Applications & Pathways
Numerical Modeling for Rapid Charging of Hydrogen Gas Vessel in Fuel Cell Vehicle
Feb 2023
Publication
As a fuel for power generation high-pressure hydrogen gas is widely used for transportation and its efficient storage promotes the development of fuel cell vehicles (FCVs). However as the filling process takes such a short time the maximum temperature in the storage tank usually undergoes a rapid increase which has become a thorny problem and poses great technical challenges to the steady operation of hydrogen FCVs. For security reasons SAE J2601/ISO 15869 regulates a maximum temperature limit of 85 ◦C in the specifications for refillable hydrogen tanks. In this paper a two-dimensional axisymmetric and a three-dimensional numerical model for fast charging of Type III 35 MPa and 70 MPa hydrogen vehicle cylinders are proposed in order to effectively evaluate the temperature rise within vehicle tanks. A modified standard k-ε turbulence model is utilized to simulate hydrogen gas charging. The equation of state for hydrogen gas is adopted with the thermodynamic properties taken from the National Institute of Standards and Technology (NIST) database taking into account the impact of hydrogen gas’ compressibility. To validate the numerical model three groups of hydrogen rapid refueling experimental data are chosen. After a detailed comparison it is found that the simulated results calculated by the developed numerical model are in good agreement with the experimental results with average temperature differences at the end time of 2.56 K 4.08 K and 4.3 K. The present study provides a foundation for in-depth investigations on the structural mechanics analysis of hydrogen gas vessels during fast refueling and may supply some technical guidance on the design of charging experiments.
Estimation of Liquid Hydrogen Fuels in Aviation
Sep 2022
Publication
As the demand for alternative fuels to solve environmental problems increases worldwide due to the greenhouse gas problem this study predicted the demand for liquid hydrogen fuel in aviation to achieve ‘zero‐emission flight’. The liquid hydrogen fuel models of an aircraft and all aviation sectors were produced based on the prediction of aviation fleet growth through the classification of currently operated aircraft. Using these models the required amount of liquid hydrogen fuel and the total cost of liquid hydrogen were also calculated when various environmental regulations were satisfied. As a result it was found to be necessary to convert approximately 66% to 100% of all aircraft from existing aircraft to liquid hydrogen aircraft in 2050 according to regulations. The annual liquid hydrogen cost was 4.7–5.2 times higher in the beginning due to the high production cost but after 2030 it will be maintained at almost the same price and it was found that the cost was rather low compared to jet fuel.
The Hydrogen Fuel Cell Battery: Replacing the Combustion Engine in Heavy Vehicles
Nov 2022
Publication
This opinion piece describes how the optimal integration of hydrogen-fuel-cell with battery in a heavy highly-utilised vehicle can extend vehicle range while cutting refuelling time and reducing cost compared to a pure battery electric vehicle.
Optimal Configuration of Multi-Energy Storage in an Electric–Thermal–Hydrogen Integrated Energy System Considering Extreme Disaster Scenarios
Mar 2024
Publication
Extreme disasters have become increasingly common in recent years and pose significant dangers to the integrated energy system’s secure and dependable energy supply. As a vital part of an integrated energy system the energy storage system can help with emergency rescue and recovery during major disasters. In addition it can improve energy utilization rates and regulate fluctuations in renewable energy under normal conditions. In this study the sizing scheme of multienergy storage equipment in the electric–thermal–hydrogen integrated energy system is optimized; economic optimization in the regular operating scenario and resilience enhancement in extreme disaster scenarios are also considered. A refined model of multi-energy storage is constructed and a two-layer capacity configuration optimization model is proposed. This model is further enhanced by the integration of a Markov two-state fault transmission model which simulates equipment defects and improves system resilience. The optimization process is solved using the tabu chaotic quantum particle swarm optimization (TCQPSO) algorithm to provide reliable and accurate optimization results. The results indicate that addressing severe disaster situations in a capacity configuration fully leverages the reserve energy function of energy storage and enhances system resilience while maintaining economic efficiency; furthermore adjusting the load loss penalty coefficients offers a more targeted approach to the balancing of the system economy and resilience. Thus new algorithmic choices and planning strategies for future research on enhancing the resilience of integrated energy systems under extreme disaster scenarios are provided.
