Applications & Pathways
Hydrogen Pathways for Green Fertilizer Production: A Comparative Techno-economic Study of Electrolysis and Plasmalysis
Sep 2025
Publication
Decarbonizing ammonia production is critical to meeting global climate targets in agriculture. This study evaluates two hydrogen pathways plasmalysis and electrolysis at Ontario’s Courtright Complex using detailed techno-economic modeling. The natural gas–based plasma system achieves the lowest hydrogen cost ($1.35/kg) but incurs high annual fuel expenses ($297.7 M/y) and shows strong sensitivity to natural gas prices. Electrolysis powered by 110 MW PV 1700 MW wind 60 MW biomass 95 MWh battery storage and a 2.0 GW electrolyzer produces hydrogen at $2.07/kg with lower fuel costs ($29.7 M/y) and significant grid interaction (2.67 TWh/y imports and 1.89 TWh/y exports) enhancing operational flexibility. Over a 15-year horizon both pathways deliver substantial CO2 reductions (plasmalysis: 27000 kt; electrolysis: 26045 kt). Extending plant lifetimes from 10 to 30 y reduces the levelized cost of hydrogen from $2.25 to $1.91/kg in the plasmalysis case and from $1.52 to $1.18/kg in the electrolysis case while increasing overall net present cost. Although electrolysis requires higher capital investment ($5.53 B compared with $1.79 B) it demonstrates resilience to fuel price volatility and provides additional grid revenue. In contrast plasmalysis offers near-term cost advantages but remains dependent on fossil gas underscoring its role as a transitional rather than fully green option for ammonia decarbonization.
Determining Pilot Ignition Delay in Dual-Fuel Medium-Speed Marine Engines Using Methanol or Hydrogen
Jun 2025
Publication
Dual-fuel engines are a way of transitioning the marine sector to carbon-neutral fuels like hydrogen and methanol. For the development of these engines accurate simulation of the combustion process is needed for which calculating the pilot’s ignition delay is essential. The present work investigates novel methodologies for calculating this. This involves the use of chemical kinetic schemes to compute the ignition delay for various operating conditions. Machine learning techniques are used to train models on these data sets. A neural network model is then implemented in a dual-fuel combustion model to calculate the ignition delay time and is compared using a lookup table or a correlation. The numerical results are compared with experimental data from a dual-fuel medium-speed marine engine operating with hydrogen or methanol from which the method with best accuracy and fastest calculation is selected.
Combining Babool Wood-derived Producer Gas and Hydrogen with Biodiesel as Efficienct Strategies for Dual-fuel Diesel Engine in Advancing Sustainable Energy
Sep 2025
Publication
The present investigation aims to provide a comparative assessment of using hydrogen-enriched wood waste-derived producer gas (PG) for a dual-fuel diesel engine fueled with a 20% Jatropha biodiesel/80% diesel blend (BD20) with the traditional mode. The experiments were conducted at 23°bTDC of injection timing 240 bar of injection pressure 17.5:1 of compression ratio and 1500 rpm of engine speed under various engine loads. Gas carburetor induction (GCI) port injection (PI) and inlet manifold injection (IMI) methods were used to supply H2-enriched PG while B20 is directly injected into the combustion chamber. Among all the combinations the IMI method provided the highest brake thermal efficiency of 30.91% the lowest CO emission of 0.08% and smoke opacity discharge of 49.26 HSU while NOx emission reached 1744.32 ppm which was lower than that of the PI mode. Furthermore the IMI method recorded the highest heat release rate of 91.17 J/°CA and peak cylinder pressure of 83.29 bar reflecting superior combustion quality. Finally using the IMI method for H2-enriched PG in dual-fuel diesel engines could improve combustion efficiency reduce greenhouse gas emissions and improve fuel economy showing that the combination of BD20 with H2-enriched PG offers a cleaner more sustainable and economically viable technology.
Comparative Techno-economic Optimization of Microgrid Configurations Using Hybrid Battery-hydrogen Storage: NEOM Case Study, Saudi Arabia
Sep 2025
Publication
Renewable energy systems are at the core of global efforts to reduce greenhouse gas (GHG) emissions and to combat climate change. Focusing on the role of energy storage in enhancing dependability and efficiency this paper investigates the design and optimization of a completely sustainable hybrid energy system. Furthermore hybrid storage systems have been used to evaluate their viability and cost-benefits. Examined under a 100% renewable energy microgrid framework three setup configurations are as follows: (1) photovoltaic (PV) and Battery Storage System (BSS) (2) Hybrid PV/Wind Turbine (WT)/BSS and (3) Integrated PV/WT/BSS/Electrolyzer/ Hydrogen Tank/Fuel Cell (FC). Using its geographical solar irradiance and wind speed data this paper inspires on an industrial community in Neom Saudi Arabia. HOMER software evaluates technical and economic aspects net present cost (NPC) levelized cost of energy (COE) and operating costs. The results indicate that the PV/ BSS configuration offers the most sustainable solution with a net present cost (NPC) of $2.42M and a levelized cost of electricity (LCOE) of $0.112/kWh achieving zero emissions. However it has lower reliability as validated by the provided LPSP. In contrast the PV/WT/BSS/Elec/FC system with a higher NPC of $2.30M and LCOE of $0.106/kWh provides improved energy dependability. The PV/WT/BSS system with an NPC of $2.11M and LCOE of $0.0968/kWh offers a slightly lower cost but does not provide the same level of reliability. The surplus energy has been implemented for hydrogen production. A sensitivity analysis was performed to evaluate the impact of uncertainties in renewable resource availability and economic parameters. The results demonstrate significant variability in system performance across different scenarios
Human Toxicity Potential: A Lifecycle Evaluation in Current and Future Frameworks for Hydrogen-Based and Battery Electric Buses in the European Union
Sep 2025
Publication
In recent years governments have promoted the shift to low-emission transport systems with electric and hydrogen vehicles emerging as key alternatives for greener urban mobility. Evaluating zero- or near-zero tailpipe solutions requires a Lifecycle Assessment (LCA) approach accounting for emissions from energy production components and vehicle manufacturing. Such studies mainly address Greenhouse Gas (GHG) emissions while other pollutants are often overlooked. This study compares the Human Toxicity Potential (HTP) of Battery Electric Vehicles (BEVs) Fuel Cell Vehicles (FCVs) Hydrogen Internal Combustion Engine Vehicles (H2ICEVs) and hybrid H2ICEVs for public transport in the European Union. Current and future scenarios (2024 2030 2050) are examined considering evolving energy mixes and manufacturing impacts. Results underline that BEVs are characterized by the highest HTP in 2024 and that this trend is maintained even in future scenarios. As for hydrogen-based powertrains they show lower HTPs similar among them. This work underlines that current efforts must be intensified especially for BEVs to further limit harmful emissions from the mobility sector.
Learning from Arctic Microgrids: Cost and Resiliency Projections for Renewable Energy Expansion with Hydrogen and Battery Storage
Jun 2025
Publication
Electricity in rural Alaska is provided by more than 200 standalone microgrid systems powered predominantly by diesel generators. Incorporating renewable energy generation and storage to these systems can reduce their reliance on costly imported fuel and improve sustainability; however uncertainty remains about optimal grid architectures to minimize cost including how and when to incorporate long-duration energy storage. This study implements a novel multi-pronged approach to assess the techno-economic feasibility of future energy pathways in the community of Kotzebue which has already successfully deployed solar photovoltaics wind turbines and battery storage systems. Using real community load resource and generation data we develop a series of comparison models using the HOMER Pro software tool to evaluate microgrid architectures to meet over 90% of the annual community electricity demand with renewable generation considering both battery and hydrogen energy storage. We find that near-term planned capacity expansions in the community could enable over 50% renewable generation and reduce the total cost of energy. Additional build-outs to reach 75% renewable generation are shown to be competitive with current costs but further capacity expansion is not currently economical. We additionally include a cost sensitivity analysis and a storage capacity sizing assessment that suggest hydrogen storage may be economically viable if battery costs increase but large-scale seasonal storage via hydrogen is currently unlikely to be cost-effective nor practical for the region considered. While these findings are based on data and community priorities in Kotzebue we expect this approach to be relevant to many communities in the Arctic and Sub-Arctic regions working to improve energy reliability sustainability and security.
