Applications & Pathways
The Transition to a Renewable Energy Electric Grid in the Caribbean Island Nation of Antigua and Barbuda
Aug 2023
Publication
The present study describes the development and application of a model of the national electricity system for the Caribbean dual-island nation of Antigua and Barbuda to investigate the cost optimal mix of solar photovoltaics (PVs) wind and in the most novel contribution concentrating solar power (CSP). These technologies together with battery and hydrogen energy storage can enable the aim of achieving 100% renewable electricity and zero carbon emissions. The motivation for this study was that while most nations in the Caribbean rely largely on diesel fuel or heavy fuel oil for grid electricity generation many countries have renewable resources beyond wind and solar energy. Antigua and Barbuda generates 93% of its electricity from diesel-fueled generators and has set the target of becoming a net-zero nation by 2040 as well as having 86% renewable energy generation in the electricity sector by 2030 but the nation has no hydroelectric or geothermal resources. Thus this study aims to demonstrate that CSP is a renewable energy technology that can help assist Antigua and Barbuda in its transition to a renewable energy electric grid while also decreasing electricity generation costs. The modeled optimal mix of renewable energy technologies presented here was found for Antigua and Barbuda by assessing the levelized cost of electricity (LCOE) for systems comprising various combinations of energy technologies and storage. Other factors were also considered such as land use and job creation. It was found that 100% renewable electricity systems are viable and significantly less costly than current power systems and that there is no single defined pathway towards a 100% renewable energy grid but several options are available.
Predictive Maintenance and Reinspection Strategies for Hydrogen Refueling Station Pressure Vessels: A Case Study in South Korea
Jul 2024
Publication
Hydrogen refueling stations rely on pressure vessels capable of withstanding pressures up to 90 MPa while mitigating concerns related to hydrogen embrittlement. However a gap exists in understanding the long-term fatigue behavior of these vessels under real operational conditions. This study focuses on evaluating the safety of SA372 pressure vessels using operational data from a hydrogen refueling station in Pyeongtaek South Korea. A predictive reinspection methodology is proposed based on this evaluation. Parameters including hydrogen-induced stress intensity factor (KIH) initial crack size (a0 c0) and pressure vessel specifications are considered to assess critical crack depth (ac) critical usage cycles (Nc) and allowable usage cycles (Nallowed). Leveraging operational data collected between August and November 2023 fatigue analysis and Rainflow counting inform reinspection schedules. Results indicate a need for mid-bank vessel reinspection within the second year high-bank vessel reinspection every 20 years and low-bank vessel reinspection every 143 years in accordance with safety regulations. Additionally a revised refueling logic is proposed to optimize vehicle charging methods and pressure ranges enhancing operational safety. This study serves as a preliminary investigation highlighting the need for broader data collection and analysis to generalize findings across multiple stations.
Current Status and Economic Analysis of Green Hydrogen Energy Industry Chain
Feb 2024
Publication
Under the background of the power system profoundly reforming hydrogen energy from renewable energy as an important carrier for constructing a clean low-carbon safe and efficient energy system is a necessary way to realize the objectives of carbon peaking and carbon neutrality. As a strategic energy source hydrogen plays a significant role in accelerating the clean energy transition and promoting renewable energy. However the cost and technology are the two main constraints to green hydrogen energy development. Herein the technological development status and economy of the whole industrial chain for green hydrogen energy “production-storage-transportation-use” are discussed and reviewed. After analysis the electricity price and equipment cost are key factors to limiting the development of alkaline and proton exchange membrane hydrogen production technology; the quantity scale and distance of transportation are key to controlling the costs of hydrogen storage and transportation. The application of hydrogen energy is mainly concentrated in the traditional industries. With the gradual upgrading and progress of the top-level design and technology the application of hydrogen energy mainly including traffic transportation industrial engineering energy storage power to gas and microgrid will show a diversified development trend. And the bottleneck problems and development trends of the hydrogen energy industry chain are also summarized and viewed.
