduced the penetration rate to 0.28 while increasing the sheet-based mixing index from − 0.084 to − 0.106. Pre-IVC injection occurring under low ambient pressure and with active intake airflow was found to produce elongated jets with enhanced penetration and mixing rates though accompanied by substantial cyclic variations. Conversely post-IVC injection was strongly influenced by a fully developed tumble flow which redirected the jet trajectory towards the pent-roof and facilitated mixing through increased turbulence. However the elevated air density constrained the jet penetration. At-IVC injection resulted in a more uniform and stable jet structure. However the lack of convective flow constrained the overall mixing effectiveness. Quantitative analysis of jet spreading angle pixel intensity gradient and centroid movement using 100 consecutive cycles confirms the critical role of injection timing in shaping the gas jet development as suggested by the images.
Flexible Economic Energy Management Including Environmental Indices in Heat and Electrical Microgrids Considering Heat Pump with Renewable and Storage Systems
Oct 2025
Publication
This study discusses energy management in thermal and electrical microgrids while taking heat pumps renewable sources thermal and hydrogen storages into account. The weighted total of the operating cost grid emissions level voltage and temperature deviation function and other factors makes up the objective function of the suggested method. The restrictions include the operationflexibility model of resources and storages micro-grid flexibility limits and optimum power flow equations. Point Estimation Method is used in this work to simulate load energy price and renewable phenomenon uncertainty. A fuzzy decision-making methodology is used to arrive at a compromise solution that satisfies network operators’ operational environmental and financial goals. The innovations of this paper include energy management of various smart microgrids simultaneous modeling of several indicators especially flexibility investigation of optimal performance of resources and storage devices and modeling of uncertainty considering low computational time and an accurate flexibility model. Numerical findings indicate that the fuzzy decision-making approach has the capability to reach a compromise point in which the objective functions approach their minimum values. The integration of the proposed uncertainty modeling with precise flexibility modeling results in a reduction in computational time when compared to stochastic optimization based on scenarios. For the compromise point and uncertainty modeling with PEM by efficiently managing resources and thermal and hydrogen storages scheme is capable of attaining high flexibility conditions. Compared to load flow studies the approach can enhance the operational environmental and economic conditions of smart microgrids by approximately 33–57% 68% and 33–68% respectively under these circumstances.
Preliminary Design of Regional Aircraft—Integration of a Fuel Cell-Electric Energy Network in SUAVE
Mar 2025
Publication
To enable climate-neutral aviation improving the energy efficiency of aircraft is essential. The research project Synergies of Highly Integrated Transport Aircraft investigates cross-disciplinary synergies in aircraft and propulsion technologies to achieve energy savings. This study examines a fuel cell electric powered configuration with distributed electric propulsion. For this a reverse-engineered ATR 72-500 serves as a reference model for calibrating the methods and ensuring accurate performance modeling. A baseline configuration featuring a state-of-the-art turboprop engine with the same entry-into-service is also introduced for a meaningful performance comparison. The analysis uses an enhanced version of the Stanford University Aerospace Vehicle Environment (SUAVE) a Python-based aircraft design environment that allows for novel energy network architectures. This paper details the preliminary aircraft design process including calibration presents the resulting aircraft configurations and examines the integration of a fuel cell-electric energy network. The results provide a foundation for higher fidelity studies and performance comparisons offering insights into the trade-offs associated with hydrogen-based propulsion systems. All fundamental equations and methodologies are explicitly presented ensuring transparency clarity and reproducibility. This comprehensive disclosure allows the broader scientific community to utilize and refine these findings facilitating further progress in hydrogen-powered aviation technologies.