An Optimal Approach to the Pre-Implementation Value Assessment of Smart Energy Systems; A 'Green' Hydrogen Case Study
Aug 2025
Publication
Smart energy systems can be used to generate additional financial value by providing flexibility to the electricity network. It is fundamental to the effective economic implementation of these systems that an assessment can be made in advance to determine available value in comparison with any additional costs. The basic premise is that there is a distinct advantage in using similar algorithms to an actual smart energy system implementation for value assessment and that this is practical in this context which is confirmed in comparison with simpler modelling methods. Analysis has been undertaken using a ‘green’ hydrogen system case study of the impact of various simplifications to the value assessment algorithms used to speed computation time without sacrificing the decisionmaking potential of the output. The results indicate that for localised energy systems with a small number of controllable assets an rolling horizon optimisation model with a significant degree of temporal and component complexity is viable for planning phase value assessment requirements and would be a similar level of complexity to a computationally suitable implementation algorithm for actual asset control decision making.
Method for Multi-criteria and Mission-specific Component Dimensioning for Heavy-duty Fuel Cell Trucks
May 2025
Publication
Heavy-duty fuel cell trucks are a promising approach to reduce the CO2 emissions of logistic fleets. Due to their higher powertrain energy density in comparison to battery-electric trucks they are especially suited for long-haul applications while transporting high payloads. Despite these great advantages the fleet integration of such vehicles is made difficult due to high costs and limited performance in thermally critical environmental conditions. These challenges are addressed in the European Union (EU) funded project ESCALATE which aims to demonstrate high-efficiency zero-emission heavy-duty vehicle (zHDV) powertrains that provide a range of 800 km without refueling or recharging. Powertrain components and their corresponding thermal components account for a large part of the production costs. For vehicle users higher costs are only acceptable if a significantly higher benefit can be achieved. Therefore it is important to size these components for the actual vehicle mission to avoid oversizing. In this paper an optimization method which determines the optimum component sizes for a given mission scenario under consideration of multiple criteria (e.g. costs performance and range) is presented.
Off-grid Shore-to-ship Power System Optimisation with a Hydrogen-in-loop Buffering Scheme Drien by Hydrokinetic Wave-wind Energy
Oct 2025
Publication
The environmentally vulnerable Arctic’s harsh climate and remote geography demand innovative green energy solutions. This study introduces a hybrid off-grid system that integrates wave and wind energy with hydrogenelectricity conversion technologies. Designed to power cruise ships at berth fuel-cell hybrid electric vehicles and residential heating the system tackles the challenge of energy variability through dual optimization schemes. External optimization identifies a cost-effective architecture achieving a net present cost of $1.1M and a levelized hydrogen cost of $20.1/kg without a fuel cell. Internal optimizations employing multi-objective game theory and HYBRID algorithms further improve performance reducing the net present cost to $666K with a levelized hydrogen cost of $13.74/kg (game theory) and $729K with a levelized hydrogen of $15.63/kg (HYBRID). A key innovation is hydrokinetic turbines which streamline the design by cutting cumulative cash flow requirements by $470K from $1.85M to $1.38M. This approach prioritizes intelligent energy management shifting reliance from variable wind and wave inputs to optimized electrolyzer and battery operations. These results underscore the feasibility of cost-effective and scalable renewable energy systems and provide a compelling blueprint for addressing energy challenges in remote and resource-constrained environments.
Market Potential of Hydrogen Fuel Cell Vehicles in Beijing: A Spatial Agent-based Model Approach
Oct 2025
Publication
Hydrogen fuel cell vehicles (HFCVs) are vital for advancing the hydrogen economy and decarbonizing the transportation sector. However research on HFCV market dynamics in passenger vehicles is limited especially incorporating both market competition from other vehicle types and the comprehensive supply–demand market dynamics. To bridge this gap our study proposed a spatial agent-based model to simulate the HFCV market evolution with the aim of finding effective strategies and policy implications for breaking the diffusion dilemma of the HFCV market. We calibrated the model using survey data (N=1065) collected from Beijing and evaluated its performance across five “What-If” scenarios. Results indicate that HFCVs and hydrogen stations are difficult to penetrate under the current conditions despite HFCV applicants and market share growing by 37.5% and 15.63% respectively. Consumer perceptions on cost social and environment have greater impacts on HFCV proliferation than facility availability. The HFCV purchase subsidy has much greater impact than the technological learning rate greatly accelerating its market emergence timing. Finally HFCVs’ diffusion significantly influences the market of battery electric vehicles.
Predict the Performance of Hydrogen Fueled Vehicle and their Refueling tation through the Data Analysis Based Approach
Jun 2025
Publication
The widespread adoption of hydrogen-fueled vehicles (HFVs) and the deployment of Hydrogen Refueling Stations (HRS) hinge on the ability to accurately predict system performance and ensure operational reliability. This study proposes a novel predictive framework integrating mathematical modeling state-space analysis and advanced data mining techniques supported by reliability analysis to evaluate the performance of HFVs and their associated refueling infrastructure. Utilizing a public dataset of 500 real-time operational data points key performance indicators are statistically analyzed. A significant negative correlation (r = −0.56) between hydrogen consumption and maximum vehicle range is identified highlighting that improved hydrogen efficiency directly extends travel range. The average maximum range is 555.21 km with a standard deviation of 87.09 km and a median of 563.65 km indicating strong consistency across vehicles. These findings underscore the importance of optimizing fuel efficiency to enhance system sustainability and inform the design and operation of next-generation hydrogen mobility solutions. The proposed approach offers a robust foundation for performance forecasting infrastructure planning and policy development in hydrogen-based transportation systems.
Integrated Renewable Energy Supply Architecture for Advancing Hydrogen Symbiosis and Eco Synergistic Smart Grid Interactions with Next Generation Combustion Technologies
Jul 2025
Publication
This study introduces the Smart Grid Hybrid Electrolysis-and-Combustion System (SGHE-CS) designed to seamlessly integrate hydrogen production storage and utilization within smart grid operations to maximize renewable energy use and maintain grid stability. The system achieves a hydrogen production efficiency of 98.5% indicating the effective conversion rate of electrical energy to hydrogen via PEM electrolysis. Combustion efficiency reaches 98.1% reflecting the proportion of hydrogen energy successfully converted into usable power through advanced staged combustion. Storage and transportation efficiency is 96.3% accounting for energy losses during hydrogen compression storage and delivery. Renewable integration efficiency is 97.3% representing the system’s capacity to utilize variable renewable energy inputs without curtailment. Operational versatility is 99.3% denoting the system’s ability to maintain high performance across load demands and grid conditions. Real-time monitoring and adaptive control strategies ensure reliability and resilience positioning SGHE-CS as a promising solution for sustainable low-carbon energy infrastructure.
Bibliometric Analysis of Hydrogen-Powered Vehicle Safety and Reliability Research: Trends, Impact, and Future Directions
Jun 2025
Publication
Research on and the demand for hydrogen-powered vehicles have grown significantly over the past two decades as a solution for sustainable transportation. Bibliometric analysis helps to assess research trends key contributions and the impact of studies focused on the safety and reliability of hydrogen-powered vehicles. This study provides a novel methodology for bibliometric analysis that systematically evaluates the global research landscape on hydrogen-powered vehicle reliability using Scopus-indexed publication data (1965 to 2024). Eighteen key parameters were identified for this study that are often used by researchers for the bibliometric analysis of hydrogen-related studies. Data analytics VOSviewer-based visualization and research impact indicators were integrated to comprehensively assess publication trends key contributors and citation networks. The analysis revealed that hydrogen-powered vehicle reliability research has experienced significant growth over the past two decades with leading contributions from high-impact journals renowned institutions and influential authors. The present study emphasizes the significance of greater funding as well as open-access distribution. Furthermore while major worldwide institutions have significant institutional relationships there are gaps in real-world hydrogen infrastructure evaluations large-scale experimental validation and policy-driven research.