Low-carbon Economic Operation of IES Based on Life Cycle Method and Hydrogen Energy Utilization
Aug 2023
Publication
The Integrated Energy System (IES) that coordinates multiple energy sources can effectively improve energy utilization and is of great significance to achieving energy conservation and emission reduction goals. In this context a low-carbon and economic dispatch model for IES is proposed. Firstly a hydrogen energy-based IES (H2-IES) is constructed to refine the utilization process of hydrogen energy. Secondly the carbon emissions of different energy chains throughout their life cycle are analyzed using the life cycle assessment method (LCA) and the carbon emissions of the entire energy supply and demand chain are considered. Finally a staged carbon trading mechanism is adopted to promote energy conservation and emission reduction. Based on this an IES low-carbon and economic dispatch model is constructed with the optimization goal of minimizing the sum of carbon trading costs energy procurement costs and hydrogen sales revenue while considering network constraints and constraints on key equipment. By analyzing the model under different scenarios the introduction of life cycle assessment staged carbon trading and hydrogen energy utilization is shown to promote low-carbon and economic development of the comprehensive energy system.
The Role of Hydrogen-based Power Systems in the Energy Transition of the Residential Sector
Sep 2021
Publication
The unsustainable and continuous growth of anthropogenic emissions of greenhouse gases (GHG) has pushed governments private companies and stakeholders to adopt measures and policies to fight against climate change. Within this framework increasing the contribution of renewable energy sources (RES) to final consumed energy plays a key role in the planned energy transition. Regarding the residential sector in Europe 92% of GHG emissions comes from 75% of the building stock that is over 25 years old and highly inefficient. Thus this sector must raise RES penetration from the current 36% to 77% by 2050 to comply with emissions targets. In this regard the hybridization of hydrogen-based technologies and RES represents a reliable and versatile solution to facilitate decarbonization of the residential sector. This study provides an overview and analysis of standalone renewable hydrogen-based systems (RHS) focusing on the residential and buildings sector as well as critical infrastructures like telecom stations data servers etc. For detailed evaluation of RHS several pilot plants and real demonstration plants implemented worldwide are reviewed. To this end a techno-economic assessment of relevant parameters like self-sufficiency ratio levelized cost of energy and hydrogen roundtrip efficiency is provided. Moreover the performance of the different configurations is evaluated by comparing the installed power of each component and their energy contribution to cover the load over a defined period of time. Challenges ahead are identified for the wider deployment of RHS in the residential and buildings sector.
Sustainable Fuel Production Using In-situ Hydrogen Supply via Aqueous Phase Reforming: A Techno-economic and Life-cycle Greenhouse Gas Emissions Assessment
Jul 2023
Publication
Sustainable aviation fuel (SAF) production is one of the strategies to guarantee an environmental-friendly development of the aviation sector. This work evaluates the technical economic and environmental feasibility of obtaining SAFs by hydrogenation of vegetable oils thanks to in-situ hydrogen production via aqueous phase reforming (APR) of glycerol by-product. The novel implementation of APR would avoid the environmental burden of conventional fossil-derived hydrogen production as well as intermittency and storage issues related to the use of RES-based (renewable energy sources) electrolysers. The conceptual design of a conventional and advanced (APR-aided) biorefinery was performed considering a standard plant capacity equal to 180 ktonne/y of palm oil. For the advanced scenario the feed underwent hydrolysis into glycerol and fatty acids; hence the former was subjected to APR to provide hydrogen which was further used in the hydrotreatment reactor where the fatty acids were deoxygenated. The techno-economic results showed that APR implementation led to a slight increase of the fixed capital investment by 6.6% compared to the conventional one while direct manufacturing costs decreased by 22%. In order to get a 10% internal rate of return the minimum fuel selling price was found equal to 1.84 $/kg which is 17% lower than the one derived from conventional configurations (2.20 $/kg). The life-cycle GHG emission assessment showed that the carbon footprint of the advanced scenario was equal to ca. 12 g CO2/MJSAF i.e. 54% lower than the conventional one (considering an energy-based allocation). The sensitivity analysis pointed out that the cost of the feedstock SAF yield and the chosen plant size are keys parameters for the marketability of this biorefinery while the energy price has a negligible impact; moreover the source of hydrogen has significant consequences on the environmental footprint of the plant. Finally possible uncertainties for both scenarios were undertaken via Monte Carlo simulations.