Operational Optimization of Electricity–Hydrogen Coupling Systems Based on Reversible Solid Oxide Cells
Sep 2025
Publication
To effectively address the issues of curtailed wind and photovoltaic (PV) power caused by the high proportion of renewable energy integration and to promote the clean and lowcarbon transformation of the energy system this paper proposes a “chemical–mechanical” dual-pathway synergistic mechanism for the reversible solid oxide cell (RSOC) and flywheel energy storage system (FESS) electricity–hydrogen hybrid system. This mechanism aims to address both short-term and long-term energy storage fluctuations thereby minimizing economic costs and curtailed wind and PV power. This synergistic mechanism is applied to regulate system operations under varying wind and PV power output and electricity–hydrogen load fluctuations across different seasons thereby enhancing the power generation system’s ability to integrate wind and PV energy. An economic operation model is then established with the objective of minimizing the economic costs of the electricity–hydrogen hybrid system incorporating RSOC and FESS. Finally taking a large-scale new energy industrial park in the northwest region as an example case studies of different schemes were conducted on the MATLAB platform. Simulation results demonstrate that the reversible solid oxide cell (RSOC) system—integrated with a FESS and operating under the dual-path coordination mechanism—achieves a 14.32% reduction in wind and solar curtailment costs and a 1.16% decrease in total system costs. Furthermore this hybrid system exhibits excellent adaptability to the dynamic fluctuations in electricity– hydrogen energy demand which is accompanied by a 5.41% reduction in the output of gas turbine units. Notably it also maintains strong adaptability under extreme weather conditions with particular effectiveness in scenarios characterized by PV power shortage.
Sustainable Transition Pathways for Steel Manufacturing: Low-Carbon Steelmaking Technologies in Enterprises
Jun 2025
Publication
Amid escalating global climate crises and the urgent imperative to meet the Paris Agreement’s carbon neutrality targets the steel industry—a leading contributor to global greenhouse gas emissions—confronts unprecedented challenges in driving sustainable industrial transformation through innovative low-carbon steelmaking technologies. This paper examines decarbonization technologies across three stages (source process and end-of-pipe) for two dominant steel production routes: the long process (BF-BOF) and the short process (EAF). For the BF-BOF route carbon reduction at the source stage is achieved through high-proportion pellet charging in the blast furnace and high scrap ratio utilization; at the process stage carbon control is optimized via bottom-blowing O2-CO2-CaO composite injection in the converter; and at the end-of-pipe stage CO2 recycling and carbon capture are employed to achieve deep decarbonization. In contrast the EAF route establishes a low-carbon production system by relying on green and efficient electric arc furnaces and hydrogen-based shaft furnaces. At the source stage energy consumption is reduced through the use of green electricity and advanced equipment; during the process stage precision smelting is realized through intelligent control systems; and at the end-of-pipe stage a closed-loop is achieved by combining cascade waste heat recovery and steel slag resource utilization. Across both process routes hydrogen-based direct reduction and green power-driven EAF technology demonstrate significant emission reduction potential providing key technical support for the low-carbon transformation of the steel industry. Comparative analysis of industrial applications reveals varying emission reduction efficiencies economic viability and implementation challenges across different technical pathways. The study concludes that deep decarbonization of the steel industry requires coordinated policy incentives technological innovation and industrial chain collaboration. Accelerating large-scale adoption of low-carbon metallurgical technologies through these synergistic efforts will drive the global steel sector toward sustainable development goals. This study provides a systematic evaluation of current low-carbon steelmaking technologies and outlines practical implementation strategies contributing to the industry’s decarbonization efforts.
Optimization Framework for Efficient and Robust Renewable Energy Hub Operation
Oct 2025
Publication
This research proposes an advanced optimization framework for renewable energy hubs within integrated electrical and thermal networks aimed at improving energy management. The motivation stems from the need for a more flexible and efficient solution that addresses the variability of renewable energy sources such as wind and bio-waste units while integrating storage solutions like hydrogen and thermal systems. The hypothesis is that combining a market-clearing price model with robust decision-making frameworks can optimize both economic viability and operational efficiency. The methodology adopts a two-tier optimization approach: the upper tier maximizes hub profits and the lower tier minimizes operational costs through a market-clearing price model. The study also incorporates a robust optimization model that accounts for decision-dependent uncertainties with a novel class of polyhedral uncertainty sets used for improved decision-making. Numerical results from case studies demonstrate that the proposed method increases the objective function by approximately 3% and achieves a 25% faster solution time compared to the Benders decomposition approach. These findings support the conclusion that the proposed framework enhances both flexibility and economic performance of energy hubs offering a viable solution for modern energy systems.