Evaluation of Factors for Adoption of Alternative-Fuel-Based Vehicles
Sep 2025
Publication
The transportation industry significantly contributes to greenhouse gas (GHG) emissions. Federal and provincial governments have implemented strategies to decrease dependence on gasoline and diesel fuels. This encompasses promoting the adoption of electric cars (EVs) and biofuel alternatives investing in renewable energy sources and enhancing public transit systems. There is a growing focus on enhancing infrastructure to facilitate active transportation modes like cycling and walking which provide the combined advantages of decreasing emissions and advancing public health. In this paper we propose a System Dynamics simulation model for evaluating factors for the adoption of alternative-fuel vehicles such as EVs biofuel vehicles bus bikes and hydrogen vehicles. Five factors— namely customer awareness government initiatives cost of vehicles cost of fuels and infrastructure developments—to increase the adoption of alternative-fuel vehicles are studied. Two scenarios are modeled: A baseline scenario that follows the existing trends in transportation (namely the use of gasoline vehicles) Scenario 1 which prioritizes greater adoption of electric vehicles (EVs) and biofuel-powered vehicles and Scenario 2 which prioritizes hydrogen fuel-based vehicles and improves biking culture. The simulation findings show that all scenarios achieve reductions in GHG emissions compared to the baseline with Scenario 2 showing the lowest emissions. The proposed work is useful for transport decision makers and municipal administrators in devising policies for reducing overall GHG emissions and this also aligns with Canada’s net zero goals.
Multi-objective Optimal Scheduling of Islands Considering Offshore Hydrogen Production
Jul 2025
Publication
Ocean islands possess abundant renewable energy resources providing favorable conditions for developing offshore clean energy microgrids. However geographical isolation poses significant challenges for direct energy transfer between islands. Recent electrolysis and hydrogen storage technology advancements have created new opportunities for distributed energy utilization in these remote areas. This paper presents a low-carbon economic dispatch strategy designed explicitly for distant oceanic islands incorporating energy self-sufficiency rates and seasonal hydrogen storage (SHS). We propose a power supply model for offshore islands considering hydrogen production from offshore wind power. The proposed model minimizes operational and carbon emission costs while maximizing energy self-sufficiency. It considers the operational constraints of the island’s energy system the offshore transportation network the hydrogen storage infrastructure and the electricityhydrogen-transportation coupling of hydrogen storage (HS) and seasonal hydrogen storage (SHS) services. To optimize the dispatch process this study employs an improved Grey Wolf Optimizer (IGWO) combined with the Differential Evolution method to enhance population diversity and refine the position updating mechanism. Simulation results demonstrate that integrating HS and SHS effectively enhances energy self-sufficiency and reduces carbon emissions. For instance hydrogenation costs decreased by 21.4% after optimization and the peak-valley difference was reduced by 16%. These findings validate the feasibility and effectiveness of the proposed approach.
The Green Transition in Commercial Aviation
Aug 2025
Publication
This paper provides a comprehensive review of novel aviation technologies analyzing the advancements and challenges associated with the transition to sustainable air transport. The study explores three key pillars: unconventional aerodynamic configurations novel propulsion systems and advanced materials. Unconventional airframe architectures such as box-wing blended-wing-body and truss-braced wings demonstrate potential for improved aerostructural efficiency and reduced fuel consumption compared to traditional tube-and-wing designs. Aeropropulsive innovations as distributed propulsion boundary layer ingestion and advanced turbofan configurations are also promising in this regard. Significant progress in propulsion technologies including hybrid-electric hydrogen and extensive use of sustainable aviation fuels (SAF) plays a pivotal role in reducing air transport greenhouse gas emissions. However energy storage limitations and infrastructure constraints remain critical challenges and hence in the near future SAF could represent the most feasible solution. The introduction of advanced lightweight materials could further enhance aircraft overall performance. The results presented and discussed in this paper show that there is no a unique solution to the problem of the sustainability of air transport but a combination of all the novel technologies is necessary to achieve the ambitious environmental goals for the air transport of the future.
Hydrogen Microgrids to Facilitate the Clean Energy Transition in Remote, Northern Communities
Oct 2025
Publication
Most remote and northern communities rely on diesel for their electrical and thermal energy needs. Communities and governments are working toward diesel exit strategies but the role of hydrogen technologies has not been explored. These could serve both electrical and thermal demand reduce emissions and enhance energy security and community ownership. Here we determine the installed capacities costs hydrogen storage needs and water resource requirements of hydrogen microgrids across a large diverse sample of communities. We also compare the cost of hydrogen microgrids to that of diesel microgrids. Our results optimize resource deployment demonstrate how sub-components must operate to serve both demand types and yield insights on storage and resource needs. We find that hydrogen microgrids are cheaper in levelized cost terms than diesel systems in 28 of 37 communities investigated; if wind power capital costs escalate to CAD 20000/kW as recently seen in one project only 3 of the 37 communities net hydrogen microgrids that are cheaper than diesel variants. Hydrogen storage plays a large role in maintaining reliability and reducing cost—both it and water needs are modest. The former can be met with current technologies.
Emerging Green Steel Markets Surrounding the EU Emissions Trading System and Carbon Border Adjustment Mechanism
Oct 2025
Publication
The global steel industry accounts for 8–10 % of global CO2 emissions and requires deep decarbonisation for achieving the targets set in the Paris Agreement. However no low-emission primary steel production technology has yet been commercially feasible or deployed. Through analysing revisions and additions of European Union climate policy we show that green hydrogenbased steelmaking in competitive locations achieves cost-competitiveness on the European market starting 2026. If the deployment of competitive lowemission steelmaking is insufficient we show that the European steel industry loses competitiveness vis-à-vis countries with access to low-cost renewable energy. Therefore we assess the options for the European steel industry to relocate the energy-intensive ironmaking step and trade Hot Briquetted Iron for rapid deep decarbonisation of the European steel industry. Lastly we discuss complementing policy options to enhance the Carbon Border Adjustment Mechanism’s strategic value through European Union-lead global climate cooperation and the possibility of sparking an international decarbonisation race.
Designing Off-grid Hybrid Renewable Energy Systems under Uncertainty: A Two-Stage Stochastic Programming Approach
Aug 2025
Publication
The decarbonization of remote energy systems presents both technical and economic challenges due to their dependance on fossil fuels and the variability of renewable energy sources. This study introduces a Two-Stage Stochastic Programming approach to optimize Hybrid Renewable Energy Systems under uncertainty in renewable energy production. The methodology is applied to the island of Pantelleria aiming to minimize Total Annualized Costs and CO2 emissions using an ε-constraint approach. Results show that within the set of optimized configurations stricter CO2 emissions constraints increase costs due to the need for oversized components to ensure supply reliability. Nevertheless even the zeroemissions scenario offers significant economic benefits compared to the current diesel-based system. Total Annualized Costs are reduced from 15.5 M€ to 8.10 M€ in the deterministic case and to 9.37 M€ in the stochastic one. The additional cost in the stochastic configuration is offset by improved reliability ensuring demand is met under all scenarios. A sensitivity analysis on electricity demand reveals the necessity of further larger components leading to a 27.0% cost increase in a fully renewable scenario with stochastic optimization for a 10% demand increase. These findings highlight the importance of stochastic optimization in designing cost-effective off-grid renewable energy systems.
Predictive URANS/PDF Modeling of Unsteady-State Phenomena in Turbulent Hydrogen–Air Flames
Sep 2025
Publication
The escalating global demand for primary energy—still predominantly met by conventional carbon-based fuels—has led to increased atmospheric pollution. This underscores the urgent need for alternative energy strategies capable of reducing carbon emissions while meeting global energy requirements. Hydrogen as a clean combustible fuel offers a promising alternative to hydrocarbons producing neither soot CO2 nor unburned hydrocarbons. Although nitrogen oxides (NOx) are the primary combustion by-products their formation can be mitigated by controlling flame temperature. This study investigates the viability of hydrogen as a clean energy vector by simulating an unsteady turbulent non-premixed hydrogen jet flame interacting with an air co-flow. The numerical simulations employ the Unsteady Reynolds-Averaged Navier–Stokes (URANS) framework for efficient and accurate prediction of transient flow behavior. Turbulence is modeled using the Shear Stress Transport (SST k-ω) model which enhances accuracy in high Reynolds number reactive flows. The combustion process is described using a presumed Probability Density Function (PDF) model allowing for a statistical representation of turbulent mixing and chemical reaction. The simulation results are validated by comparison with experimental temperature and mixture fraction data demonstrating the reliability and predictive capability of the proposed numerical approach.
