Applications & Pathways
Feasibility Assessment and Response Surface Optimisation of a Fuel Cell-integrated Sustainable Wind Farm in Italy
Sep 2025
Publication
This study explores the design and feasibility of a novel fuel cell-powered wind farm for residential electricity hydrogen/oxygen production and cooling/heating via a compression chiller. Wind turbine energy powers Proton Exchange Membrane (PEM) electrolyzers and a compression chiller unit. The proposed system was modeled using EES thermodynamic software and its economic viability was assessed. A case study across seven Italian regions with varying wind potentials evaluated the system’s feasibility in diverse weather conditions. Multi-objective optimization using Response Surface Methodology (RSM) determined the number of wind turbines as optimum number of electrolyzers & fuel cell units. Optimization results indicated that 37 wind turbines 1 fuel cell unit and 2 electrolyzer units yielded an exergy efficiency of 27.98 % and a cost rate of 619.9 $/h. TOPSIS analysis suggested 32 wind turbines 2 electrolyzers and 2 reverse osmosis units as an alternative configuration. Further twelve different scenarios were examined to enhance the distribution of wind farmgenerated electricity among the grid electrolyzers and reverse osmosis systems. revealing that directing 25 % to reverse osmosis 20 % to electrolyzers and 55 % to grid sales was optimal. Performance analysis across seven Italian cities (Turin Bologna Florence Palermo Genoa Milan and Rome) identified Genoa Palermo and Bologna as the most suitable locations due to favorable wind conditions. Implementing the system in Genoa the optimal site could produce 28435 MWh of electricity annually prevent 5801 tons of CO2 emissions (equivalent to 139218 $). Moreover selling this clean electricity to the grid could meet the annual clean electricity needs of approximately 5770 people in Italy
Cooperative Control of Hydrogen-energy Storage Microgrid System Based on Disturbance-rejection Model Predictive Control
Mar 2025
Publication
Model predictive control (MPC) requires high accuracy of the model. However the actual power system has complex dynamic characteristics. There must be unmodeled dynamics in the system modeling process which makes it difficult for MPC to perform the function of optimal control. ESO has the ability to observe and suppress errors combining the both can solve this problem. Thus this paper proposes a coordinated control strategy of hydrogen-energy storage system based on disturbance-rejection model predictive controller. Firstly this paper constructs the state-space model of the system and improves MPC. By connecting ESO and MPC in series this paper designs a matched disturbance-rejection model predictive controller and analyzes the robustness of the research system. Finally this paper verifies the effectiveness and feasibility of the disturbance-rejection model predictive controller under various working conditions. Compared with the method using only MPC the dynamic response time of the system frequency regulation under the proposed strategy in this paper is increased by about 29.9 % and the frequency drop rate is slowed down by 13.5 %. In addition under the AGC command and continuous load disturbance working conditions the maximum frequency deviation of the system under the proposed strategy is reduced by about 54.01 % and 48.96 %. The results clearly show that the proposed strategy in this paper significantly improves the dynamic response ability of the system and reduces the frequency fluctuation of the system after disturbance.
Real-Time Energy Management of a Microgrid Using MPC-DDQN-Controlled V2H and H2V Operations with Renewable Energy Integration
Aug 2025
Publication
This paper presents the design and implementation of an Intelligent Home Energy Management System in a smart home. The system is based on an economically decentralized hybrid concept that includes photovoltaic technology a proton exchange membrane fuel cell and a hydrogen refueling station which together provide a reliable secure and clean power supply for smart homes. The proposed design enables power transfer between Vehicle-to-Home (V2H) and Home-to-Vehicle (H2V) systems allowing electric vehicles to function as mobile energy storage devices at the grid level facilitating a more adaptable and autonomous network. Our approach employs Double Deep Q-networks for adaptive control and forecasting. A Multi-Agent System coordinates actions between home appliances energy storage systems electric vehicles and hydrogen power devices to ensure effective and cost-saving energy distribution for users of the smart grid. The design validation is carried out through MATLAB/Simulink-based simulations using meteorological data from Tunis. Ultimately the V2H/H2V system enhances the utilization reliability and cost-effectiveness of residential energy systems compared with other management systems and conventional networks.
Optimal Control of an Over-actuated Spark-Ignited Hydrogen Engine
Jun 2025
Publication
The spark-ignited (SI) hydrogen combustion engine has the potential to noticeably reduce greenhouse gas emissions from passenger cars. To prevent nitrogen oxide emissions and to increase fuel efficiency and power output complex air paths and operating strategies are utilized. This makes the engine control problem more complex challenging the conventional engine calibration process. This work combines and extends the state-of-the-art in real-time combustion engine modeling and optimal control presenting a novel control concept for the efficient operation of a hydrogen combustion engine. The extensive experimental validation with a 1.5 l three-cylinder hydrogen SI engine and a dynamically operated engine test bench with emission and in-cylinder pressure measurements provides a comprehensible comparison to conventional engine control. The results demonstrate that the proposed optimal control decreased the load tracking errors by a factor of up to 2.8 and increased the engine efficiency during lean operation by up to 10 percent while decreasing the calibration effort compared to conventional engine control.
LES Analysis of the DLR F400S.3 mGT Burner Operating with 100% Hydrogen Fuel
Oct 2025
Publication
The paper approaches a computational evaluation of the 100% hydrogen fueled DLR micro-Gas Turbine (mGT) burner F400S.3 through high-fidelity Large Eddy Simulations (LES). Sensitivity analyses on the thermal boundary conditions of the burner walls and the turbulent combustion model were conducted. The experimental OH*-Chemiluminescence distribution was compared with numerical results obtained using the Partially Stirred Reactor (PaSR) and the Extended Flamelet Generated Manifold (ExtFGM) combustion models. The results showed good agreement regarding the flame shape and reactivity prediction when non-adiabatic thermal boundary conditions were applied at the burner walls and the PaSR model was implemented. On the contrary the ExtFGM model exhibited underprediction in flame length and flame lift-off overestimating flame reactivity. Finally after selecting the combustion model that best retrieved the experimental data a pressurized LES was performed on the combustor domain to evaluate its performance under real operating conditions for mGT.
Decentralized Use Case Integration of Chemical Hydrogen Carriers: The Cost Saving Potential in Domestic Supply Chains
Oct 2025
Publication
The use of chemical hydrogen carriers such as ammonia (NH3) methanol (MeOH) dimethyl ether (DME) and liquid organic hydrogen carriers (LOHC) is considered as a potential option for hydrogen imports. Following import the carriers are either converted centrally into hydrogen or transported further to the point of use. This study evaluates various domestic transport options – truck rail inland waterway and pipeline – as unimodal or intermodal transport for hydrogen and chemical hydrogen carriers. Based on this the potential of transport and decentralized integration of carriers for various locations is assessed. A cost comparison is used to determine the maximum specific costs that a decentralized conversion plant can incur while remaining competitive with a centralized conversion plant in the port. The analysis shows that the specific costs of decentralized conversion plants at numerous locations can be significantly higher than those of centralized plants indicating considerable cost-saving potential.
Ground Testing and Analysis of Liquid-hydrogen Propulsion System for UAVs
Oct 2025
Publication
This paper presents an experimental campaign on a complete liquid hydrogen (LH2 ) propulsion system for small uncrewed aerial vehicles. The first part investigates the boil-off performance of five 12 L (0.85 kg) LH2 reservoirs with different internal designs. Results show average evaporation rates of 17–37 g/h and total evaporation times of 23–50 h corresponding to endurance of up to 50 h depending on fabrication technique and insulation design. The second part examines the integrated propulsion chain from the LH2 reservoir to the fuel cell including hydrogen transfer through an instrumented line and heat exchanger. The system delivers over 14000 Wh of electrical energy enabling ranges up to 4400 km for a 4 m fixed-wing UAV with flight speeds of 24–27 m/s. A first-order theoretical model is introduced to support preliminary sizing mass estimation and boil-off prediction. These results demonstrate clear endurance advantages of LH2 storage over compressed hydrogen systems.