Exploring the Gas Permeability of Type IV Hydrogen Storage Cylinder Liners: Research and Applications
Jul 2025
Publication
As hydrogen fuel cell vehicles gain momentum as crucial zero-emission transportation solutions the urgency to address hydrogen permeability through the polymer liner becomes paramount for ensuring the safety efficiency and longevity of Type IV hydrogen storage tanks. This paper synthesizes existing research findings analyzes the influence of different materials and structures on gas permeability elucidates the dissolution and diffusion mechanisms of hydrogen in plastic liners and discusses their engineering applications. We focus on measurement methods influencing factors and improvement strategies for liner gas permeability. Additionally we explore the prospects of Type IV hydrogen storage tanks in fields such as automotive aerospace and energy storage industries. Through this comprehensive review of liner gas permeability critical insights are provided to guide the development of efficient and safe hydrogen storage and transportation systems. These insights are vital for advancing the widespread application of hydrogen energy technology and fostering sustainable energy development significantly contributing to efforts aimed at enhancing the performance and safety of Type IV hydrogen storage tanks.
Injection Strategies in a Hydrogen SI Engine: Parameter Selection and Comparative Analysis
Oct 2025
Publication
Injection strategies play a crucial role in determining hydrogen engine performance. The diversity of these strategies and the limited number of comparative studies highlight the need for further investigation. This study focuses on the analysis parameter selection and comparison of single early and late direct injection single injection with ignition occurring during injection (the so-called jet-guided operation) and dual injection in a hydrogen spark-ignition engine. The applicability and effectiveness of these injection strategies are assessed using contour maps with ignition timing and start of injection as coordinates representing equal levels of key engine parameters. Based on this approach injection and ignition settings are selected for a range of engine operating modes. Simulations of engine performance under different load conditions are carried out using the selected parameters for each strategy. The results indicate that the highest indicated thermal efficiencies are achieved with single late injection while the lowest occur with dual injection. At the same time both dual injection and jet-guided operation provide advantages in terms of knock suppression peak pressure reduction and reduced nitrogen oxide emissions.
Multi-Objective Optimal Energy Management Strategy for Grid-Interactive Hydrogen Refueling Stations in Rural Areas
Mar 2025
Publication
The transportation sector is a significant contributor to global carbon emissions thus necessitating a transition toward renewable energy sources (RESs) and electric vehicles (EVs). Among EV technologies fuel-cell EVs (FCEVs) offer distinct advantages in terms of refueling time and operational efficiency thus rendering them a promising solution for sustainable transportation. Nevertheless the integration of FCEVs in rural areas poses challenges due to the limited availability of refueling infrastructure and constraints in energy access. In order to address these challenges this study proposes a multi-objective energy management model for a hydrogen refueling station (HRS) integrated with RESs a battery storage system an electrolyzer (EL) a fuel cell (FC) and a hydrogen tank serving diverse FCEVs in rural areas. The model formulated using mixed-integer linear programming (MILP) optimizes station operations to maximize both cost and load factor performance. Additionally bi-directional trading with the power grid and hydrogen network enhances energy flexibility and grid stability enabling a more resilient and self-sufficient energy system. To the best of the authors’ knowledge this study is the first in the literature to present a multi-objective optimal management approach for grid-interactive renewablesupported HRSs serving hydrogen-powered vehicles in rural areas. The simulation results demonstrate that RES integration improves economic feasibility by reducing costs and increasing financial gains while maximizing the load factor enhances efficiency cost-driven strategies that may impact stability. The impact of the EL on cost is more significant while RES capacity has a relatively smaller effect on cost. However its influence on the load factor is substantial. The optimization of RES-supported hydrogen production has been demonstrated to reduce external dependency thereby enabling surplus trading and increasing financial gains to the tune of USD 587.83. Furthermore the system enhances sustainability by eliminating gasoline consumption and significantly reducing carbon emissions thus supporting the transition to a cleaner and more efficient transportation ecosystem.