Integrated Optimization of Energy Storage and Green Hydrogen Systems for Resilient and Sustainable Future Power Grids
Jul 2025
Publication
This study presents a novel multi-objective optimization framework supporting nations sustainability 2030–2040 visions by enhancing renewable energy integration green hydrogen production and emission reduction. The framework evaluates a range of energy storage technologies including battery pumped hydro compressed air energy storage and hybrid configurations under realistic system constraints using the IEEE 9-bus test system. Results show that without storage renewable penetration is limited to 28.65% with 1538 tCO2/day emissions whereas integrating pumped hydro with battery (PHB) enables 40% penetration cuts emissions by 40.5% and reduces total system cost to 570 k$/day (84% of the baseline cost). The framework’s scalability is confirmed via simulations on IEEE 30- 39- 57- and 118-bus systems with execution times ranging from 118.8 to 561.5 s using the HiGHS solver on a constrained Google Colab environment. These findings highlight PHB as the most cost-effective and sustainable storage solution for large-scale renewable integration.
Hydrogen Leakage Localization Technology in Hydrogen Refueling Stations Combining RL and Hidden Markov Models
Jul 2025
Publication
With the global energy structure shifting towards clean and efficient hydrogen energy the safety management issues of hydrogen refueling stations are becoming increasingly prominent. To address these issues a hydrogen leak localization algorithm for hydrogen refueling stations based on a combination of reinforcement learning and hidden Markov models is proposed. This method combines hidden Markov model to construct a probability distribution model for hydrogen leakage and diffusion simulates the propagation probability of hydrogen in different grid cells and uses reinforcement learning to achieve fast and accurate localization of hydrogen leakage events. The outcomes denoted that the training accuracy reached 95.2% with an F1 value of 0.961 indicating its high accuracy in hydrogen leak localization. When the wind speed was 0.8 m/s the mean square error of the raised method was 0.03 and when the wind speed was 1.0 m/s the mean square error of the raised method was 0.04 proving its good robustness. After 50 localization experiments the proposed algorithm achieves a localization success rate of 93.7% and an average computation time of 42.8 s further demonstrating its high accuracy and computational efficiency. The proposed hydrogen leakage location algorithm has improved the accuracy and efficiency of hydrogen leakage location providing scientific basis and technical guarantee for the safe operation of future hydrogen refueling stations.
Innovative Aircraft Heat Exchanger Integration for Hydrogen-electric Propulsion
Sep 2025
Publication
Propulsion systems in aircraft using reciprocating engines often face the challenge of managing thermal loads effectively. This problem is similar to the utilisation of polymer electrolyte membrane fuel cell systems which despite their high efficiency emit a high proportion of heat when converting chemical energy into electrical energy. Transfer of the rejected heat to the air is efficiently performed by heat exchangers. Since convective heat transfer is physically linked to fluid friction at the heat exchanger walls a pressure loss occurs. In a high-speed flow regime of the aircraft during cruise the integration of heat exchangers combined with a fan stage inside a nacelle (thus forming an impeller configuration) represents a promising approach for the dual benefit of dissipating excess heat and harnessing it for additional thrust generation through the ram jet effect. Striving for enhanced thrust performance of hydrogen electric commercial aircraft this paper presents the results of a parameter study based on a 1D-modelling approach. The focus is placed on the influence of design and operating parameters (ambient conditions fan pressure ratio diffusion ratio airside temperature difference) on performance and sizing of the proposed propulsion system. It is shown that the proposed system performs best at an altitude of 11 km and with increasing freestream Mach number. Furthermore the main challenges related to the combination of a thrust generation system with a heat exchanger in terms of sizing in particularly the required heat exchanger dimensions under different operating conditions are discussed.
Narratives and Counter-narratives in Sustainability Transitions: A Study on the Port of Rotterdam from a Multi-level Perspectives
Sep 2025
Publication
Infrastructure projects can act as niches for innovation development contribute to strategic goals of network owners and drive broader systemic transitions. However limited research has examined how sustainability transitions are shaped through narratives and counternarratives around infrastructure projects. Using a case study of the port of Rotterdam we analyze how three embedded projects - Maasvlakte 2 RDM Campus and the Hydrogen Pipeline - reflected and shaped evolving narratives and counter-narratives over a 20-year sustainability transition. Grounded in the Multi-Level Perspective (MLP) the study demonstrates how an infrastructure owner like the Port of Rotterdam Authority (PoRA) strategically mobilized narrative framing to reshape existing regimes over time. The study contributes to the debate on project management and transition studies by highlighting how infrastructure project owners respond to transition-related tensions by shaping defending and adapting project narratives over time thereby influencing sustainability trajectories.
Comparative Review of Natural Gas Vehicles During the Energy Transition
Jul 2025
Publication
The global climate crisis necessitates the urgent implementation of sustainable practices and carbon emission reduction strategies across all sectors. Transport as a major contributor to greenhouse gas emissions requires transitional technologies to bridge the gap between fossil fuel dependency and renewable energy systems. Natural gas recognised as the cleanest fossil-derived fuel with approximately half the CO2 emissions of coal and 75% of oil presents a potential transitional solution through Natural Gas Vehicles (NGVs). This manuscript presents several distinctive contributions that advance the understanding of Natural Gas Vehicles within the contemporary energy transition landscape while synthesising updated emission performance data. Specifically the feasibility and sustainability of NGVs are investigated within the energy transition framework by systematically incorporating recent technological developments and environmental economic and infrastructure considerations in comparison to conventional vehicles (diesel and petrol) and unconventional alternatives (electric and hydrogen-fuelled). The analysis reveals that NGVs can reduce CO2 emissions by approximately 25% compared to petrol vehicles on a well-to-wheel basis with significant reductions in NOx and particulate matter. However these environmental benefits depend heavily on the source and type of natural gas used (CNG or LNG) while economic viability hinges largely on governmental policies and infrastructure development. The findings suggest that NGVs can serve as an effective transitional technology in the transport sector’s sustainability pathway particularly in regions with established natural gas infrastructure but require supportive policy frameworks to overcome implementation barriers.
A real Assessment in the Design of a Try-Out Grid-Tied Solar PV-Green Hydrogen-Battery Storage Microgrid System for Industrial Application in South Africa
Sep 2025
Publication
The carbon emission reduction mission requires a multifaceted approach in which green hydrogen is expected to play a key role. The accelerated adoption of green hydrogen technologies is vital to this journey towards carbon neutrality by 2050. However the energy transition involving green hydrogen requires a data-driven approach to ensure that the benefits are realised. The introduction of testing sites for green hydrogen technologies will be crucial in enabling the performance testing of various components within the green hydrogen value chain. This study involves an areal assessment of a selected test site for the installation of a grid-tied solar PV-green hydrogen-battery storage microgrid system at a factory facility in South Africa. The evaluation includes a site energy audit to determine the consumption profile and an analysis of the location’s weather pattern to assess its impact on the envisaged microgrid. Lastly a design of the microgrid is conceptualised. A 39 kW photovoltaic system powers the microgrid which comprises a 22 kWh battery storage system 10 kW of electrolyser capacity an 8 kW fuel cell and an 800 L hydrogen storage capacity between 30 and 40 bars.