Economic Analysis of a Zero-carbon Liquefied Hydrogen Tanker Ship
Jun 2022
Publication
The green hydrogen economy is considered one of the sustainable solutions to mitigate climate change. This study provides an economic analysis of a novel liquified hydrogen (LH2) tanker fuelled by hydrogen with a total capacity of ~280000 m3 of liquified hydrogen named ‘JAMILA’. An established economic method was applied to investigate the economic feasibility of the JAMILA ship as a contribution to the future zero-emission target. The systematic economic evaluation determined the net present value of the LH2 tanker internal rate of return payback period and economic value added to support and encourage shipyards and the industrial sector in general. The results indicate that the implementation of the LH2 tanker ship can cover the capital cost of the ship within no more than 2.5 years which represents 8.3% of the assumed 30-year operational life cycle of the project in the best maritime shipping prices conditions and 6 years in the worst-case shipping marine economic conditions. Therefore the assessment of the economic results shows that the LH2 tankers may be a worthwhile contribution to the green hydrogen economy.
Technical Reliability of Shipboard Technologies for the Application of Alternative Fuels
Jul 2022
Publication
Background: Naval trafc is highly dependent on depleting fossil resources and causes signifcant greenhouse gas emissions. At the same time marine transportation is a major backbone of world trade. Thus alternative fuel concepts are highly needed. Diferent fuels such as ammonia methanol liquefed natural gas and hydrogen have been proposed. For some of them frst prototype vessels have been in operation. However practical experience is still limited. Most studies so far focus on aspects such as efciency and economics. However particularly in marine applications reliability of propulsion systems is of utmost importance because failures on essential ship components at sea pose a huge safety risk. If the respective components lose their functionality repair can be much more challenging due to large distances to dockyards and the complicated transport of spare parts to the ship. Consequently evaluation of reliability should be a core element of system analysis for new marine fuels. Results: In this study reliability was studied for four potential fuels. The analysis involved several steps: estimation of overall failure rates identifcation of most vulnerable components and assessment of criticality by including severity of fault events. On the level of overall failure rate ammonia is shown to be very promising. Extending the view over a pure failure rate-based evaluation shows that other approaches such as LOHC or methanol can be competitive in terms of reliability and risk. As diferent scenarios require diferent weightings of the diferent reliability criteria the conclusion on the best technology can difer. Relevant aspects for this decision can be the availability of technical staf high-sea or coastal operation the presence of non-naval personnel onboard and other factors. Conclusions: The analysis allowed to compare diferent alternative marine fuel concepts regarding reliability. However the analysis is not limited to assessment of overall failure rates but can also help to identify critical elements that deserve attention to avoid fault events. As a last step severity of the individual failure modes was included. For the example of ammonia it is shown that the decomposition unit and the fuel cell should be subject to measures for increasing safety and reducing failure rates.