Net-Zero Backup Solutions for Green Ammonia Hubs Based on Hydrogen Power Generation
Jun 2025
Publication
This paper explores cleaner and techno-economically viable solutions to provide electricity heat and cooling using green hydrogen (H2) and green ammonia (NH3) across the entire decarbonized value chain. We propose integrating a 100% hydrogen-fueled internal combustion engine (e.g. Jenbacher JMS 420) as a stationary backup solution and comparing its performance with other backup technologies. While electrochemical storage systems or battery energy storage systems (BESSs) offer fast and reliable short-term energy buffering they lack flexibility in relocation and typically involve higher costs for extended backup durations. Through five case studies we highlight that renewable-based energy supply requires additional capacity to bridge longer periods of undersupply. Our results indicate that for cost reasons battery–electric solutions alone are not economically feasible for longterm backup. Instead a more effective system combines both battery and hydrogen storage where batteries address daily fluctuations and hydrogen engines handle seasonal surpluses. Despite lower overall efficiency gas engines offer favorable investment and operating costs in backup applications with low annual operating hours. Furthermore the inherent fuel flexibility of combustion engines eventually will allow green ammonia-based backup systems particularly as advancements in small-scale thermal cracking become commercially available. Future studies will address CO2 credit recognition carbon taxes and regulatory constraints in developing more effective dispatch and master-planning solutions.
Machine Learning-driven Stochastic Bidding for Hydrogen Refueling Station-integrated Virtual Power Plants in Energy Market
Aug 2025
Publication
Virtual power plants (VPPs) are gaining significance in the energy sector due to their capacity to aggregate distributed energy resources (DERs) and optimize energy trading. However their effectiveness largely depends on accurately modeling the uncertain parameters influencing optimal bidding strategies. This paper proposes a deep learning-based forecasting method to predict these uncertain parameters including solar irradiation temperature wind speed market prices and load demand. A stochastic programming approach is introduced to mitigate forecasting errors and enhance accuracy. Additionally this research assesses the flexibility of VPPs by mapping the flexible regions to determine their operational capabilities in response to market dynamics. The study also incorporates power-to‑hydrogen (P2H) and hydrogen-to-power (H2P) conversion processes to facilitate the integration of hydrogen fuel cell vehicles (HFCVs) into VPPs enhancing both technical and economic aspects. A network-aware VPP connected to generation resources storage facilities demand response programming (DRP) vehicle-to-grid technology (V2G) P2H and H2P is used to evaluate the proposed method. The problem is formulated as a convex model and solved using the GUROBI optimizer. Results indicate that a hydrogen refueling station can increase profits by approximately 49 % compared to the base case of directly selling surplus generation from renewable energy sources (RESs) to the market and profits can further increase to roughly 86 % when other DERs are incorporated alongside the hydrogen refueling station.
Double-Layer Optimal Configuration of Wind–Solar-Storage for Multi-Microgrid with Electricity–Hydrogen Coupling
Oct 2025
Publication
To address the collaborative optimization challenge in multi-microgrid systems with significant renewable energy integration this study presents a dual-layer optimization model incorporating power-hydrogen coupling. Firstly a hydrogen energy system coupling framework including photovoltaics storage batteries and electrolysis hydrogen production/fuel cells was constructed at the architecture level to realize the flexible conversion of multiple energy forms. From a modeling perspective the upper-layer optimization aims to minimize lifecycle costs by determining the optimal sizing of distributed PV systems battery storage hydrogen tanks fuel cells and electrolyzers within the microgrid. At the lower level a distributed optimization framework facilitates energy sharing (both electrical and hydrogen-based) across microgrids. This operational layer maximizes yearly system revenue while considering all energy transactions—both inter-microgrid and grid-to-microgrid exchanges. The resulting operational boundaries feed into the upper-layer capacity optimization with the optimal equipment configuration emerging from the iterative convergence of both layers. Finally the actual microgrid in a certain area is taken as an example to verify the effectiveness of the proposed method.