Dynamic Pressure Characteristics of Multi-mode Combustion Instability in a Model Gas Turbine Combustor under Simulated Hydrogen-methane Co-firing Conditions
Oct 2025
Publication
The adoption of H2 fuel in gas turbine systems is steadily increasing as part of the transition toward cleaner energy sources. However its unique combustion characteristics pose significant challenges in managing combustion instability. This study examines the acoustic behavior of H2-CH4 mixed-fuel combustion instability using a model gas turbine combustor. To simulate instability situation of mixed fuel multi-mode acoustic excitation experiments are performed with the fixed fundamental forcing at the combustor's resonance frequency (∼160 Hz) together with additional variable forcing at 250 Hz and 1000 Hz which are the representative instability modes of CH4 and H2 flames respectively. In some cases highly risky signal amplification is observed. For example when the amplitude ratios of forcing at 160 250 and 1000 Hz are 1:9:0 the response reaches up to 106.15 kPa at the other frequency of 1750 Hz. This phenomenon is confirmed by attribution of the interaction of the overlapping mode frequencies and the node and antinode position of standing wave with no such amplification observed at other experimental conditions. Consequently the optimal sensor location is expected to vary with changes in the co-firing ratio and conditions and identifying these optimal positions is essential for reliable monitoring and successful implementation of H2 co-firing technology.
Certification Gap Analysis for Normal-Category and Large Hydrogen-Powered Airplanes
Mar 2025
Publication
The transition to hydrogen as an aviation fuel as outlined in current decarbonization roadmaps is expected to result in the entry into service of hydrogen-powered aircraft in 2035. To achieve this evolution certification regulations are key enablers. Due to the disruptive nature of hydrogen aircraft technologies and their associated hazards it is essential to assess the maturity of the existing regulatory framework for certification to ensure its availability when manufacturers apply for aircraft certification. This paper presents the work conducted under the Clean Aviation CONCERTO project to advance certification readiness by comprehensively identifying gaps in the current European regulations. Generic methodologies were developed for regulatory gap and risk analyses and applied to a hydrogen turbine aircraft with non-propulsive fuel cells as the APU. The gap analysis conducted on certification specifications for large and normal-category airplanes as well as engines confirmed the overall adequacy of many existing requirements. However important gaps exist to appropriately address hydrogen hazards particularly concerning fire and explosion hydrogen storage and fuel systems crashworthiness and occupant survivability. The paper concludes by identifying critical areas for certification and highlighting the need for complementary hydrogen phenomenology data which are key to guiding future research and regulatory efforts for certification readiness maturation.
Hydrogen-based Technologies towards Energy-resilient Low-carbon Buildings: Opportunities and Challenges Review
Oct 2025
Publication
Towards low-carbon buildings with resilient energy performance renewable energy resources and flexible energy assets play key roles in managing the electrical and heat demands. Hydrogen-based systems represent a promising solution through renewable hydrogen production and long-term storage. This paper systematically reviews 35 peer-reviewed studies (1990–2024) on hydrogen integration in buildings focusing on demand-side management (DSM) optimization methods and system performance. The review covers the environmental impacts feasibility and economic viability of integrating different hydrogen systems for supplying energy. Across critical reviews case studies hydrogen supplementary systems achieved CO2 reductions between 12 % and 87 % operational cost decreases of up to 40 % and efficiency gains exceeding 80 %. Payback periods varied widely between 9 and 20 years demonstrating high investment costs. Key gaps include limited field validation economic feasibility and public acceptance of hydrogen homes. One key area for future investigation is optimizing energy flows across production storage and demand particularly in Vehicle-to-Building (V2B) applications. This review paper highlights opportunities especially the potential of hydrogen system in decarbonization of buildings by long-term energy storage barriers and policy needs for implementing hydrogen technologies in grid-connected and remote areas to enhance sustainable and resilient buildings.
Novel Sustainability Assessment Methodology with Alternative Use Impact Accounting: Application on Use of Hydrogen in Transportation Sector
Sep 2025
Publication
This study presents the application of a new sustainability assessment methodology. It aims to improve the information that can be obtained from a sustainability assessment including the concept of alternative usage impact. To prove the effectiveness of this methodology three different hydrogen production methodologies considering its consumption in transportation sector is the case of study. The methodologies considered are Steam Methane Reform using natural gas Proton Exchange Membrane electrolysis one using grid electricity and the other study case using central tower solar power plant electricity from the PS10 facility. While separately green hydrogen is the technology with less environmental impact when considering the full system and the impact of the green hydrogen on the rest of the resources the integration of green hydrogen technology is not the most environmentally sustainable. Similar behavior is observed in the economic and technical fields. The different accounting of combinations of technologies and the impact on the resource which is not used provides the sustainability performance of the overall system. These results show that in order to account the all impacts taking place in a energy technology integration its impact on the rest of resources and uses provide more valuable information.
Hydrogen Energy Systems for Decarbonizing Smart Cities and Industrial Applications: A Review
Oct 2025
Publication
Hydrogen is increasingly recognized as a key energy vector for achieving deep decarbonization across urban and industrial sectors. Supporting global efforts to reduce greenhouse gas (GHG) emissions and achieve the Sustainable Development Goals (SDGs) it is essential to understand the multi-sectoral role of the hydrogen value chain spanning production storage and end-use applications with particular emphasis on smart city systems and industrial processes. Green hydrogen production technologies including alkaline water electrolysis (AWE) proton exchange membrane (PEM) electrolysis anion exchange membrane (AEM) electrolysis and solid oxide electrolysis cells (SOECs) are evaluated in terms of efficiency scalability and integration potential. Storage pathways are examined across physical storage (compressed gas cryo-compressed and liquid hydrogen) material-based storage (solid-state absorption in metal hydrides and chemical carriers such as LOHCs and ammonia) and geological storage (salt caverns depleted gas reservoirs and deep saline aquifers) highlighting their suitability for urban and industrial contexts. In the smart city domain hydrogen is analyzed as an enabler of zero-emission transportation low-carbon residential and commercial heating and renewable-integrated smart grids with long-duration storage capabilities. System-level studies demonstrate that coordinated integration of these applications can deliver higher overall energy efficiency deeper reductions in life-cycle GHG emissions and improved resilience of urban energy systems compared with sector-specific approaches. Policy frameworks safety standards and digitalization strategies are reviewed to illustrate how hydrogen infrastructure can be embedded into interconnected urban energy systems. Furthermore industrial applications focus on hydrogen’s potential to decarbonize energy-intensive processes and enable sector coupling between electricity heat and manufacturing. The environmental implications of hydrogen deployment are also considered including resource efficiency life-cycle emissions and ecosystem impacts. In contrast to reviews addressing isolated aspects of hydrogen technologies this study synthesizes technological infrastructural and policy dimensions integrating insights from over 400 studies to highlight the multifaceted role of hydrogen in sustainable urban development and industrial decarbonization and the added benefits achievable through coordinated cross-sector deployment strategies.
Multi-time Scaling Optimization for Electric Station Considering Uncertainties of Renewable Energy and EVs
Oct 2025
Publication
The development of new energy vehicles particularly electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) represents a strategic initiative to address climate change and foster sustainable development. Integrating PV with hydrogen production into hybrid electricity-hydrogen energy stations enhances land and energy efficiency but introduces scheduling challenges due to uncertainties. A multi-time scale scheduling framework which includes day-ahead and intraday optimization is established using fuzzy chance-constrained programming to minimize costs while considering the uncertainties of PV generation and charging/refueling demand. Correspondingly trapezoidal membership function and triangular membership function are used for the fuzzy quantification of day-ahead and intraday predictions of photovoltaic power generation and load demands. The system achieves 29.37% lower carbon emissions and 17.73% reduced annualized costs compared to day-ahead-only scheduling. This is enabled by real-time tracking of PV/load fluctuations and optimized electrolyzer/fuel cell operations maximizing renewable energy utilization. The proposed multi-time scale framework dynamically addresses short-term fluctuations in PV generation and load demand induced by weather variability and temporal dynamics. By characterizing PV/load uncertainties through fuzzy methods it enables formulation of chance-constrained programming models for operational risk quantification. The confidence level – reflecting decision-makers’ reliability expectations – progressively increases with refined temporal resolution balancing economic efficiency and operational reliability.