Techno-economic Study of a 100-MW-class Multi-energy Vehicle Charging/Refueling Station: Using 100% Renewable, Liquid Hydrogen, and Superconductor Technologies
Dec 2022
Publication
Renewable energies such as the wind energy and solar energy generate low-carbon electricity which can directly charge battery electric vehicles (BEVs). Meanwhile the surplus electricity can be used to produce the “green hydrogen” which provides zero-emission hydrogen fuels to those fuel cell electric vehicles (FCEVs). In order to charge/refuel multi-energy vehicles we propose a novel scheme of hybrid hydrogen/electricity supply using cryogenic and superconducting technologies. In this scheme the green hydrogen is further liquefied into the high-density and low-pressure liquid hydrogen (LH2) for bulk energy storage and transmission. Taking the advantage of the cryogenic environment of LH2 (20 K) it can also be used as the cryogen to cool down super conducting cables to realize the virtually zero-loss power transmission from 100 % renewable sources to vehicle charging stations. This hybrid LH2/electricity energy pipeline can realize long-distance large-capacity and high efficiency clean energy transmission to fulfil the hybrid energy supply demand for BEVs and FCEVs. For the case of a 100 MW-class hybrid hydrogen/electricity supply station the system principle and energy management strategy are analyzed through 9 different operating sub-modes. The corresponding static and dynamic economic modeling are performed and the economic feasibility of the hybrid hydrogen/electricity supply is verified using life-cycle analysis. Taking an example of wind power capacity 1898 MWh and solar power capacity 1619 MWh per day the dynamic payback period is 15.06 years the profitability index is 1.17 the internal rate of return is 7.956 % and the accumulative NPV is 187.92 M$. The system design and techno-economic analysis can potentially offer a technically/economically superior solution for future multi-energy vehicle charging/refueling systems.
Going Offshore or Not: Where to Generate Hydrogen in Future Integrated Energy Systems?
Jan 2023
Publication
Hydrogen can be key in the energy system transition. We investigate the role of offshore hydrogen generation in a future integrated energy system. By performing energy system optimisation in a model application of the Northern-central European energy system and the North Sea offshore grid towards 2050 we find that offshore hydrogen generation may likely only play a limited role and that offshore wind energy has higher value when sent to shore in the form of electricity. Forcing all hydrogen generation offshore would lead to increased energy system costs. Under the assumed scenario conditions which result in deep decarbonisation of the energy system towards 2050 hydrogen generation – both onshore and offshore – follows solar PV generation patterns. Combined with hydrogen storage this is the most cost-effective solution to satisfy future hydrogen demand. Overall we find that the role of future offshore hydrogen generation should not simply be derived from minimising costs for the offshore sub-system but by also considering the economic value that such generation would create for the whole integrated energy system. We find as a no-regret option to enable and promote the integration of offshore wind in onshore energy markets via electrical connections.
Fuel Cell Development for New Energy Vehicles (NEVs) and Clean Air in China
Apr 2018
Publication
This paper reviews the background to New Energy Vehicles (NEV) policies in China and the key scientific and market challenges that need to be addressed to accelerate fuel cells (FCs) in the rapidly developing NEV market. The global significance of the Chinese market key players core FC technologies and future research priorities are discussed.
Recent Progress in Catalysts for Hydrogen-Chlorine Regenerative Fuel Cells
Oct 2020
Publication
The increasing energy demand and the subsequent climate change consequences are supporting the search for sustainable alternatives to fossil fuels. In this scenario the link between hydrogen and renewable energy is playing a key role and unitized hydrogen-chlorine (H2-Cl2) regenerative cells (RFCs) have become promising candidates for renewable energy storage. Described herein are the recent advances in cell configurations and catalysts for the different reactions that may take place in these systems that work in both modes: electrolysis and fuel cell. It has been found that platinum (Pt)-based catalysts are the best choice for the electrode where hydrogen is involved whereas for the case of chlorine ruthenium (Ru)-based catalysts are the best candidates. Only a few studies were found where the catalysts had been tested in both modes and recent advances are focused on decreasing the amount of precious metals contained in the catalysts. Moreover the durability of the catalysts tested under realistic conditions has not been thoroughly assessed becoming a key and mandatory step to evaluate the commercial viability of the H2-Cl2 RFC technology.
Enabling the Scale Up of Green Hydrogen in Ireland by Decarbonising the Haulage Sector
Jul 2022
Publication
The current research on green hydrogen can focus from the perspective of production but understanding the demand side is equally important to the initial creation of a hydrogen ecosystem in countries with low industrial activities that can utilise large amounts of hydrogen in the short term. Early movers in these countries must create a demand market in parallel with the green hydrogen plant commissioning. This paper presents research that explores the heavy-duty transport sector as a market-of-interest for early deployment of green hydrogen in Ireland. Conducting a survey-based market research amongst this sector indicate significant interest in hydrogen on the island of Ireland and the barriers the participants presented have been overcome in other jurisdictions. The study develops a model to estimate 1.) the annual hydrogen demand and 2.) the corresponding delivery cost to potential hydrogen consumers either directly or to central hydrogen fuelling hubs.