Green Hydrogen Production Study in Existing Oil Refinery with Evaluating Technical, Economic, and Environmental Outcomes
Oct 2025
Publication
Green hydrogen offers a sustainable alternative source of fossil fuels to compensate for the increasing energy demand. This study addresses the increasing energy demand and the need for sustainable alternatives to fossil fuels by examining the production of green hydrogen in an existing Egyptian oil refinery. The primary objective is to evaluate the technical economic and environmental outcomes of integrating green hydrogen to increase the refinery’s hydro processing capacity. The methodology involves the use of water electrolysis powered exclusively by renewable electricity from a 60 MW solar installation with a panel surface area of 660000 m². A simulation model of alkaline electrolyzer skids was developed to assess the production of an additional 1260 kg/h of hydrogen representing a 15% increase over the existing Steam Methane Reforming (SMR) capacity. The environmental impact was quantified by calculating the reduction in CO₂ and equivalent emissions while an economic forecasting analysis was conducted to project the production costs of green versus grey hydrogen. The main results indicate that the integration is technically feasible and environmentally beneficial with a significant reduction in the refinery’s carbon footprint. Economically the study projects that by 2028 the production cost of green hydrogen will fall to 1.56 USD/kg H₂ becoming more cost-effective than grey hydrogen at 1.65 USD/kg H₂ largely due to the influence of carbon taxes and credits. This study underscores the transformative potential of green hydrogen in decarbonizing industrial processes offering a viable pathway for refineries to contribute to global climate change mitigation efforts.
TwinP2G: A Software Application for Optimal Power-to Gas Planning
Sep 2025
Publication
This paper presents TwinP2G a software application for optimal planning of investments in power-to-gas (PtG) systems. TwinP2G provides simulation and optimization services for the techno-economic analysis of user-customized energy networks. The core of TwinP2G is based on power flow simulation; however it supports energy sector coupling including electricity green hydrogen natural gas and synthetic methane. The framework provides a user-friendly user interface (UI) suitable for various user roles including data scientists and energy experts using visualizations and metrics on the assessed investments. An identity and access management mechanism also serves the security and authorization needs of the framework. Finally TwinP2G revolutionizes the concept of data availability and data sharing by granting its users access to distributed energy datasets available in the EnerShare Data Space. These data are available to TwinP2G users for conducting their experiments and extracting useful insights on optimal PtG investments for the energy grid.
A Comprehensive Review of Green Hydrogen-based Hybrid Energy Systems: Technologies, Evaluation, and Process Safety
Aug 2025
Publication
The reliability and sustainability of multi-energy networks are increasingly critical in addressing modern energy demands and environmental concerns. Hydrogen-based hybrid energy systems can mitigate the challenges of renewable energy utilization such as intermittency grid stability and energy storage by integrating hydrogen generation and electricity storage from renewable sources such as solar and wind. Therefore this review offers a comprehensive evaluation of the environmental economic and technological aspects of green hydrogen-based hybrid energy systems particularly highlighting improvements in terms of the economics of fuel cell and electrolysis procedures. It also highlights new approaches such as hybrid energy management strategies and power-to-gas (PtG) conversion to enhance the system’s dependability and resilience. Analyzing the role of green hydrogen-based hybrid energy systems in supporting global climate goals and improving energy security underscores their high potential to make a significant contribution to carbon-neutral energy networks and provide policymakers with useful recommendations for developing guidelines. In addition the social aspect of hydrogen systems like energy equity and community engagement towards a hydrogen-based society provides reasons for the continued development of next-generation energy systems.
High-Performance Two-Stroke Opposed-Piston Hydrogen Engine: Numerical Study on Injection Strategies, Spark Positioning and Water Injection to Mitigate Pre-Ignition
Sep 2025
Publication
In the pursuit of zero-emission mobility hydrogen represents a promising fuel for internal combustion engines. However its low volumetric energy density poses challenges especially for high-performance applications where compactness and lightweight design are crucial. This study investigates the feasibility of an innovative hydrogen-fueled two-stroke opposed-piston (2S-OP) engine targeting a specific power of 130 kW/L and an indicated thermal efficiency above 40%. A detailed 3D-CFD analysis is conducted to evaluate mixture formation combustion behavior abnormal combustion and water injection as a mitigation strategy. Innovative ring-shaped multi-point injection systems with several designs are tested demonstrating the impact of injector channels’ orientation on the final mixture distribution. The combustion analysis shows that a dual-spark configuration ensures faster combustion compared to a single-spark system with a 27.5% reduction in 10% to 90% combustion duration. Pre-ignition is identified as the main limiting factor strongly linked to mixture stratification and high temperatures. To suppress it water injection is proposed. A 55% evaporation efficiency of the water mass injected lowers the in-cylinder temperature and delays pre-ignition onset. Overall the study provides key design guidelines for future high-performance hydrogen-fueled 2S-OP engines.
Sizing of Fuel Distribution and Thermopropulsion Systems for Liquid-Hydrogen-Powered Aircraft Using an MBSE Approach
Jun 2025
Publication
Hydrogen-powered aircraft constitute a transformative innovation in aviation motivated by the imperative for sustainable and environmentally friendly transportation solutions. This paper aims to concentrate on the design of hydrogen powertrains employing a system approach to propose representative design models for distribution and propulsion systems. Initially the requirements for powertrain design are formalized and a usecase-driven analysis is conducted to determine the functional and physical architectures. Subsequently for each component pertinent to preliminary design an analytical model is proposed for multidisciplinary analysis and optimization for powertrain sizing. A doublewall pipe model incorporating foam and vacuum multi-layer insulation was developed. The internal and outer pipes sizing were performed in accordance with standards for hydrogen piping design. Valves sizing is also considered in the present study following current standards and using data available in the literature. Furthermore models for booster pumps to compensate pressure drop and high-pressure pumps to elevate pressure at the combustion chamber entrance are proposed. Heat exchanger and evaporator models are also included and connected to a burning hydrogen engine in the sizing process. An optimal liner pipe diameter was identified which minimizes distribution systems weight. We also expect a reduction in engine length and weight while maintaining equivalent thrust.
Adaptive Robust Energy Management of Smart Grid with Renewable Integrated Energy System, Fuel Cell and Electric Vehicles Stations and Renewable Distributed Generation
Aug 2025
Publication
This study expresses energy scheduling in intelligent distribution grid with renewable resources charging stations and hydrogen stations for electric vehicles and integrated energy systems. In deterministic model objective function minimizes total operating energy losses and environmental costs of grid. Constraints are power flow equations network operating and voltage security limits operating model of renewable resources electric vehicle stations and integrated energy systems. Scheme includes uncertainties in load renewable resources charging and hydrogen stations and energy prices. Robust optimization uses to obtain an operation that is robust against the forecast error of the aforementioned uncertainties. Modeling electric vehicles station and aforementioned integrated energy systems considering economic operational and environmental objectives of network operator as objective function extracting a robust model of aforementioned uncertainties in order to extract a solution that is robust against the uncertainty prediction error and examining ability of energy management to improve voltage security of grid are among innovations of this paper. Numerical results obtained from various cases prove the aforementioned advantages and innovations. Energy management of resources charging and hydrogen stations and aforementioned integrated systems lead to scheme being robust against 35% of the prediction error of various uncertainties. In these conditions scheme has improved economic operational environmental and voltage security conditions by about 33.6% 7%- 37.4% 44.4% and 24.7% respectively compared to load flow studies. By applying optimal penalty price for energy losses and pollution pollution and energy losses in the network are reduced by about 45.15% and 34.1% respectively.
Effect of Hydrogen Injection Strategy on Combustion and Emissions of Ammonia-Hydrogen Sustainable Engines
Oct 2025
Publication
Driven by the global energy transition and the dual carbon goals developing low-carbon and zero-carbon alternative fuels has become a core issue for sustainable development in the internal combustion engine sector. Ammonia is a promising zero-carbon fuel with broad application prospects. However its inherent combustion characteristics including slow flame propagation high ignition energy and narrow flammable range limit its use in internal combustion engines necessitating the addition of auxiliary fuels. To address this issue this paper proposes a composite injection technology combining “ammonia duct injection + hydrogen cylinder direct injection.” This technology utilizes highly reactive hydrogen to promote ammonia combustion compensating for ammonia’s shortcomings and enabling efficient and smooth engine operation. This study based on bench testing investigated the effects of hydrogen direct injection timing (180 170 160 150 140◦ 130 120 ◦CA BTDC) hydrogen direct injection pressure (4 5 6 7 8 MPa) on the combustion and emissions of the ammonia–hydrogen engine. Under hydrogen direct injection timing and hydrogen direct injection pressure conditions the hydrogen mixture ratios are 10% 20% 30% 40% and 50% respectively. Test results indicate that hydrogen injection timing that is too early or too late prevents the formation of an optimal hydrogen layered state within the cylinder leading to prolonged flame development period and CA10-90. The peak HRR also exhibits a trend of first increasing and then decreasing as the hydrogen direct injection timing is delayed. Increasing the hydrogen direct injection pressure to 8 MPa enhances the initial kinetic energy of the hydrogen jet intensifies the gas flow within the cylinder and shortens the CA0-10 and CA10-90 respectively. Under five different hydrogen direct injection ratios the CA10- 90 is shortened by 9.71% 11.44% 13.29% 9.09% and 13.42% respectively improving the combustion stability of the ammonia–hydrogen engine.