Development and Validation of an All-metal Scroll Pump for PEM Fuel Cell Hydrogen Recirculation
Oct 2025
Publication
Hydrogen recirculation is essential for maintaining fuel efficiency and durability in Proton Exchange Membrane Fuel Cell (PEMFC) systems particularly in automotive range extender applications. This study presents the design simulation and experimental validation of a dry all-metal scroll pump developed for hydrogen recirculation in a 5 kW PEMFC system. The pump operates without oil or polymer seals offering long-term compatibility with dry hydrogen. Two prototypes were fabricated: SP1 incorporating PTFE-bronze tip seals and SP2 a fully metallic seal-free design. A fully deterministic one-dimensional (1D) model was developed to predict thermodynamic performance including leakage and heat transfer effects and validated against experimental results. SP1 achieved higher flow rates due to reduced axial leakage but experienced elevated friction and temperature. In contrast SP2 provided improved thermal stability and lower friction with slightly reduced flow performance. The pump demonstrated a maximum flow rate of 50 l/min and an isentropic efficiency of 82.2 % at 2.5 bara outlet pressure. Simulated performance showed strong agreement with experimental results with deviations under 5 %. The findings highlight the critical role of thermal management and manufacturing tolerances in dry scroll pump design. The seal-free liquid-cooled scroll architecture presents a promising solution for compact oil-free hydrogen recirculation in low-power fuel cell systems.
Providing the Transport Sector in Europe with Fossil Free Energy - A Model-based Analysis under Consideration of the MENA Region
Mar 2025
Publication
For reaching the European greenhouse gas emission targets the phase-in of alternative technologies and energy carriers is crucial for all sectors. For the transport sector synthetic fuels are–next to electromobility–a promising option especially for long-distance shipping and air transport. Within this context the import of synthetic fuels from the Middle East and Northern Africa (MENA) region seems attractive due to low costs for renewable electricity in this region and low transport costs of synthetic fuels at the same time. Against this background this paper analyzes the role of the MENA region in meeting the future synthetic fuel demand in Europe using a cost-optimizing energy supply model. In this model the production storage and transport of electricity hydrogen and synthetic fuels by various technologies in both European and MENA countries in the period up to 2050 are explicitly modeled. Thereby different scenarios are analyzed to depict regional differences in investment risks: a base scenario that does not take into account regional differences in investments risks and three risk scenarios with different developments of regional investment risks. Sensitivity analyses are also carried out to derive conclusions about the robustness of results. Results show that meeting the future synthetic fuel demand in Europe to a large extent by imports from the MENA region can be an attractive option from an economic point of view. If investment risks are incorporated however lower import quotas of synthetic fuels are economically attractive for Europe: the higher generation costs are outweighed by the lower investments risks in Europe to a certain extent. Thereby investment risks outweigh other factors such as transport distance or renewable electricity generation costs in terms of exporting MENA regions and a synthetic fuel import is especially attractive from MENA countries with low investment risks. Concluding within this paper detailed export relations between MENA and EU considering investment risks were modeled for the first time. These model results should be complemented by a more in-depth analysis of the MENA countries including evaluating opportunities for local value chain development sustainability concerns (including social factors) and optimal site selection.
Hydrogen Cargo Bikes as a Data-driven Solution for Last-mile Decarbonization
Oct 2025
Publication
The growing demand for low-emission urban freight has intensified efficiency challenges in lastmile delivery especially in dense city centres. This study assesses hydrogen-powered cargo bikes as a scalable zero-emission alternative to fossil fuel vans and battery-electric cargo bikes. Using real-world logistics data from Rome we apply simulation models including Monte Carlo cost analysis Artificial Intelligence driven routing K-means station placement and fleet scaling. Results show hydrogen bikes deliver 15% more parcels daily than electric counterparts reduce refuelling detours by 31.4% and lower per-trip fuel use by 32%. They can cut up to 120 metric tons of CO2 annually per 100-bike fleet. While battery-electric cargo bikes remain optimal for short trips hydrogen bikes offer superior uptime range and rapid refuelling—ideal for highfrequency mid-distance logistics. Under supportive pricing and infrastructure hydrogen cargo bikes represent a resilient and sustainable solution for decarbonizing last-mile delivery in city areas.
Ammonia–Hydrogen Dual-Fuel Combustion: Strategies for Optimizing Performance and Reducing Emissions in Internal Combustion Engines
Jun 2025
Publication
The urgent need to mitigate climate change and reduce greenhouse gas emissions has accelerated the search for sustainable and scalable energy carriers. Among the different alternatives ammonia stands out as a promising carbon-free fuel thanks to its high energy density efficient storage and compatibility with existing infrastructure. Moreover it can be produced through sustainable green processes. However its application in internal combustion engines is limited by several challenges including low reactivity narrow flammability limits and high ignition energy. These factors can compromise combustion efficiency and contribute to increased unburned ammonia emissions. To address these limitations hydrogen has emerged as a complementary fuel in dual-fuel configurations with ammonia. Hydrogen’s high reactivity enhances flame stability ignition characteristics and combustion efficiency while reducing emissions of unburned ammonia. This review examines the current status of dual-fuel ammonia and hydrogen combustion strategies in internal combustion engines and summarizes the experimental results. It highlights the potential of dual-fuel systems to optimize engine performance and minimize emissions. It identifies key challenges knowledge gaps and future research directions to support the development and widespread adoption of ammonia–hydrogen dual-fuel technologies.
Techno-Economic Evaluation of a Floating Photovoltaic-Powered Green Hydrogen for FCEV for Different Köppen Climates
Sep 2025
Publication
The escalating global demand for electricity coupled with environmental concerns and economic considerations has driven the exploration of alternative energy sources creating competition for land with other sectors. A comprehensive analysis of a 10 MW floating photovoltaic (FPV) system deployed across different Köppen climate zones along with techno-economic analysis involves evaluating technical efficiency and economic viability. Technical parameters are assessed using PVsyst simulation and HOMER Pro. While economic analysis considers return on investment net present value internal rate of return and payback period. Results indicate that temperate and dry zones exhibit significant electricity generation potential from an FPV. The study outlines the payback period with the lowest being 5.7 years emphasizing the system’s environmental benefits by reducing water loss in the form of evaporation. The system is further integrated with hydrogen generation while estimating the number of cars that can be refueled at each location with the highest amount of hydrogen production being 292817 kg/year refueling more than 100 cars per day. This leads to an LCOH of GBP 2.84/kg for 20 years. Additionally the comparison across different Koppen climate zones suggests that even with the high soiling losses dry climate has substantial potential; producing up to 18829587 kWh/year of electricity and 292817 kg/year of hydrogen. However factors such as high inflation can reduce the return on investment to as low as 13.8%. The integration of FPV with hydropower plants is suggested for enhanced power generation reaffirming its potential to contribute to a sustainable energy future while addressing the UN’s SDG7 SDG9 SDG13 and SDG15.