Renewable Methanol Production from Green Hydrogen and Captured CO2: A Techno-economic Assessment
Nov 2022
Publication
This paper aims to present a pre-feasibility study of a power-to-fuel plant configuration designed for the production of 500 kg/h of renewable methanol (e-methanol) from green hydrogen and captured carbon dioxide. Hydrogen is obtained by water electrolysis employing the overproduction of renewable electricity. Carbon dioxide is assumed to be separated from the flue gas of a conventional power station by means of an amine-based CO2 absorption system. A comprehensive process model has been developed with the support of Aspen Plus tool to simulate all the plant sections and the overall system. After the process optimization a detailed economic analysis – based on capital and operating costs derived from commercial-scale experience and assuming a 20- year lifetime – has been performed to calculate a levelized cost of methanol (LCoM) of 960 €/t (about 175 €/MWh). The analysis confirms that today the technology is still not competitive from the economic point of view being LCoM more than double than the current methanol price in the international market (450 €/t). However it indicates that the process is expected to become competitive in a mid-term future as a consequence of the new European policies. The study also reveals that LCoM is mainly affected by the electricity price and the electrolyser capital cost as well as the capacity factor of the plant.
Small-Scale Hybrid and Polygeneration Renewable Energy Systems: Energy Generation and Storage Technologies, Applications, and Analysis Methodology
Dec 2022
Publication
The energy sector is nowadays facing new challenges mainly in the form of a massive shifting towards renewable energy sources as an alternative to fossil fuels and a diffusion of the distributed generation paradigm which involves the application of small-scale energy generation systems. In this scenario systems adopting one or more renewable energy sources and capable of producing several forms of energy along with some useful substances such as fresh water and hydrogen are a particularly interesting solution. A hybrid polygeneration system based on renewable energy sources can overcome operation problems regarding energy systems where only one energy source is used (solar wind biomass) and allows one to use an all-in-one integrated systems in order to match the different loads of a utility. From the point of view of scientific literature medium and large-scale systems are the most investigated; nevertheless more and more attention has also started to be given to small-scale layouts and applications. The growing diffusion of distributed generation applications along with the interest in multipurpose energy systems based on renewables and capable of matching different energy demands create the necessity of developing an overview on the topic of small-scale hybrid and polygeneration systems. Therefore this paper provides a comprehensive review of the technology operation performance and economical aspects of hybrid and polygeneration renewable energy systems in small-scale applications. In particular the review presents the technologies used for energy generation from renewables and the ones that may be adopted for energy storage. A significant focus is also given to the adoption of renewable energy sources in hybrid and polygeneration systems designs/modeling approaches and tools and main methodologies of assessment. The review shows that investigations on the proposed topic have significant potential for expansion from the point of view of system configuration hybridization and applications.
Hydrogen Refueling Stations and Carbon Emission Reduction of Coastal Expressways: A Deployment Model and Multi-Scenario Analysis
Jul 2022
Publication
Hydrogen is considered to the ultimate solution to achieve carbon emission reduction due to its wide sources and high calorific value as well as non-polluting renewable and storable advantages. This paper starts from the coastal areas uses offshore wind power hydrogen production as the hydrogen source and focuses on the combination of hydrogen supply chain network design and hydrogen expressway hydrogen refueling station layout optimization. It proposes a comprehensive mathematical model of hydrogen supply chain network based on cost analysis which determined the optimal size and location of hydrogen refueling stations on hydrogen expressways in coastal areas. Under the multi-scenario and multi-case optimization results the location of the hydrogen refueling station can effectively cover the road sections of each case and the unit hydrogen cost of the hydrogen supply chain network is between 11.8 and 15.0 USD/kgH2 . Meanwhile it was found that the transportation distance and the number of hydrogen sources play a decisive role on the cost of hydrogen in the supply chain network and the location of hydrogen sources have a decisive influence on the location of hydrogen refueling stations. In addition carbon emission reduction results of hydrogen supply chain network show that the carbon emission reduction per unit hydrogen production is 15.51 kgCO2/kgH2 at the production side. The CO2 emission can be reduced by 68.3 kgCO2/km and 6.35 kgCO2/kgH2 per unit mileage and per unit hydrogen demand at the application side respectively. The layout planning utilization of hydrogen energy expressway has a positive impact on energy saving and emission reduction.