Influence of Engine Oils on Pre-Ignition Tendency in a Hydrogen–Kerosene Dual-Fuel Engine
Mar 2025
Publication
Reducing CO2 emissions is an increasingly important goal in general aviation. The dual-fuel hydrogen–kerosene combustion process has proven to be a suitable technology for use in small aircraft. This robust and reliable technology significantly reduces CO2 emissions due to the carbon-free combustion of hydrogen during operation while pure kerosene or sustainable aviation fuel (SAF) can be used in safety-critical situations or in the event of fuel supply issues. Previous studies have demonstrated the potential of this technology in terms of emissions performance and efficiency while also highlighting challenges related to abnormal combustion phenomena such as knocking and pre-ignition which limit the maximum achievable hydrogen energy share. However the causes of such phenomena—especially regarding the role of lubricating oils—have not yet been sufficiently investigated in hydrogen engines making this a crucial area for further development. In this paper investigations at the TU Wien Institute of Powertrain and Automotive Technology concerning the role of different engine oils in influencing pre-ignition tendencies in a hydrogen–kerosene dual-fuel engine are described. A specialized test procedure was developed to account for the unique combustion characteristics of the dual-fuel process along with a detailed purge procedure to minimize oil carryover. Multiple engine oils with varying compositions were tested to evaluate their influence on pre-ignition tendencies with a particular focus on additives containing calcium magnesium and molybdenum known for their roles in detergent and anti-wear properties. Additionally the study addressed the contribution of particles to pre-ignition occurrences. The results indicate that calcium and magnesium exhibit no notable impact on pre-ignition behavior; however the addition of molybdenum results in a pronounced reduction in pre-ignition events which could enable a higher hydrogen energy share and thus decrease CO2 emissions in the context of hydrogen dual-fuel aviation applications.
Certification Gap Analysis for Normal-Category and Large Hydrogen-Powered Airplanes
Mar 2025
Publication
The transition to hydrogen as an aviation fuel as outlined in current decarbonization roadmaps is expected to result in the entry into service of hydrogen-powered aircraft in 2035. To achieve this evolution certification regulations are key enablers. Due to the disruptive nature of hydrogen aircraft technologies and their associated hazards it is essential to assess the maturity of the existing regulatory framework for certification to ensure its availability when manufacturers apply for aircraft certification. This paper presents the work conducted under the Clean Aviation CONCERTO project to advance certification readiness by comprehensively identifying gaps in the current European regulations. Generic methodologies were developed for regulatory gap and risk analyses and applied to a hydrogen turbine aircraft with non-propulsive fuel cells as the APU. The gap analysis conducted on certification specifications for large and normal-category airplanes as well as engines confirmed the overall adequacy of many existing requirements. However important gaps exist to appropriately address hydrogen hazards particularly concerning fire and explosion hydrogen storage and fuel systems crashworthiness and occupant survivability. The paper concludes by identifying critical areas for certification and highlighting the need for complementary hydrogen phenomenology data which are key to guiding future research and regulatory efforts for certification readiness maturation.
Hydrogen-based Technologies towards Energy-resilient Low-carbon Buildings: Opportunities and Challenges Review
Oct 2025
Publication
Towards low-carbon buildings with resilient energy performance renewable energy resources and flexible energy assets play key roles in managing the electrical and heat demands. Hydrogen-based systems represent a promising solution through renewable hydrogen production and long-term storage. This paper systematically reviews 35 peer-reviewed studies (1990–2024) on hydrogen integration in buildings focusing on demand-side management (DSM) optimization methods and system performance. The review covers the environmental impacts feasibility and economic viability of integrating different hydrogen systems for supplying energy. Across critical reviews case studies hydrogen supplementary systems achieved CO2 reductions between 12 % and 87 % operational cost decreases of up to 40 % and efficiency gains exceeding 80 %. Payback periods varied widely between 9 and 20 years demonstrating high investment costs. Key gaps include limited field validation economic feasibility and public acceptance of hydrogen homes. One key area for future investigation is optimizing energy flows across production storage and demand particularly in Vehicle-to-Building (V2B) applications. This review paper highlights opportunities especially the potential of hydrogen system in decarbonization of buildings by long-term energy storage barriers and policy needs for implementing hydrogen technologies in grid-connected and remote areas to enhance sustainable and resilient buildings.