Innovative Aircraft Heat Exchanger Integration for Hydrogen-electric Propulsion
Sep 2025
Publication
Propulsion systems in aircraft using reciprocating engines often face the challenge of managing thermal loads effectively. This problem is similar to the utilisation of polymer electrolyte membrane fuel cell systems which despite their high efficiency emit a high proportion of heat when converting chemical energy into electrical energy. Transfer of the rejected heat to the air is efficiently performed by heat exchangers. Since convective heat transfer is physically linked to fluid friction at the heat exchanger walls a pressure loss occurs. In a high-speed flow regime of the aircraft during cruise the integration of heat exchangers combined with a fan stage inside a nacelle (thus forming an impeller configuration) represents a promising approach for the dual benefit of dissipating excess heat and harnessing it for additional thrust generation through the ram jet effect. Striving for enhanced thrust performance of hydrogen electric commercial aircraft this paper presents the results of a parameter study based on a 1D-modelling approach. The focus is placed on the influence of design and operating parameters (ambient conditions fan pressure ratio diffusion ratio airside temperature difference) on performance and sizing of the proposed propulsion system. It is shown that the proposed system performs best at an altitude of 11 km and with increasing freestream Mach number. Furthermore the main challenges related to the combination of a thrust generation system with a heat exchanger in terms of sizing in particularly the required heat exchanger dimensions under different operating conditions are discussed.
Narratives and Counter-narratives in Sustainability Transitions: A Study on the Port of Rotterdam from a Multi-level Perspectives
Sep 2025
Publication
Infrastructure projects can act as niches for innovation development contribute to strategic goals of network owners and drive broader systemic transitions. However limited research has examined how sustainability transitions are shaped through narratives and counternarratives around infrastructure projects. Using a case study of the port of Rotterdam we analyze how three embedded projects - Maasvlakte 2 RDM Campus and the Hydrogen Pipeline - reflected and shaped evolving narratives and counter-narratives over a 20-year sustainability transition. Grounded in the Multi-Level Perspective (MLP) the study demonstrates how an infrastructure owner like the Port of Rotterdam Authority (PoRA) strategically mobilized narrative framing to reshape existing regimes over time. The study contributes to the debate on project management and transition studies by highlighting how infrastructure project owners respond to transition-related tensions by shaping defending and adapting project narratives over time thereby influencing sustainability trajectories.
Comparative Review of Natural Gas Vehicles During the Energy Transition
Jul 2025
Publication
The global climate crisis necessitates the urgent implementation of sustainable practices and carbon emission reduction strategies across all sectors. Transport as a major contributor to greenhouse gas emissions requires transitional technologies to bridge the gap between fossil fuel dependency and renewable energy systems. Natural gas recognised as the cleanest fossil-derived fuel with approximately half the CO2 emissions of coal and 75% of oil presents a potential transitional solution through Natural Gas Vehicles (NGVs). This manuscript presents several distinctive contributions that advance the understanding of Natural Gas Vehicles within the contemporary energy transition landscape while synthesising updated emission performance data. Specifically the feasibility and sustainability of NGVs are investigated within the energy transition framework by systematically incorporating recent technological developments and environmental economic and infrastructure considerations in comparison to conventional vehicles (diesel and petrol) and unconventional alternatives (electric and hydrogen-fuelled). The analysis reveals that NGVs can reduce CO2 emissions by approximately 25% compared to petrol vehicles on a well-to-wheel basis with significant reductions in NOx and particulate matter. However these environmental benefits depend heavily on the source and type of natural gas used (CNG or LNG) while economic viability hinges largely on governmental policies and infrastructure development. The findings suggest that NGVs can serve as an effective transitional technology in the transport sector’s sustainability pathway particularly in regions with established natural gas infrastructure but require supportive policy frameworks to overcome implementation barriers.
A real Assessment in the Design of a Try-Out Grid-Tied Solar PV-Green Hydrogen-Battery Storage Microgrid System for Industrial Application in South Africa
Sep 2025
Publication
The carbon emission reduction mission requires a multifaceted approach in which green hydrogen is expected to play a key role. The accelerated adoption of green hydrogen technologies is vital to this journey towards carbon neutrality by 2050. However the energy transition involving green hydrogen requires a data-driven approach to ensure that the benefits are realised. The introduction of testing sites for green hydrogen technologies will be crucial in enabling the performance testing of various components within the green hydrogen value chain. This study involves an areal assessment of a selected test site for the installation of a grid-tied solar PV-green hydrogen-battery storage microgrid system at a factory facility in South Africa. The evaluation includes a site energy audit to determine the consumption profile and an analysis of the location’s weather pattern to assess its impact on the envisaged microgrid. Lastly a design of the microgrid is conceptualised. A 39 kW photovoltaic system powers the microgrid which comprises a 22 kWh battery storage system 10 kW of electrolyser capacity an 8 kW fuel cell and an 800 L hydrogen storage capacity between 30 and 40 bars.
Green Hydrogen Production Study in Existing Oil Refinery with Evaluating Technical, Economic, and Environmental Outcomes
Oct 2025
Publication
Green hydrogen offers a sustainable alternative source of fossil fuels to compensate for the increasing energy demand. This study addresses the increasing energy demand and the need for sustainable alternatives to fossil fuels by examining the production of green hydrogen in an existing Egyptian oil refinery. The primary objective is to evaluate the technical economic and environmental outcomes of integrating green hydrogen to increase the refinery’s hydro processing capacity. The methodology involves the use of water electrolysis powered exclusively by renewable electricity from a 60 MW solar installation with a panel surface area of 660000 m². A simulation model of alkaline electrolyzer skids was developed to assess the production of an additional 1260 kg/h of hydrogen representing a 15% increase over the existing Steam Methane Reforming (SMR) capacity. The environmental impact was quantified by calculating the reduction in CO₂ and equivalent emissions while an economic forecasting analysis was conducted to project the production costs of green versus grey hydrogen. The main results indicate that the integration is technically feasible and environmentally beneficial with a significant reduction in the refinery’s carbon footprint. Economically the study projects that by 2028 the production cost of green hydrogen will fall to 1.56 USD/kg H₂ becoming more cost-effective than grey hydrogen at 1.65 USD/kg H₂ largely due to the influence of carbon taxes and credits. This study underscores the transformative potential of green hydrogen in decarbonizing industrial processes offering a viable pathway for refineries to contribute to global climate change mitigation efforts.
TwinP2G: A Software Application for Optimal Power-to Gas Planning
Sep 2025
Publication
This paper presents TwinP2G a software application for optimal planning of investments in power-to-gas (PtG) systems. TwinP2G provides simulation and optimization services for the techno-economic analysis of user-customized energy networks. The core of TwinP2G is based on power flow simulation; however it supports energy sector coupling including electricity green hydrogen natural gas and synthetic methane. The framework provides a user-friendly user interface (UI) suitable for various user roles including data scientists and energy experts using visualizations and metrics on the assessed investments. An identity and access management mechanism also serves the security and authorization needs of the framework. Finally TwinP2G revolutionizes the concept of data availability and data sharing by granting its users access to distributed energy datasets available in the EnerShare Data Space. These data are available to TwinP2G users for conducting their experiments and extracting useful insights on optimal PtG investments for the energy grid.
A Comprehensive Review of Green Hydrogen-based Hybrid Energy Systems: Technologies, Evaluation, and Process Safety
Aug 2025
Publication
The reliability and sustainability of multi-energy networks are increasingly critical in addressing modern energy demands and environmental concerns. Hydrogen-based hybrid energy systems can mitigate the challenges of renewable energy utilization such as intermittency grid stability and energy storage by integrating hydrogen generation and electricity storage from renewable sources such as solar and wind. Therefore this review offers a comprehensive evaluation of the environmental economic and technological aspects of green hydrogen-based hybrid energy systems particularly highlighting improvements in terms of the economics of fuel cell and electrolysis procedures. It also highlights new approaches such as hybrid energy management strategies and power-to-gas (PtG) conversion to enhance the system’s dependability and resilience. Analyzing the role of green hydrogen-based hybrid energy systems in supporting global climate goals and improving energy security underscores their high potential to make a significant contribution to carbon-neutral energy networks and provide policymakers with useful recommendations for developing guidelines. In addition the social aspect of hydrogen systems like energy equity and community engagement towards a hydrogen-based society provides reasons for the continued development of next-generation energy systems.