Ammonia as Green Fuel in Internal Combustion Engines: State-of-the-Art and Future Perspectives
Jul 2022
Publication
Ammonia (NH3) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural sector. In recent years it has sparked interest in the possibility of working as a high-quality energy carrier and as a carbon-free fuel in internal combustion engines (ICEs). This review aimed to provide an overview of the research on the use of green ammonia as an alternative fuel for ICEs with a look to the future on possible applications and practical solutions to related problems. First of all the ammonia production process is discussed. Present ammonia production is not a “green” process; the synthesis occurs starting from gaseous hydrogen currently produced from hydrocarbons. Some ways to produce green ammonia are reviewed and discussed. Then the chemical and physical properties of ammonia as a fuel are described and explained in order to identify the main pros and cons of its use in combustion systems. Then the most viable solutions for fueling internal combustion engines with ammonia are discussed. When using pure ammonia high boost pressure and compression ratio are required to compensate for the low ammonia flame speed. In spark-ignition engines adding hydrogen to ammonia helps in speeding up the flame front propagation and stabilizing the combustion. In compression-ignition engines ammonia can be successfully used in dual-fuel mode with diesel. On the contrary an increase in NOx and the unburned NH3 at the exhaust require the installation of apposite aftertreatment systems. Therefore the use of ammonia seems to be more practicable for marine or stationary engine application where space constraints are not a problem. In conclusion this review points out that ammonia has excellent potential to play a significant role as a sustainable fuel for the future in both retrofitted and new engines. However significant further research and development activities are required before being able to consider large-scale industrial production of green ammonia. Moreover uncertainties remain about ammonia safe and effective use and some technical issues need to be addressed to overcome poor combustion properties for utilization as a direct substitute for standard fuels.
Multi-Time Scale Optimal Scheduling Model of Wind and Hydrogen Integrated Energy System Based on Carbon Trading
Jan 2023
Publication
In the context of carbon trading energy conservation and emissions reduction are the development directions of integrated energy systems. In order to meet the development requirements of energy conservation and emissions reduction in the power grid considering the different responses of the system in different time periods a wind-hydrogen integrated multi-time scale energy scheduling model was established to optimize the energy-consumption scheduling problem of the system. As the scheduling model is a multiobjective nonlinear problem the artificial fish swarm algorithm–shuffled frog leaping algorithm (AFS-SFLA) was used to solve the scheduling model to achieve system optimization. In the experimental test process the Griewank benchmark function and the Rosenbrock function were selected to test the performance of the proposed AFS-SFL algorithm. In the Griewank environment compared to the SFLA algorithm the AFS-SFL algorithm was able to find a feasible solution at an early stage and tended to converge after 110 iterations. The optimal solution was −4.83. In the test of total electric power deviation results at different time scales the maximum deviation of early dispatching was 14.58 MW and the minimum deviation was 0.56 MW. The overall deviation of real-time scheduling was the minimum and the minimum deviation was 0 and the maximum deviation was 1.89 WM. The integrated energy system adopted real-time scale dispatching with good system stability and low-energy consumption. Power system dispatching optimization belongs to the objective optimization problem. The artificial fish swarm algorithm and frog algorithm were innovatively combined to solve the dispatching model which improved the accuracy of power grid dispatching. The research content provides an effective reference for the efficient use of clean and renewable energy.