Novel Sustainability Assessment Methodology with Alternative Use Impact Accounting: Application on Use of Hydrogen in Transportation Sector
Sep 2025
Publication
This study presents the application of a new sustainability assessment methodology. It aims to improve the information that can be obtained from a sustainability assessment including the concept of alternative usage impact. To prove the effectiveness of this methodology three different hydrogen production methodologies considering its consumption in transportation sector is the case of study. The methodologies considered are Steam Methane Reform using natural gas Proton Exchange Membrane electrolysis one using grid electricity and the other study case using central tower solar power plant electricity from the PS10 facility. While separately green hydrogen is the technology with less environmental impact when considering the full system and the impact of the green hydrogen on the rest of the resources the integration of green hydrogen technology is not the most environmentally sustainable. Similar behavior is observed in the economic and technical fields. The different accounting of combinations of technologies and the impact on the resource which is not used provides the sustainability performance of the overall system. These results show that in order to account the all impacts taking place in a energy technology integration its impact on the rest of resources and uses provide more valuable information.
Hydrogen Energy Systems for Decarbonizing Smart Cities and Industrial Applications: A Review
Oct 2025
Publication
Hydrogen is increasingly recognized as a key energy vector for achieving deep decarbonization across urban and industrial sectors. Supporting global efforts to reduce greenhouse gas (GHG) emissions and achieve the Sustainable Development Goals (SDGs) it is essential to understand the multi-sectoral role of the hydrogen value chain spanning production storage and end-use applications with particular emphasis on smart city systems and industrial processes. Green hydrogen production technologies including alkaline water electrolysis (AWE) proton exchange membrane (PEM) electrolysis anion exchange membrane (AEM) electrolysis and solid oxide electrolysis cells (SOECs) are evaluated in terms of efficiency scalability and integration potential. Storage pathways are examined across physical storage (compressed gas cryo-compressed and liquid hydrogen) material-based storage (solid-state absorption in metal hydrides and chemical carriers such as LOHCs and ammonia) and geological storage (salt caverns depleted gas reservoirs and deep saline aquifers) highlighting their suitability for urban and industrial contexts. In the smart city domain hydrogen is analyzed as an enabler of zero-emission transportation low-carbon residential and commercial heating and renewable-integrated smart grids with long-duration storage capabilities. System-level studies demonstrate that coordinated integration of these applications can deliver higher overall energy efficiency deeper reductions in life-cycle GHG emissions and improved resilience of urban energy systems compared with sector-specific approaches. Policy frameworks safety standards and digitalization strategies are reviewed to illustrate how hydrogen infrastructure can be embedded into interconnected urban energy systems. Furthermore industrial applications focus on hydrogen’s potential to decarbonize energy-intensive processes and enable sector coupling between electricity heat and manufacturing. The environmental implications of hydrogen deployment are also considered including resource efficiency life-cycle emissions and ecosystem impacts. In contrast to reviews addressing isolated aspects of hydrogen technologies this study synthesizes technological infrastructural and policy dimensions integrating insights from over 400 studies to highlight the multifaceted role of hydrogen in sustainable urban development and industrial decarbonization and the added benefits achievable through coordinated cross-sector deployment strategies.