High-Performance Two-Stroke Opposed-Piston Hydrogen Engine: Numerical Study on Injection Strategies, Spark Positioning and Water Injection to Mitigate Pre-Ignition
Sep 2025
Publication
In the pursuit of zero-emission mobility hydrogen represents a promising fuel for internal combustion engines. However its low volumetric energy density poses challenges especially for high-performance applications where compactness and lightweight design are crucial. This study investigates the feasibility of an innovative hydrogen-fueled two-stroke opposed-piston (2S-OP) engine targeting a specific power of 130 kW/L and an indicated thermal efficiency above 40%. A detailed 3D-CFD analysis is conducted to evaluate mixture formation combustion behavior abnormal combustion and water injection as a mitigation strategy. Innovative ring-shaped multi-point injection systems with several designs are tested demonstrating the impact of injector channels’ orientation on the final mixture distribution. The combustion analysis shows that a dual-spark configuration ensures faster combustion compared to a single-spark system with a 27.5% reduction in 10% to 90% combustion duration. Pre-ignition is identified as the main limiting factor strongly linked to mixture stratification and high temperatures. To suppress it water injection is proposed. A 55% evaporation efficiency of the water mass injected lowers the in-cylinder temperature and delays pre-ignition onset. Overall the study provides key design guidelines for future high-performance hydrogen-fueled 2S-OP engines.
Sizing of Fuel Distribution and Thermopropulsion Systems for Liquid-Hydrogen-Powered Aircraft Using an MBSE Approach
Jun 2025
Publication
Hydrogen-powered aircraft constitute a transformative innovation in aviation motivated by the imperative for sustainable and environmentally friendly transportation solutions. This paper aims to concentrate on the design of hydrogen powertrains employing a system approach to propose representative design models for distribution and propulsion systems. Initially the requirements for powertrain design are formalized and a usecase-driven analysis is conducted to determine the functional and physical architectures. Subsequently for each component pertinent to preliminary design an analytical model is proposed for multidisciplinary analysis and optimization for powertrain sizing. A doublewall pipe model incorporating foam and vacuum multi-layer insulation was developed. The internal and outer pipes sizing were performed in accordance with standards for hydrogen piping design. Valves sizing is also considered in the present study following current standards and using data available in the literature. Furthermore models for booster pumps to compensate pressure drop and high-pressure pumps to elevate pressure at the combustion chamber entrance are proposed. Heat exchanger and evaporator models are also included and connected to a burning hydrogen engine in the sizing process. An optimal liner pipe diameter was identified which minimizes distribution systems weight. We also expect a reduction in engine length and weight while maintaining equivalent thrust.
Adaptive Robust Energy Management of Smart Grid with Renewable Integrated Energy System, Fuel Cell and Electric Vehicles Stations and Renewable Distributed Generation
Aug 2025
Publication
This study expresses energy scheduling in intelligent distribution grid with renewable resources charging stations and hydrogen stations for electric vehicles and integrated energy systems. In deterministic model objective function minimizes total operating energy losses and environmental costs of grid. Constraints are power flow equations network operating and voltage security limits operating model of renewable resources electric vehicle stations and integrated energy systems. Scheme includes uncertainties in load renewable resources charging and hydrogen stations and energy prices. Robust optimization uses to obtain an operation that is robust against the forecast error of the aforementioned uncertainties. Modeling electric vehicles station and aforementioned integrated energy systems considering economic operational and environmental objectives of network operator as objective function extracting a robust model of aforementioned uncertainties in order to extract a solution that is robust against the uncertainty prediction error and examining ability of energy management to improve voltage security of grid are among innovations of this paper. Numerical results obtained from various cases prove the aforementioned advantages and innovations. Energy management of resources charging and hydrogen stations and aforementioned integrated systems lead to scheme being robust against 35% of the prediction error of various uncertainties. In these conditions scheme has improved economic operational environmental and voltage security conditions by about 33.6% 7%- 37.4% 44.4% and 24.7% respectively compared to load flow studies. By applying optimal penalty price for energy losses and pollution pollution and energy losses in the network are reduced by about 45.15% and 34.1% respectively.
Effect of Hydrogen Injection Strategy on Combustion and Emissions of Ammonia-Hydrogen Sustainable Engines
Oct 2025
Publication
Driven by the global energy transition and the dual carbon goals developing low-carbon and zero-carbon alternative fuels has become a core issue for sustainable development in the internal combustion engine sector. Ammonia is a promising zero-carbon fuel with broad application prospects. However its inherent combustion characteristics including slow flame propagation high ignition energy and narrow flammable range limit its use in internal combustion engines necessitating the addition of auxiliary fuels. To address this issue this paper proposes a composite injection technology combining “ammonia duct injection + hydrogen cylinder direct injection.” This technology utilizes highly reactive hydrogen to promote ammonia combustion compensating for ammonia’s shortcomings and enabling efficient and smooth engine operation. This study based on bench testing investigated the effects of hydrogen direct injection timing (180 170 160 150 140◦ 130 120 ◦CA BTDC) hydrogen direct injection pressure (4 5 6 7 8 MPa) on the combustion and emissions of the ammonia–hydrogen engine. Under hydrogen direct injection timing and hydrogen direct injection pressure conditions the hydrogen mixture ratios are 10% 20% 30% 40% and 50% respectively. Test results indicate that hydrogen injection timing that is too early or too late prevents the formation of an optimal hydrogen layered state within the cylinder leading to prolonged flame development period and CA10-90. The peak HRR also exhibits a trend of first increasing and then decreasing as the hydrogen direct injection timing is delayed. Increasing the hydrogen direct injection pressure to 8 MPa enhances the initial kinetic energy of the hydrogen jet intensifies the gas flow within the cylinder and shortens the CA0-10 and CA10-90 respectively. Under five different hydrogen direct injection ratios the CA10- 90 is shortened by 9.71% 11.44% 13.29% 9.09% and 13.42% respectively improving the combustion stability of the ammonia–hydrogen engine.
Hydrogen Pathways for Green Fertilizer Production: A Comparative Techno-economic Study of Electrolysis and Plasmalysis
Sep 2025
Publication
Decarbonizing ammonia production is critical to meeting global climate targets in agriculture. This study evaluates two hydrogen pathways plasmalysis and electrolysis at Ontario’s Courtright Complex using detailed techno-economic modeling. The natural gas–based plasma system achieves the lowest hydrogen cost ($1.35/kg) but incurs high annual fuel expenses ($297.7 M/y) and shows strong sensitivity to natural gas prices. Electrolysis powered by 110 MW PV 1700 MW wind 60 MW biomass 95 MWh battery storage and a 2.0 GW electrolyzer produces hydrogen at $2.07/kg with lower fuel costs ($29.7 M/y) and significant grid interaction (2.67 TWh/y imports and 1.89 TWh/y exports) enhancing operational flexibility. Over a 15-year horizon both pathways deliver substantial CO2 reductions (plasmalysis: 27000 kt; electrolysis: 26045 kt). Extending plant lifetimes from 10 to 30 y reduces the levelized cost of hydrogen from $2.25 to $1.91/kg in the plasmalysis case and from $1.52 to $1.18/kg in the electrolysis case while increasing overall net present cost. Although electrolysis requires higher capital investment ($5.53 B compared with $1.79 B) it demonstrates resilience to fuel price volatility and provides additional grid revenue. In contrast plasmalysis offers near-term cost advantages but remains dependent on fossil gas underscoring its role as a transitional rather than fully green option for ammonia decarbonization.
Determining Pilot Ignition Delay in Dual-Fuel Medium-Speed Marine Engines Using Methanol or Hydrogen
Jun 2025
Publication
Dual-fuel engines are a way of transitioning the marine sector to carbon-neutral fuels like hydrogen and methanol. For the development of these engines accurate simulation of the combustion process is needed for which calculating the pilot’s ignition delay is essential. The present work investigates novel methodologies for calculating this. This involves the use of chemical kinetic schemes to compute the ignition delay for various operating conditions. Machine learning techniques are used to train models on these data sets. A neural network model is then implemented in a dual-fuel combustion model to calculate the ignition delay time and is compared using a lookup table or a correlation. The numerical results are compared with experimental data from a dual-fuel medium-speed marine engine operating with hydrogen or methanol from which the method with best accuracy and fastest calculation is selected.