Preliminary Feasibility Study of Using Hydrogen as a Fuel for an Aquaculture Vessel in Tasmania, Australia
Oct 2025
Publication
Decarbonising aquaculture support vessels is pivotal to reducing greenhouse gas (GHG) emissions across both the aquaculture and maritime sectors. This study evaluates the technical and economic feasibility of deploying hydrogen as a marine fuel for a 14.95 m net cleaning vessel (NCV) operating in Tasmania Australia. The analysis retains the vessel’s original layout and subdivision to enable a like-for-like comparison between conventional diesel and hydrogen-based systems. Two options are evaluated: (i) replacing both the main propulsion engines and auxiliary generator sets with hydrogen-based systems— either proton exchange membrane fuel cells (PEMFCs) or internal combustion engines (ICEs); and (ii) replacing only the diesel generator sets with hydrogen power systems. The assessment covers system sizing onboard hydrogen storage integration operational constraints lifecycle cost and GHG abatement. Option (i) is constrained by the sizes and weights of PEMFC systems and hydrogen-fuelled ICEs rendering full conversion unfeasible within current spatial and technological limits. Option (ii) is technically feasible: sixteen 700 bar cylinders (131.2 kg H2 total) meet one day of onboard power demand for net-cleaning operations with bunkering via swap-and-go skids at the berth. The annualised total cost of ownership for the PEMFC systems is 1.98 times that of diesel generator sets while enabling annual CO2 reductions of 433 t. The findings provide a practical decarbonisation pathway for small- to medium-sized service vessels in niche maritime sectors such as aquaculture while clarifying near-term trade-offs between cost and emissions.
Effect of Hydrogen-Containing Fuel on the Mechanical Properties of an Aluminum Alloy ICE Piston
Oct 2025
Publication
The transition to cleaner hydrogen-containing fuels is critical for reducing the environmental impact of marine infrastructure yet their potential effects on the durability and mechanical reliability of engine components remain a significant engineering challenge. Although aluminum alloys are generally regarded as less susceptible to hydrogeninduced degradation and are widely applied in internal combustion engine components experimental data obtained under real operating conditions with hydrogen-containing fuel mixtures remain insufficient to fully assess all potential risks. In the present study two identical low-power gasoline engine–generators were operated for 220 h on fuels with and without hydrogen. Post-test analysis included mechanical testing and microstructural characterization of aluminum alloy pistons for comparative assessment. The measured values of ultimate tensile strength elongation and deflection maximum bending force and effective stress concentration factor revealed pronounced property degradation in the piston operated on the gasoline–hydrogen mixture compared to both the new piston and the one run on pure gasoline. Microstructural analysis provided a plausible explanation for this degradation. The results of this preliminary study provide insights into the effects of hydrogen-containing fuel on the mechanical performance of engine component alloys contributing to the development of safer and more reliable marine energy systems.
Physics-Informed Co-Optimization of Fuel-Cell Flying Vehicle Propulsion and Control Systems with Onboard Catalysis
Oct 2025
Publication
Fuel-cell flying vehicles suffer from limited endurance while ammonia decomposed onboard to supply hydrogen offers a carbon-free high-density solution to extend flight missions. However the system’s performance is governed by a multi-scale coupling between propulsion and control systems. To this end this paper introduces a novel optimization paradigm termed physics-informed gradient-enhanced multi-objective optimization (PIGEMO) to simultaneously optimize the ammonia decomposition unit (ADU) catalyst composition powertrain sizing and flight control parameters. The PI-GEMO framework leverages a physics-informed neural network (PINN) as a differentiable surrogate model which is trained not only on sparse simulation data but also on the governing differential equations of the system. This enables the use of analytical gradient information extracted from the trained PINN via automatic differentiation to intelligently guide the evolutionary search process. A comprehensive case study on a flying vehicle demonstrates that the PIGEMO framework not only discovers a superior set of Pareto-optimal solutions compared to traditional methods but also critically ensures the physical plausibility of the results.
Experimental Thermal and Environmental Impact Performance Evaluations of Hydrogen-enriched Fuels for Power Generation
Oct 2025
Publication
The transition to a low-carbon energy future requires a multi-faceted approach including the enhancement of existing power generation technologies. This study provides a comprehensive experimental evaluation of hydrogen enrichment as a strategy to improve the performance and reduce the emissions of a power generator. A 3.65 kW power generator that is equipped with spark-ignition engine is systematically tested with five distinct base fuels: gasoline propane methane ethanol and methanol. Each fuel is volumetrically blended with pure hydrogen in ratios of 5 % 10 % 15 % and 20 % using a custom-developed dual-fuel carburetor. The key parameters including exhaust emissions (CO2 CO HC NOx) cylinder exit temperature electrical power output and thermodynamic efficiencies (energy and exergy) are meticulously measured and analyzed. The results reveal that hydrogen enrichment is a powerful tool for decarbonization consistently reducing carbon-based emissions across all fuels. At a 20 % hydrogen blend CO2 emissions are reduced by 22–31 % CO emissions by 39–60 % and HC emissions by 21–60 %. This environmental benefit however is accompanied by a critical trade-off: a severe increase in NOx emissions which rose by 200–420 % due to significantly elevated combustion temperatures. The power outputs are increased by 2–16 % with hydrogen addition enabling lower-energy–density fuels like methane and propane to achieve performance parity with gasoline. Thermodynamic analysis confirms these gains with energy efficiency showing marked improvement particularly for methane which has increased from 42.0 % to 49.9 %. While hydrogen enrichment presents a viable pathway for enhancing engine performance and reducing the carbon emissions of power generators the profound increase in NOx necessitates the integration of advanced control and after-treatment systems for its practical and environmentally responsible deployment.
Development of a MILP Optimization Framework to Design Grid-connected Microgrids: Enhancing Operational Synergy Among Wind, Solar, Batteries, and Hydrogen Storage
Sep 2025
Publication
By integrating Renewable Energy Sources (RES) and storage devices Hybrid Energy Systems (HESs) represent a promising solution for decarbonizing isolated and remote communities. Proper sizing and management of systems comprising a variety of components requires however more advanced methods than conventional energy systems. This study proposes a novel Mixed Integer Linear Programming (MILP) framework for the simultaneous design of a grid-connected HES supported by renewable generators. Unlike the standard design approach based on parametric dispatch strategies this framework simultaneously optimizes the energy management of each system configuration under analysis. The novel approach is applied to size a combination of Li-Ion batteries an alkaline electrolyzer H2 tanks and a PEM fuel cell to maximize the NPV of a system including a wind turbine and a photovoltaic field. Managing thousands of variables at the same time the framework simultaneously optimizes how all components are used to fulfill the load and balance the input/export of power within a limited electrical network. Results show that the combination of BESS and H2 can provide for both the need for short- and long-term energy storage and that the MILP optimization can effectively allocate the energy flows and produce 558 k€ of revenues per year 15.5% of the initial investment cost of 3.6 M€. The investment cost of the system is recovered in six years and presents an NPV of 5.51 M€ after 20 years. Results from the proposed method are also compared to common approaches based on rule-based parametric dispatch strategies demonstrating the superiority of MILP for the design and management of complex HESs.