Multi-time Scaling Optimization for Electric Station Considering Uncertainties of Renewable Energy and EVs
Oct 2025
Publication
The development of new energy vehicles particularly electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) represents a strategic initiative to address climate change and foster sustainable development. Integrating PV with hydrogen production into hybrid electricity-hydrogen energy stations enhances land and energy efficiency but introduces scheduling challenges due to uncertainties. A multi-time scale scheduling framework which includes day-ahead and intraday optimization is established using fuzzy chance-constrained programming to minimize costs while considering the uncertainties of PV generation and charging/refueling demand. Correspondingly trapezoidal membership function and triangular membership function are used for the fuzzy quantification of day-ahead and intraday predictions of photovoltaic power generation and load demands. The system achieves 29.37% lower carbon emissions and 17.73% reduced annualized costs compared to day-ahead-only scheduling. This is enabled by real-time tracking of PV/load fluctuations and optimized electrolyzer/fuel cell operations maximizing renewable energy utilization. The proposed multi-time scale framework dynamically addresses short-term fluctuations in PV generation and load demand induced by weather variability and temporal dynamics. By characterizing PV/load uncertainties through fuzzy methods it enables formulation of chance-constrained programming models for operational risk quantification. The confidence level – reflecting decision-makers’ reliability expectations – progressively increases with refined temporal resolution balancing economic efficiency and operational reliability.
Development and Validation of an All-metal Scroll Pump for PEM Fuel Cell Hydrogen Recirculation
Oct 2025
Publication
Hydrogen recirculation is essential for maintaining fuel efficiency and durability in Proton Exchange Membrane Fuel Cell (PEMFC) systems particularly in automotive range extender applications. This study presents the design simulation and experimental validation of a dry all-metal scroll pump developed for hydrogen recirculation in a 5 kW PEMFC system. The pump operates without oil or polymer seals offering long-term compatibility with dry hydrogen. Two prototypes were fabricated: SP1 incorporating PTFE-bronze tip seals and SP2 a fully metallic seal-free design. A fully deterministic one-dimensional (1D) model was developed to predict thermodynamic performance including leakage and heat transfer effects and validated against experimental results. SP1 achieved higher flow rates due to reduced axial leakage but experienced elevated friction and temperature. In contrast SP2 provided improved thermal stability and lower friction with slightly reduced flow performance. The pump demonstrated a maximum flow rate of 50 l/min and an isentropic efficiency of 82.2 % at 2.5 bara outlet pressure. Simulated performance showed strong agreement with experimental results with deviations under 5 %. The findings highlight the critical role of thermal management and manufacturing tolerances in dry scroll pump design. The seal-free liquid-cooled scroll architecture presents a promising solution for compact oil-free hydrogen recirculation in low-power fuel cell systems.
Providing the Transport Sector in Europe with Fossil Free Energy - A Model-based Analysis under Consideration of the MENA Region
Mar 2025
Publication
For reaching the European greenhouse gas emission targets the phase-in of alternative technologies and energy carriers is crucial for all sectors. For the transport sector synthetic fuels are–next to electromobility–a promising option especially for long-distance shipping and air transport. Within this context the import of synthetic fuels from the Middle East and Northern Africa (MENA) region seems attractive due to low costs for renewable electricity in this region and low transport costs of synthetic fuels at the same time. Against this background this paper analyzes the role of the MENA region in meeting the future synthetic fuel demand in Europe using a cost-optimizing energy supply model. In this model the production storage and transport of electricity hydrogen and synthetic fuels by various technologies in both European and MENA countries in the period up to 2050 are explicitly modeled. Thereby different scenarios are analyzed to depict regional differences in investment risks: a base scenario that does not take into account regional differences in investments risks and three risk scenarios with different developments of regional investment risks. Sensitivity analyses are also carried out to derive conclusions about the robustness of results. Results show that meeting the future synthetic fuel demand in Europe to a large extent by imports from the MENA region can be an attractive option from an economic point of view. If investment risks are incorporated however lower import quotas of synthetic fuels are economically attractive for Europe: the higher generation costs are outweighed by the lower investments risks in Europe to a certain extent. Thereby investment risks outweigh other factors such as transport distance or renewable electricity generation costs in terms of exporting MENA regions and a synthetic fuel import is especially attractive from MENA countries with low investment risks. Concluding within this paper detailed export relations between MENA and EU considering investment risks were modeled for the first time. These model results should be complemented by a more in-depth analysis of the MENA countries including evaluating opportunities for local value chain development sustainability concerns (including social factors) and optimal site selection.