Combining Babool Wood-derived Producer Gas and Hydrogen with Biodiesel as Efficienct Strategies for Dual-fuel Diesel Engine in Advancing Sustainable Energy
Sep 2025
Publication
The present investigation aims to provide a comparative assessment of using hydrogen-enriched wood waste-derived producer gas (PG) for a dual-fuel diesel engine fueled with a 20% Jatropha biodiesel/80% diesel blend (BD20) with the traditional mode. The experiments were conducted at 23°bTDC of injection timing 240 bar of injection pressure 17.5:1 of compression ratio and 1500 rpm of engine speed under various engine loads. Gas carburetor induction (GCI) port injection (PI) and inlet manifold injection (IMI) methods were used to supply H2-enriched PG while B20 is directly injected into the combustion chamber. Among all the combinations the IMI method provided the highest brake thermal efficiency of 30.91% the lowest CO emission of 0.08% and smoke opacity discharge of 49.26 HSU while NOx emission reached 1744.32 ppm which was lower than that of the PI mode. Furthermore the IMI method recorded the highest heat release rate of 91.17 J/°CA and peak cylinder pressure of 83.29 bar reflecting superior combustion quality. Finally using the IMI method for H2-enriched PG in dual-fuel diesel engines could improve combustion efficiency reduce greenhouse gas emissions and improve fuel economy showing that the combination of BD20 with H2-enriched PG offers a cleaner more sustainable and economically viable technology.
Comparative Techno-economic Optimization of Microgrid Configurations Using Hybrid Battery-hydrogen Storage: NEOM Case Study, Saudi Arabia
Sep 2025
Publication
Renewable energy systems are at the core of global efforts to reduce greenhouse gas (GHG) emissions and to combat climate change. Focusing on the role of energy storage in enhancing dependability and efficiency this paper investigates the design and optimization of a completely sustainable hybrid energy system. Furthermore hybrid storage systems have been used to evaluate their viability and cost-benefits. Examined under a 100% renewable energy microgrid framework three setup configurations are as follows: (1) photovoltaic (PV) and Battery Storage System (BSS) (2) Hybrid PV/Wind Turbine (WT)/BSS and (3) Integrated PV/WT/BSS/Electrolyzer/ Hydrogen Tank/Fuel Cell (FC). Using its geographical solar irradiance and wind speed data this paper inspires on an industrial community in Neom Saudi Arabia. HOMER software evaluates technical and economic aspects net present cost (NPC) levelized cost of energy (COE) and operating costs. The results indicate that the PV/ BSS configuration offers the most sustainable solution with a net present cost (NPC) of $2.42M and a levelized cost of electricity (LCOE) of $0.112/kWh achieving zero emissions. However it has lower reliability as validated by the provided LPSP. In contrast the PV/WT/BSS/Elec/FC system with a higher NPC of $2.30M and LCOE of $0.106/kWh provides improved energy dependability. The PV/WT/BSS system with an NPC of $2.11M and LCOE of $0.0968/kWh offers a slightly lower cost but does not provide the same level of reliability. The surplus energy has been implemented for hydrogen production. A sensitivity analysis was performed to evaluate the impact of uncertainties in renewable resource availability and economic parameters. The results demonstrate significant variability in system performance across different scenarios
Human Toxicity Potential: A Lifecycle Evaluation in Current and Future Frameworks for Hydrogen-Based and Battery Electric Buses in the European Union
Sep 2025
Publication
In recent years governments have promoted the shift to low-emission transport systems with electric and hydrogen vehicles emerging as key alternatives for greener urban mobility. Evaluating zero- or near-zero tailpipe solutions requires a Lifecycle Assessment (LCA) approach accounting for emissions from energy production components and vehicle manufacturing. Such studies mainly address Greenhouse Gas (GHG) emissions while other pollutants are often overlooked. This study compares the Human Toxicity Potential (HTP) of Battery Electric Vehicles (BEVs) Fuel Cell Vehicles (FCVs) Hydrogen Internal Combustion Engine Vehicles (H2ICEVs) and hybrid H2ICEVs for public transport in the European Union. Current and future scenarios (2024 2030 2050) are examined considering evolving energy mixes and manufacturing impacts. Results underline that BEVs are characterized by the highest HTP in 2024 and that this trend is maintained even in future scenarios. As for hydrogen-based powertrains they show lower HTPs similar among them. This work underlines that current efforts must be intensified especially for BEVs to further limit harmful emissions from the mobility sector.
Learning from Arctic Microgrids: Cost and Resiliency Projections for Renewable Energy Expansion with Hydrogen and Battery Storage
Jun 2025
Publication
Electricity in rural Alaska is provided by more than 200 standalone microgrid systems powered predominantly by diesel generators. Incorporating renewable energy generation and storage to these systems can reduce their reliance on costly imported fuel and improve sustainability; however uncertainty remains about optimal grid architectures to minimize cost including how and when to incorporate long-duration energy storage. This study implements a novel multi-pronged approach to assess the techno-economic feasibility of future energy pathways in the community of Kotzebue which has already successfully deployed solar photovoltaics wind turbines and battery storage systems. Using real community load resource and generation data we develop a series of comparison models using the HOMER Pro software tool to evaluate microgrid architectures to meet over 90% of the annual community electricity demand with renewable generation considering both battery and hydrogen energy storage. We find that near-term planned capacity expansions in the community could enable over 50% renewable generation and reduce the total cost of energy. Additional build-outs to reach 75% renewable generation are shown to be competitive with current costs but further capacity expansion is not currently economical. We additionally include a cost sensitivity analysis and a storage capacity sizing assessment that suggest hydrogen storage may be economically viable if battery costs increase but large-scale seasonal storage via hydrogen is currently unlikely to be cost-effective nor practical for the region considered. While these findings are based on data and community priorities in Kotzebue we expect this approach to be relevant to many communities in the Arctic and Sub-Arctic regions working to improve energy reliability sustainability and security.
An Optimal Approach to the Pre-Implementation Value Assessment of Smart Energy Systems; A 'Green' Hydrogen Case Study
Aug 2025
Publication
Smart energy systems can be used to generate additional financial value by providing flexibility to the electricity network. It is fundamental to the effective economic implementation of these systems that an assessment can be made in advance to determine available value in comparison with any additional costs. The basic premise is that there is a distinct advantage in using similar algorithms to an actual smart energy system implementation for value assessment and that this is practical in this context which is confirmed in comparison with simpler modelling methods. Analysis has been undertaken using a ‘green’ hydrogen system case study of the impact of various simplifications to the value assessment algorithms used to speed computation time without sacrificing the decisionmaking potential of the output. The results indicate that for localised energy systems with a small number of controllable assets an rolling horizon optimisation model with a significant degree of temporal and component complexity is viable for planning phase value assessment requirements and would be a similar level of complexity to a computationally suitable implementation algorithm for actual asset control decision making.
Method for Multi-criteria and Mission-specific Component Dimensioning for Heavy-duty Fuel Cell Trucks
May 2025
Publication
Heavy-duty fuel cell trucks are a promising approach to reduce the CO2 emissions of logistic fleets. Due to their higher powertrain energy density in comparison to battery-electric trucks they are especially suited for long-haul applications while transporting high payloads. Despite these great advantages the fleet integration of such vehicles is made difficult due to high costs and limited performance in thermally critical environmental conditions. These challenges are addressed in the European Union (EU) funded project ESCALATE which aims to demonstrate high-efficiency zero-emission heavy-duty vehicle (zHDV) powertrains that provide a range of 800 km without refueling or recharging. Powertrain components and their corresponding thermal components account for a large part of the production costs. For vehicle users higher costs are only acceptable if a significantly higher benefit can be achieved. Therefore it is important to size these components for the actual vehicle mission to avoid oversizing. In this paper an optimization method which determines the optimum component sizes for a given mission scenario under consideration of multiple criteria (e.g. costs performance and range) is presented.