Hydrogen-Enabled Microgrids for Railway Applications: A Seasonal Energy Storage Solution for Switch-Point Heating
Sep 2025
Publication
Switch-point heating systems are essential for railway reliability and safety in winter but present logistical and economic challenges in remote regions. This study presents a novel application of a hydrogen-enabled microgrid as an off-grid energy solution for powering a switch-point heating system at a rural Austrian railway station offering an alternative to conventional grid-based electricity with a specific focus on enhancing the share of renewable energy sources. The proposed system integrates photovoltaics (PV) optional wind energy and hydrogen storage to address the seasonal mismatch between a high energy supply in the summer and peak winter demand. Three energy supply scenarios are analysed and compared based on local conditions technical simplicity and economic viability. Energy flow modelling based on site-specific climate and operational data is used to determine hydrogen production rates storage capacity requirements and system sizing. A comprehensive cost analysis of all major subsystems is conducted to assess economic viability. The study demonstrates that hydrogen is a highly effective solution for seasonal energy storage with a PV-only configuration emerging as the most suitable option under current site conditions. Thus it offers a replicable framework for decarbonising critical stationary railway infrastructure.
Can Hydrogen-powered Air Travel Grow within the Planetary Limits?
Aug 2025
Publication
Air travel demand is rising rapidly and the aviation sector is relying on technology to decouple environmental impacts from its growth. Using Sweden as a case study we assessed the absolute environmental sustainability of medium-distance air travel in 2050 positioning the aviation sector's environmental impacts in relation to the planetary limits. We employed a novel framework that integrates prospective life cycle assessment and absolute environmental sustainability assessment methodologies. Our findings suggest that projected medium-distance air travel powered by e-kerosene or liquid hydrogen could have life cycle environmental impacts that overshoot global climate change and biodiversity loss thresholds by several orders of magnitude. Based on our case results for Sweden for aviation to develop within the planetary limits we recommend cross-sector collaboration to address environmental impacts from fossil-free energy supplies and the establishment of integrated targets that incorporate broader environmental issues. Given the unlikelihood of decoupling growth from environmental impacts policymakers and the aviation sector should consider concurrently supporting technological development and implementing measures to manage air travel demand.
Techno-Economic Optimization of a Hybrid Renewable Energy System with Seawater-Based Pumped Hydro, Hydrogen, and Battery Storage for a Coastal Hotel
Oct 2025
Publication
This study presents the design and techno-economic optimization of a hybrid renewable energy system (HRES) for a coastal hotel in Manavgat Türkiye. The system integrates photovoltaic (PV) panels wind turbines (WT) pumped hydro storage (PHS) hydrogen storage (electrolyzer tank and fuel cell) batteries a fuel cell-based combined heat and power (CHP) unit and a boiler to meet both electrical and thermal demands. Within this broader optimization framework six optimal configurations emerged representing gridconnected and standalone operation modes. Optimization was performed in HOMER Pro to minimize net present cost (NPC) under strict reliability (0% unmet load) and renewable energy fraction (REF > 75%) constraints. The grid-connected PHS–PV–WT configuration achieved the lowest NPC ($1.33 million) and COE ($0.153/kWh) with a renewable fraction of ~96% and limited excess generation (~21%). Off-grid PHS-based and PHS–hydrogen configurations showed competitive performance with slightly higher costs. Hydrogen integration additionally provides complementary storage pathways coordinated operation waste heat utilization and redundancy under component unavailability. Battery-only systems without PHS or hydrogen storage resulted in 37–39% higher capital costs and ~53% higher COE confirming the economic advantage of long-duration PHS. Sensitivity analyses indicate that real discount rate variations notably affect NPC and COE particularly for battery-only systems. Component cost sensitivity highlights PV and WT as dominant cost drivers while PHS stabilizes system economics and the hydrogen subsystem contributes minimally due to its small scale. Overall these results confirm the techno-economic and environmental benefits of combining seawater-based PHS with optional hydrogen and battery storage for sustainable hotel-scale applications.
A Framework for the Configuration and Operation of EV/FCEV Fast-Charging Stations Integrated with DERs Under Uncertainty
Oct 2025
Publication
The integration of electric vehicles (EVs) and fuel-cell electric vehicles (FCEVs) requires accessible and profitable facilities for fast charging. To promote fast-charging stations (FCSs) a systematic analysis that encompasses both planning and operation is required including the incorporation of multi-energy resources and uncertainty. This paper presents an optimization framework that addresses a joint strategy for the configuration and operation of an EV/FCEV fast-charging station (FCS) integrated with distributed energy resources (DERs) and hydrogen systems. The framework incorporates uncertainties related to solar photovoltaic (PV) generation and demand for EVs/FCEVs. The proposed joint strategy comprises a four-phase decision-making framework. Phase 1 involves modeling EV/FECE demand while Phase 2 focuses on determining an optimal long-term infrastructure configuration. Subsequently in Phase 3 the operator optimizes daily power scheduling to maximize profit. A real-time uncertainty update is then executed in Phase 4 upon the realization of uncertainty. The proposed optimization framework formulated as mixed-integer quadratic programming (MIQP) considers configuration investment operational maintenance and penalty costs for excessive grid power usage. A heuristic algorithm is proposed to solve this problem. It yields good results with significantly less computational complexity. A case study shows that under the most adverse conditions the proposed joint strategy increases the FCS owner’s profit by 3.32% compared with the deterministic benchmark.
Optimizing Renewable Microgrid Performance Through Hydrogen Storage Integration
Oct 2025
Publication
The global transition to a low-carbon energy system requires innovative solutions that integrate renewable energy production with storage and utilization technologies. The growth in energy demand combined with the intermittency of these sources highlights the need for advanced management models capable of ensuring system stability and efficiency. This paper presents the development of an optimized energy management system integrating renewable sources with a focus on green hydrogen production via electrolysis storage and use through a fuel cell. The system aims to promote energy autonomy and support the transition to a low-carbon economy by reducing dependence on the conventional electricity grid. The proposed model enables flexible hourly energy flow optimization considering solar availability local consumption hydrogen storage capacity and grid interactions. Formulated as a Mixed-Integer Linear Programming (MILP) model it supports strategic decision-making regarding hydrogen production storage and utilization as well as energy trading with the grid. Simulations using production and consumption profiles assessed the effects of hydrogen storage capacity and electricity price variations. Results confirm the effectiveness of the model in optimizing system performance under different operational scenarios.
Response Surface Analysis of the Energy Performance and Emissions of a Dual-Fuel Engine Generator Using Biodiesel and Hydrogen-Enriched Biogas
Oct 2025
Publication
In this study we investigate the dual-fuel operation of compression ignition engines using biodiesel at varying concentrations in combination with biogas with and without hydrogen enrichment. A response surface methodology based on a central composite experimental design was employed to optimize energy efficiency and minimize pollutant emissions. The partial substitution of diesel with gaseous fuel substantially reduces the specific fuel consumption achieving a maximum decrease of 21% compared with conventional diesel operation. Enriching biogas with hydrogen accounting for 13.3% of the total flow rate increases the thermal efficiency by 0.8% compensating for the low calorific value and reduced volumetric efficiency of biogas. Variations in biodiesel concentration exhibits a nonlinear effect yielding an additional average efficiency gain of 0.4%. Regarding emissions the addition of hydrogen to biogas contributes to an average reduction of 5% in carbon monoxide emissions compared to the standard dual-fuel operation. However dual-fuel operation leads to higher unburned hydrocarbon emissions relative to neat diesel; hydrogen enrichment mitigates this drawback by reducing hydrocarbon emissions by 4.1%. Although NOx emissions increase by an average of 26.6% with hydrogen addition dual-fuel strategies achieve NOx reductions of 11.5% (hydrogen-enriched mode) and 33.3% (pure biogas mode) relative to diesel-only operation. Furthermore the application of response surface methodology is robust and reliable with experimental validation showing errors of 0.55–8.66% and an overall uncertainty of 4.84%.