Hydrogen Cargo Bikes as a Data-driven Solution for Last-mile Decarbonization
Oct 2025
Publication
The growing demand for low-emission urban freight has intensified efficiency challenges in lastmile delivery especially in dense city centres. This study assesses hydrogen-powered cargo bikes as a scalable zero-emission alternative to fossil fuel vans and battery-electric cargo bikes. Using real-world logistics data from Rome we apply simulation models including Monte Carlo cost analysis Artificial Intelligence driven routing K-means station placement and fleet scaling. Results show hydrogen bikes deliver 15% more parcels daily than electric counterparts reduce refuelling detours by 31.4% and lower per-trip fuel use by 32%. They can cut up to 120 metric tons of CO2 annually per 100-bike fleet. While battery-electric cargo bikes remain optimal for short trips hydrogen bikes offer superior uptime range and rapid refuelling—ideal for highfrequency mid-distance logistics. Under supportive pricing and infrastructure hydrogen cargo bikes represent a resilient and sustainable solution for decarbonizing last-mile delivery in city areas.
Ammonia–Hydrogen Dual-Fuel Combustion: Strategies for Optimizing Performance and Reducing Emissions in Internal Combustion Engines
Jun 2025
Publication
The urgent need to mitigate climate change and reduce greenhouse gas emissions has accelerated the search for sustainable and scalable energy carriers. Among the different alternatives ammonia stands out as a promising carbon-free fuel thanks to its high energy density efficient storage and compatibility with existing infrastructure. Moreover it can be produced through sustainable green processes. However its application in internal combustion engines is limited by several challenges including low reactivity narrow flammability limits and high ignition energy. These factors can compromise combustion efficiency and contribute to increased unburned ammonia emissions. To address these limitations hydrogen has emerged as a complementary fuel in dual-fuel configurations with ammonia. Hydrogen’s high reactivity enhances flame stability ignition characteristics and combustion efficiency while reducing emissions of unburned ammonia. This review examines the current status of dual-fuel ammonia and hydrogen combustion strategies in internal combustion engines and summarizes the experimental results. It highlights the potential of dual-fuel systems to optimize engine performance and minimize emissions. It identifies key challenges knowledge gaps and future research directions to support the development and widespread adoption of ammonia–hydrogen dual-fuel technologies.
Techno-Economic Evaluation of a Floating Photovoltaic-Powered Green Hydrogen for FCEV for Different Köppen Climates
Sep 2025
Publication
The escalating global demand for electricity coupled with environmental concerns and economic considerations has driven the exploration of alternative energy sources creating competition for land with other sectors. A comprehensive analysis of a 10 MW floating photovoltaic (FPV) system deployed across different Köppen climate zones along with techno-economic analysis involves evaluating technical efficiency and economic viability. Technical parameters are assessed using PVsyst simulation and HOMER Pro. While economic analysis considers return on investment net present value internal rate of return and payback period. Results indicate that temperate and dry zones exhibit significant electricity generation potential from an FPV. The study outlines the payback period with the lowest being 5.7 years emphasizing the system’s environmental benefits by reducing water loss in the form of evaporation. The system is further integrated with hydrogen generation while estimating the number of cars that can be refueled at each location with the highest amount of hydrogen production being 292817 kg/year refueling more than 100 cars per day. This leads to an LCOH of GBP 2.84/kg for 20 years. Additionally the comparison across different Koppen climate zones suggests that even with the high soiling losses dry climate has substantial potential; producing up to 18829587 kWh/year of electricity and 292817 kg/year of hydrogen. However factors such as high inflation can reduce the return on investment to as low as 13.8%. The integration of FPV with hydropower plants is suggested for enhanced power generation reaffirming its potential to contribute to a sustainable energy future while addressing the UN’s SDG7 SDG9 SDG13 and SDG15.
No more items...