Recent Development of Fuel Cell Core Components and Key Materials: A Review
Feb 2023
Publication
Fuel cells as key carriers for hydrogen energy development and utilization provide a vital opportunity to achieve zero-emission energy use and have thus attracted considerable attention from fundamental research to industrial application levels. Considering the current status of fuel cell technology and the industry this paper presents a systematic elaboration of progress and development trends in fuel cell core components and key materials such as stacks bipolar plates membrane electrodes proton exchange membranes catalysts gas diffusion layers air compressors and hydrogen circulation systems. In addition some proposals for the development of fuel cell vehicles in China are presented based on the analysis of current supporting policies standards and regulations along with manufacturing costs in China. The fuel cell industry of China is still in the budding stage of development and thus suffers some challenges such as lagging fundamental systems imperfect standards and regulations high product costs and uncertain technical safety and stability levels. Therefore to accelerate the development of the hydrogen energy and fuel cell vehicle industry it is an urgent need to establish a complete supporting policy system accelerate technical breakthroughs transformations and applications of key materials and core components and reduce the cost of hydrogen use.
Jet Zero Strategy: Delivering Net Zero Aviation by 2050
Jul 2022
Publication
The Jet Zero strategy sets out how we will achieve net zero aviation by 2050.<br/>It focuses on the rapid development of technologies in a way that maintains the benefits of air travel whilst maximising the opportunities that decarbonisation can bring to the UK.<br/>The Jet Zero strategy includes a 5-year delivery plan setting out the actions that will need to be taken in the coming years to support the delivery of net zero aviation by 2050. We will be monitoring progress and reviewing and updating our strategy every 5 years.<br/>The strategy is informed by over 1500 responses to the Jet Zero consultation and the Jet Zero further technical consultation to which we have issued a summary of responses and government response.<br/>The Jet Zero investment flightpath is part of a series of roadmaps to be published over the course of 2022 for each sector of the Prime Minister’s Ten point plan for a green industrial revolution.<br/>It showcases the UK’s leading role in the development and commercialisation of new low and zero emission aviation technologies. It also highlights investment opportunities across systems efficiencies sustainable aviation fuels and zero emission aircraft.
HydroGenerally - Episode 5: Hydrogen for Glass Production
May 2022
Publication
In this fifth episode Steffan Eldred and Neelam Mughal from Innovate UK KTN discuss how the glass industry is driving new hydrogen developments and research and explore the hydrogen transition opportunities and challenges in this sector alongside their special guest Rob Ireson Innovation and Partnerships Manager at Glass Futures Ltd.
The podcast can be found on their website
The podcast can be found on their website
A Multi-objective Optimization Approach in Defining the Decarbonization Strategy of a Refinery
Mar 2022
Publication
Nowadays nearly one quarter of global carbon dioxide emissions are attributable to energy use in industry making this an important target for emission reductions. The scope of this study is hence that to define a cost-optimized decarbonization strategy for an energy and carbon intensive industry using an Italian refinery as a case study. The methodology involves the coupling of EnergyPLAN with a Multi-Objective Evolutionary Algorithm (MOEA) considering the minimization of annual cost and CO2 emissions as two potentially conflicting objectives and the energy technologies’ capacities as decision variables. For the target year 2025 EnergyPLAN+MOEA has allowed to model a range of 0-100 % decarbonization solutions characterized by optimal penetration mix of 22 technologies in the electrical thermal hydrogen feedstock and transport demand. A set of nine scenarios with different land use availabilities and implementable technologies each consisting of 100 optimal systems out of 10000 simulated ones has been evaluated. The results show on the one hand the possibility of achieving medium-high decarbonization solutions at costs close to current ones on the other how the decarbonization pathways strongly depend on the available land for solar thermal photovoltaic and wind as well as the presence of a biomass supply chain in the region.
No more items...