Off-grid Shore-to-ship Power System Optimisation with a Hydrogen-in-loop Buffering Scheme Drien by Hydrokinetic Wave-wind Energy
Oct 2025
Publication
The environmentally vulnerable Arctic’s harsh climate and remote geography demand innovative green energy solutions. This study introduces a hybrid off-grid system that integrates wave and wind energy with hydrogenelectricity conversion technologies. Designed to power cruise ships at berth fuel-cell hybrid electric vehicles and residential heating the system tackles the challenge of energy variability through dual optimization schemes. External optimization identifies a cost-effective architecture achieving a net present cost of $1.1M and a levelized hydrogen cost of $20.1/kg without a fuel cell. Internal optimizations employing multi-objective game theory and HYBRID algorithms further improve performance reducing the net present cost to $666K with a levelized hydrogen cost of $13.74/kg (game theory) and $729K with a levelized hydrogen of $15.63/kg (HYBRID). A key innovation is hydrokinetic turbines which streamline the design by cutting cumulative cash flow requirements by $470K from $1.85M to $1.38M. This approach prioritizes intelligent energy management shifting reliance from variable wind and wave inputs to optimized electrolyzer and battery operations. These results underscore the feasibility of cost-effective and scalable renewable energy systems and provide a compelling blueprint for addressing energy challenges in remote and resource-constrained environments.
Market Potential of Hydrogen Fuel Cell Vehicles in Beijing: A Spatial Agent-based Model Approach
Oct 2025
Publication
Hydrogen fuel cell vehicles (HFCVs) are vital for advancing the hydrogen economy and decarbonizing the transportation sector. However research on HFCV market dynamics in passenger vehicles is limited especially incorporating both market competition from other vehicle types and the comprehensive supply–demand market dynamics. To bridge this gap our study proposed a spatial agent-based model to simulate the HFCV market evolution with the aim of finding effective strategies and policy implications for breaking the diffusion dilemma of the HFCV market. We calibrated the model using survey data (N=1065) collected from Beijing and evaluated its performance across five “What-If” scenarios. Results indicate that HFCVs and hydrogen stations are difficult to penetrate under the current conditions despite HFCV applicants and market share growing by 37.5% and 15.63% respectively. Consumer perceptions on cost social and environment have greater impacts on HFCV proliferation than facility availability. The HFCV purchase subsidy has much greater impact than the technological learning rate greatly accelerating its market emergence timing. Finally HFCVs’ diffusion significantly influences the market of battery electric vehicles.
Predict the Performance of Hydrogen Fueled Vehicle and their Refueling tation through the Data Analysis Based Approach
Jun 2025
Publication
The widespread adoption of hydrogen-fueled vehicles (HFVs) and the deployment of Hydrogen Refueling Stations (HRS) hinge on the ability to accurately predict system performance and ensure operational reliability. This study proposes a novel predictive framework integrating mathematical modeling state-space analysis and advanced data mining techniques supported by reliability analysis to evaluate the performance of HFVs and their associated refueling infrastructure. Utilizing a public dataset of 500 real-time operational data points key performance indicators are statistically analyzed. A significant negative correlation (r = −0.56) between hydrogen consumption and maximum vehicle range is identified highlighting that improved hydrogen efficiency directly extends travel range. The average maximum range is 555.21 km with a standard deviation of 87.09 km and a median of 563.65 km indicating strong consistency across vehicles. These findings underscore the importance of optimizing fuel efficiency to enhance system sustainability and inform the design and operation of next-generation hydrogen mobility solutions. The proposed approach offers a robust foundation for performance forecasting infrastructure planning and policy development in hydrogen-based transportation systems.
Integrated Renewable Energy Supply Architecture for Advancing Hydrogen Symbiosis and Eco Synergistic Smart Grid Interactions with Next Generation Combustion Technologies
Jul 2025
Publication
This study introduces the Smart Grid Hybrid Electrolysis-and-Combustion System (SGHE-CS) designed to seamlessly integrate hydrogen production storage and utilization within smart grid operations to maximize renewable energy use and maintain grid stability. The system achieves a hydrogen production efficiency of 98.5% indicating the effective conversion rate of electrical energy to hydrogen via PEM electrolysis. Combustion efficiency reaches 98.1% reflecting the proportion of hydrogen energy successfully converted into usable power through advanced staged combustion. Storage and transportation efficiency is 96.3% accounting for energy losses during hydrogen compression storage and delivery. Renewable integration efficiency is 97.3% representing the system’s capacity to utilize variable renewable energy inputs without curtailment. Operational versatility is 99.3% denoting the system’s ability to maintain high performance across load demands and grid conditions. Real-time monitoring and adaptive control strategies ensure reliability and resilience positioning SGHE-CS as a promising solution for sustainable low-carbon energy infrastructure.
Bibliometric Analysis of Hydrogen-Powered Vehicle Safety and Reliability Research: Trends, Impact, and Future Directions
Jun 2025
Publication
Research on and the demand for hydrogen-powered vehicles have grown significantly over the past two decades as a solution for sustainable transportation. Bibliometric analysis helps to assess research trends key contributions and the impact of studies focused on the safety and reliability of hydrogen-powered vehicles. This study provides a novel methodology for bibliometric analysis that systematically evaluates the global research landscape on hydrogen-powered vehicle reliability using Scopus-indexed publication data (1965 to 2024). Eighteen key parameters were identified for this study that are often used by researchers for the bibliometric analysis of hydrogen-related studies. Data analytics VOSviewer-based visualization and research impact indicators were integrated to comprehensively assess publication trends key contributors and citation networks. The analysis revealed that hydrogen-powered vehicle reliability research has experienced significant growth over the past two decades with leading contributions from high-impact journals renowned institutions and influential authors. The present study emphasizes the significance of greater funding as well as open-access distribution. Furthermore while major worldwide institutions have significant institutional relationships there are gaps in real-world hydrogen infrastructure evaluations large-scale experimental validation and policy-driven research.
Evaluation of Factors for Adoption of Alternative-Fuel-Based Vehicles
Sep 2025
Publication
The transportation industry significantly contributes to greenhouse gas (GHG) emissions. Federal and provincial governments have implemented strategies to decrease dependence on gasoline and diesel fuels. This encompasses promoting the adoption of electric cars (EVs) and biofuel alternatives investing in renewable energy sources and enhancing public transit systems. There is a growing focus on enhancing infrastructure to facilitate active transportation modes like cycling and walking which provide the combined advantages of decreasing emissions and advancing public health. In this paper we propose a System Dynamics simulation model for evaluating factors for the adoption of alternative-fuel vehicles such as EVs biofuel vehicles bus bikes and hydrogen vehicles. Five factors— namely customer awareness government initiatives cost of vehicles cost of fuels and infrastructure developments—to increase the adoption of alternative-fuel vehicles are studied. Two scenarios are modeled: A baseline scenario that follows the existing trends in transportation (namely the use of gasoline vehicles) Scenario 1 which prioritizes greater adoption of electric vehicles (EVs) and biofuel-powered vehicles and Scenario 2 which prioritizes hydrogen fuel-based vehicles and improves biking culture. The simulation findings show that all scenarios achieve reductions in GHG emissions compared to the baseline with Scenario 2 showing the lowest emissions. The proposed work is useful for transport decision makers and municipal administrators in devising policies for reducing overall GHG emissions and this also aligns with Canada’s net zero goals.