A Two-Layer HiMPC Planning Framework for High-Renewable Grids: Zero-Exchange Test on Germany 2045
Oct 2025
Publication
High-renewables grids are planned in min but judged in milliseconds; credible studies must therefore resolve both horizons within a single model. Current adequacy tools bypass fast frequency dynamics while detailed simulators lack multi-hour optimization leaving investors without a unified basis for sizing storage shifting demand or upgrading transfers. We present a two-layer Hierarchical Model Predictive Control framework that links 15-min scheduling with 1-s corrective action and apply it to Germany’s four TSO zones under a stringent zero-exchange stress test derived from the NEP 2045 baseline. Batteries vehicleto-grid pumped hydro and power-to-gas technologies are captured through aggregators; a decentralized optimizer pre-positions them while a fast layer refines setpoints as forecasts drift; all are subject to inter-zonal transfer limits. Year-long simulations hold frequency within ±2 mHz for 99.9% of hours and below ±10 mHz during the worst multi-day renewable lull. Batteries absorb sub-second transients electrolyzers smooth surpluses and hydrogen turbines bridge week-long deficits—none of which violate transfer constraints. Because the algebraic core is modular analysts can insert new asset classes or policy rules with minimal code change enabling policy-relevant scenario studies from storage mandates to capacity-upgrade plans. The work elevates predictive control from plantscale demonstrations to system-level planning practice. It unifies adequacy sizing and dynamic-performance evaluation in a single optimization loop delivering an open scalable blueprint for high-renewables assessments. The framework is readily portable to other interconnected grids supporting analyses of storage obligations hydrogen roll-outs and islanding strategies.
Solar-powered Electric Vehicles - Batter EV & Fuel Cell EV: A Review
Sep 2025
Publication
The transport sector is a major contributor to greenhouse gas emissions largely due to its dependence on fossil fuels. Electrifying transport through Battery Electric Vehicles (BEVs) and Hydrogen Fuel Cell Electric Vehicles (FCEVs) is widely recognized as a key pathway to reducing emissions. While both BEVs and FCEVs are zero-emission during operation they still require electricity to function. Sourcing this electricity from solar energy presents a promising opportunity for sustainable operation. The novelty of this work lies in exploring how solar energy can be effectively integrated into both BEV and FCEV systems. The paper examines the potential scope and infrastructure requirements of these vehicle types as well as innovative charging and refuelling strategies. For BEVs charging options include fixed charging stations battery swapping stations and wireless charging. In the context of solar integration photovoltaic (PV) systems can be mounted directly on the vehicle body or used to power charging stations. While current PV efficiency and reliability are insufficient to meet the full energy demand of BEVs they can provide valuable auxiliary power. For FCEVs solar energy can be utilized for hydrogen production enabling the concept of solar-powered FCEVs. Refuelling options include onsite and offsite hydrogen production facilities as well as mobile refuelling units. In both cases land requirements for PV installations are significant. Alternatives to ground-mounted PV such as floating PV or agrivoltaics (agriPV) should be considered to optimize land use. While solar-powered charging or refuelling stations are technically feasible complete reliance on solar power alone is not yet practical. A hybrid approach with grid connections energy storage or backup generation remains necessary to ensure consistent energy availability. For BEVs the cost of charging particularly for long-distance travel where rapid charging is required remains a barrier. For FCEVs challenges include the high cost of hydrogen production and the limited availability of refuelling infrastructure despite their advantage of fast refuelling times. Government policies and incentives are playing a critical role in overcoming these barriers fostering investment in infrastructure and accelerating the transition toward a cleaner transport sector. In summary integrating solar energy into BEV and FCEV infrastructure can advance sustainable mobility by reducing lifecycle emissions. While current PV efficiency storage and hydrogen production limitations require hybrid energy solutions ongoing technological improvements and supportive policies can enable broader adoption. A balanced renewable energy mix with solar as a key component will be essential for realizing truly sustainable zero-emission transport.
Hydrogen Propulsion Technologies for Aviation: A Review of Fuel Cell and Direct Combustion Systems Towards Decarbonising Medium-Haul Aircraft
Oct 2025
Publication
Hydrogen propulsion technologies are emerging as a key enabler for decarbonizing the aviation sector especially for regional commercial aircraft. The evolution of aircraft propulsion technologies in recent years raises the question of the feasibility of a hydrogen propulsion system for beyond regional aircraft. This paper presents a comprehensive review of hydrogen propulsion technologies highlighting key advancements in component-level performance metrics. It further explores the technological transitions necessary to enable hydrogen-powered aircraft beyond the regional category. The feasibility assessment is based on key performance parameters including power density efficiency emissions and integration challenges aligned with the targets set for 2035 and 2050. The adoption of hydrogen-electric powertrains for the efficient transition from KW to MW powertrains depends on transitions in fuel cell type thermal management systems (TMS) lightweight electric machines and power electronics and integrated cryogenic cooling architectures. While hydrogen combustion can leverage existing gas turbine architectures with relatively fewer integration challenges it presents its technical hurdles especially related to combustion dynamics NOx emissions and contrail formation. Advanced combustor designs such as micromix staged and lean premixed systems are being explored to mitigate these challenges. Finally the integration of waste heat recovery technologies in the hydrogen propulsion system is discussed demonstrating the potential to improve specific fuel consumption by up to 13%.
Carbon Emission Reduction Capability Analysis of Electricity–Hydrogen Integrated Energy Storage Systems
Oct 2025
Publication
Against the dual backdrop of intensifying carbon emission constraints and the large-scale integration of renewable energy integrated electricity–hydrogen energy systems (EH-ESs) have emerged as a crucial technological pathway for decarbonising energy systems owing to their multi-energy complementarity and cross-scale regulation capabilities. This paper proposes an operational optimisation and carbon reduction capability assessment framework for EH-ESs focusing on revealing their operational response mechanisms and emission reduction potential under multi-disturbance conditions. A comprehensive model encompassing an electrolyser (EL) a fuel cell (FC) hydrogen storage tanks and battery energy storage was constructed. Three optimisation objectives—cost minimisation carbon emission minimisation and energy loss minimisation—were introduced to systematically characterise the trade-offs between economic viability environmental performance and energy efficiency. Case study validation demonstrates the proposed model’s strong adaptability and robustness across varying output and load conditions. EL and FC efficiencies and costs emerge as critical bottlenecks influencing system carbon emissions and overall expenditure. Further analysis reveals that direct hydrogen utilisation outperforms the ‘electricity–hydrogen–electricity’ cycle in carbon reduction providing data support and methodological foundations for low-carbon optimisation and widespread adoption of electricity–hydrogen systems.
Hydrogen Direct Reduced Iron Melting in an Electric Arc Furnace: Benefits of In Situ Monitoring
Oct 2025
Publication
The transition toward environmentally friendly steelmaking using hydrogen direct reduced iron as feed material in electric arc furnaces will eventually require process adjustments due to changes in the pellet properties when compared to e.g. blast furnace pellets. To this end the melting of hydrogen direct reduced iron pellets with 68 and 100% reduction degrees and Fe content of 67.24% was investigated in a laboratory-scale electric arc furnace. The presence of iron oxide-rich slag had a significant effect on the arc movement on the melt and an inhibiting effect on iron evaporation. The melting was monitored with video recording and optical emission spectroscopy. The videos were used to monitor the melting behavior whereas optical emissions revealed iron gangue elements and hydrogen from the pellets radiating in the plasma. Furthermore the flow of the melt is well seen in the videos as well as the movement of slag droplets on the melt surface. After the experiments the metal had silica-rich inclusions whereas slag had mostly penetrated into the crucible. The most notable differences in melting behavior can be attributed to the iron oxide-rich slag its interaction with the arc and penetration into the crucible and how it affects the arc movement and heat transfer.
Mapping Hydrogen Demand for Heavy-duty Vehicles: A Spatial Disaggregation Approach
Jul 2025
Publication
Hydrogen is the key to decarbonising heavy-duty transport. Understanding the distribution of hydrogen demand is crucial for effective planning and development of infrastructure. However current data on future hydrogen demand is often coarse and aggregated limiting its utility for detailed analysis and decision-making. This study developed a spatial disaggregation approach to estimating hydrogen demand for heavy-duty trucks and mapping the spatial distribution of hydrogen demand across multiple scales in Australia. By integrating spatial datasets with economic factors market penetration rates and technical specifications of hydrogen fuel cell vehicles the approach disaggregates the projected demand into specific demand centres allowing for the mapping of regional hydrogen demand patterns and the identification of key centres of hydrogen demand based on heavy-duty truck traffic flow projections under different scenarios. This approach was applied to Australia and the findings offered valuable insights that can help policymakers and stakeholders plan and develop hydrogen infrastructure such as optimising hydrogen refuelling station locations and support the transition to a low-carbon heavy-duty transport sector.
No more items...