Multi-objective Optimal Scheduling of Islands Considering Offshore Hydrogen Production
Jul 2025
Publication
Ocean islands possess abundant renewable energy resources providing favorable conditions for developing offshore clean energy microgrids. However geographical isolation poses significant challenges for direct energy transfer between islands. Recent electrolysis and hydrogen storage technology advancements have created new opportunities for distributed energy utilization in these remote areas. This paper presents a low-carbon economic dispatch strategy designed explicitly for distant oceanic islands incorporating energy self-sufficiency rates and seasonal hydrogen storage (SHS). We propose a power supply model for offshore islands considering hydrogen production from offshore wind power. The proposed model minimizes operational and carbon emission costs while maximizing energy self-sufficiency. It considers the operational constraints of the island’s energy system the offshore transportation network the hydrogen storage infrastructure and the electricityhydrogen-transportation coupling of hydrogen storage (HS) and seasonal hydrogen storage (SHS) services. To optimize the dispatch process this study employs an improved Grey Wolf Optimizer (IGWO) combined with the Differential Evolution method to enhance population diversity and refine the position updating mechanism. Simulation results demonstrate that integrating HS and SHS effectively enhances energy self-sufficiency and reduces carbon emissions. For instance hydrogenation costs decreased by 21.4% after optimization and the peak-valley difference was reduced by 16%. These findings validate the feasibility and effectiveness of the proposed approach.
The Green Transition in Commercial Aviation
Aug 2025
Publication
This paper provides a comprehensive review of novel aviation technologies analyzing the advancements and challenges associated with the transition to sustainable air transport. The study explores three key pillars: unconventional aerodynamic configurations novel propulsion systems and advanced materials. Unconventional airframe architectures such as box-wing blended-wing-body and truss-braced wings demonstrate potential for improved aerostructural efficiency and reduced fuel consumption compared to traditional tube-and-wing designs. Aeropropulsive innovations as distributed propulsion boundary layer ingestion and advanced turbofan configurations are also promising in this regard. Significant progress in propulsion technologies including hybrid-electric hydrogen and extensive use of sustainable aviation fuels (SAF) plays a pivotal role in reducing air transport greenhouse gas emissions. However energy storage limitations and infrastructure constraints remain critical challenges and hence in the near future SAF could represent the most feasible solution. The introduction of advanced lightweight materials could further enhance aircraft overall performance. The results presented and discussed in this paper show that there is no a unique solution to the problem of the sustainability of air transport but a combination of all the novel technologies is necessary to achieve the ambitious environmental goals for the air transport of the future.
Hydrogen Microgrids to Facilitate the Clean Energy Transition in Remote, Northern Communities
Oct 2025
Publication
Most remote and northern communities rely on diesel for their electrical and thermal energy needs. Communities and governments are working toward diesel exit strategies but the role of hydrogen technologies has not been explored. These could serve both electrical and thermal demand reduce emissions and enhance energy security and community ownership. Here we determine the installed capacities costs hydrogen storage needs and water resource requirements of hydrogen microgrids across a large diverse sample of communities. We also compare the cost of hydrogen microgrids to that of diesel microgrids. Our results optimize resource deployment demonstrate how sub-components must operate to serve both demand types and yield insights on storage and resource needs. We find that hydrogen microgrids are cheaper in levelized cost terms than diesel systems in 28 of 37 communities investigated; if wind power capital costs escalate to CAD 20000/kW as recently seen in one project only 3 of the 37 communities net hydrogen microgrids that are cheaper than diesel variants. Hydrogen storage plays a large role in maintaining reliability and reducing cost—both it and water needs are modest. The former can be met with current technologies.
Emerging Green Steel Markets Surrounding the EU Emissions Trading System and Carbon Border Adjustment Mechanism
Oct 2025
Publication
The global steel industry accounts for 8–10 % of global CO2 emissions and requires deep decarbonisation for achieving the targets set in the Paris Agreement. However no low-emission primary steel production technology has yet been commercially feasible or deployed. Through analysing revisions and additions of European Union climate policy we show that green hydrogenbased steelmaking in competitive locations achieves cost-competitiveness on the European market starting 2026. If the deployment of competitive lowemission steelmaking is insufficient we show that the European steel industry loses competitiveness vis-à-vis countries with access to low-cost renewable energy. Therefore we assess the options for the European steel industry to relocate the energy-intensive ironmaking step and trade Hot Briquetted Iron for rapid deep decarbonisation of the European steel industry. Lastly we discuss complementing policy options to enhance the Carbon Border Adjustment Mechanism’s strategic value through European Union-lead global climate cooperation and the possibility of sparking an international decarbonisation race.
Designing Off-grid Hybrid Renewable Energy Systems under Uncertainty: A Two-Stage Stochastic Programming Approach
Aug 2025
Publication
The decarbonization of remote energy systems presents both technical and economic challenges due to their dependance on fossil fuels and the variability of renewable energy sources. This study introduces a Two-Stage Stochastic Programming approach to optimize Hybrid Renewable Energy Systems under uncertainty in renewable energy production. The methodology is applied to the island of Pantelleria aiming to minimize Total Annualized Costs and CO2 emissions using an ε-constraint approach. Results show that within the set of optimized configurations stricter CO2 emissions constraints increase costs due to the need for oversized components to ensure supply reliability. Nevertheless even the zeroemissions scenario offers significant economic benefits compared to the current diesel-based system. Total Annualized Costs are reduced from 15.5 M€ to 8.10 M€ in the deterministic case and to 9.37 M€ in the stochastic one. The additional cost in the stochastic configuration is offset by improved reliability ensuring demand is met under all scenarios. A sensitivity analysis on electricity demand reveals the necessity of further larger components leading to a 27.0% cost increase in a fully renewable scenario with stochastic optimization for a 10% demand increase. These findings highlight the importance of stochastic optimization in designing cost-effective off-grid renewable energy systems.
Predictive URANS/PDF Modeling of Unsteady-State Phenomena in Turbulent Hydrogen–Air Flames
Sep 2025
Publication
The escalating global demand for primary energy—still predominantly met by conventional carbon-based fuels—has led to increased atmospheric pollution. This underscores the urgent need for alternative energy strategies capable of reducing carbon emissions while meeting global energy requirements. Hydrogen as a clean combustible fuel offers a promising alternative to hydrocarbons producing neither soot CO2 nor unburned hydrocarbons. Although nitrogen oxides (NOx) are the primary combustion by-products their formation can be mitigated by controlling flame temperature. This study investigates the viability of hydrogen as a clean energy vector by simulating an unsteady turbulent non-premixed hydrogen jet flame interacting with an air co-flow. The numerical simulations employ the Unsteady Reynolds-Averaged Navier–Stokes (URANS) framework for efficient and accurate prediction of transient flow behavior. Turbulence is modeled using the Shear Stress Transport (SST k-ω) model which enhances accuracy in high Reynolds number reactive flows. The combustion process is described using a presumed Probability Density Function (PDF) model allowing for a statistical representation of turbulent mixing and chemical reaction. The simulation results are validated by comparison with experimental temperature and mixture fraction data demonstrating the reliability and predictive capability of the proposed numerical approach.
Integrated Optimization of Energy Storage and Green Hydrogen Systems for Resilient and Sustainable Future Power Grids
Jul 2025
Publication
This study presents a novel multi-objective optimization framework supporting nations sustainability 2030–2040 visions by enhancing renewable energy integration green hydrogen production and emission reduction. The framework evaluates a range of energy storage technologies including battery pumped hydro compressed air energy storage and hybrid configurations under realistic system constraints using the IEEE 9-bus test system. Results show that without storage renewable penetration is limited to 28.65% with 1538 tCO2/day emissions whereas integrating pumped hydro with battery (PHB) enables 40% penetration cuts emissions by 40.5% and reduces total system cost to 570 k$/day (84% of the baseline cost). The framework’s scalability is confirmed via simulations on IEEE 30- 39- 57- and 118-bus systems with execution times ranging from 118.8 to 561.5 s using the HiGHS solver on a constrained Google Colab environment. These findings highlight PHB as the most cost-effective and sustainable storage solution for large-scale renewable integration.
No more items...