Climate Change Mitigation Potentials of on Grid-connected Power-to-X Fuels and Advanced Biofuels for the European Maritime Transport
Jul 2023
Publication
This study proposes a country-based life-cycle assessment (LCA) of several conversion pathways related 10 to both on grid-connected Power-to-X (PtX) fuels and advanced biofuel production for maritime transport 11 in Europe. We estimate the biomass resource availability (both agricultural and forest residues and 12 second-generation energy crops from abandoned cropland) electricity mix and a future-oriented 13 prospective LCA to assess how future climate change mitigation policies influence the results. Our results 14 indicate that the potential of PtX fuels to achieve well-to-wake greenhouse gas intensities lower than 15 those of fossil fuels is limited to countries with a carbon intensity of the electricity mix below 100 gCO2eq kWh-1 16 . The more ambitious FuelEU Maritime goal could be achieved with PtX only if connected to electricity sources below ca. 17 gCO2eq kWh-1 17 which can become possible for most of the national 18 electricity mix in Europe by 2050 if renewable energy sources will become deployed at large scales. For 19 drop-in and hydrogen-based biofuels biomass residues have a higher potential to reduce emissions than 20 dedicated energy crops. In Europe the potentials of energy supply from all renewable and low-carbon 21 fuels (RLFs) range from 32-149% of the current annual fuel consumption in European maritime transport. 22 The full deployment of RLFs with carbon capture and storage technologies could mitigate up to 184% of 23 the current well-to-wake shipping emissions in Europe. Overall our study highlights how the strategic use 24 of both hydrogen-based biofuels and PtX fuels can contribute to the climate mitigation targetsfor present 25 and future scenarios of European maritime transport.
Investigations on Pressure Dependence of Coriolis Mass Flow Meters Used at Hydrogen Refueling Stations
Sep 2020
Publication
In the framework of the ongoing EMPIR JRP 16ENG01 ‘‘Metrology for Hydrogen Vehicles’’ a main task is to investigate the influence of pressure on the measurement accuracy of Coriolis Mass Flow Meters (CFM) used at Hydrogen Refueling Stations (HRS). At a HRS hydrogen is transferred at very high and changing pressures with simultaneously varying flow rates and temperatures. It is clearly very difficult for CFMs to achieve the current legal requirements with respect to mass flow measurement accuracy at these measurement conditions. As a result of the very dynamic filling process it was observed that the accuracy of mass flow measurement at different pressure ranges is not sufficient. At higher pressures it was found that particularly short refueling times cause significant measurement deviations. On this background it may be concluded that pressure has a great impact on the accuracy of mass flow measurement. To gain a deeper understanding of this matter RISE has built a unique high-pressure test facility. With the aid of this newly developed test rig it is possible to calibrate CFMs over a wide pressure and flow range with water or base oils as test medium. The test rig allows calibration measurements under the conditions prevailing at a 70 MPa HRS regarding mass flows (up to 3.6 kg min−1) and pressures (up to 87.5 MPa).
The Role of Power-to-hydrogen in Carbon Neutral Energy and Industrial Systems: Case Finland
Aug 2023
Publication
To combat climate change decarbonization measures are undertaken across the whole energy sector. Industry and transportation sectors are seen as difficult sectors to decarbonize with green hydrogen being proposed as a solution to achieve decarbonization in these sectors. While many methods of introducing hydrogen to these sectors are present in literature few systemlevel works study the specific impacts of large-scale introduction has on power and heat sectors in an energy system. This contribution examines the effects of introducing hydrogen into a Finnish energy system in 2040 by conducting scenario simulations in EnergyPLAN – software. Primary energy consumption and CO2 emissions of the base scenario and hydrogen scenarios are compared. Additionally the differences between a constant and flexible hydrogen production profile are studied. Introducing hydrogen increases electricity consumption by 31.9 % but reduces CO2 emissions by 71.5 % and fossil energy consumption by 72.6%. The flexible hydrogen profile lowers renewable curtailment and improves energy efficiency but requires economically unfeasible hydrogen storage. Biomass consumption remains high and is not impacted significantly by the introduction of hydrogen. Additional measures in other sectors are needed to ensure carbon neutrality.
Low Platinum Fuel Cell as Enabler for the Hydrogen Fuel Cell Vehicle
Feb 2024
Publication
In this work the design and modeling of a fuel cell vehicle using low-loading platinum catalysts were investigated. Data from single fuel cells with low Pt-loading cathode catalysts were scaled up to fuel cell stacks and systems implemented in a vehicle and then compared to a commercial fuel cell vehicle. The low-loading Pt systems have shown lower efficiency at high loads compared to the commercial systems suggesting less stable materials. However the analysis showed that the vehicle comprising low-loading Pt catalysts achieves similar or higher efficiency compared to the commercial fuel cell vehicle when being scaled up for the same number of cells. When the systems were scaled up for the same maximum power as the commercial fuel cell vehicle all the low-loading Pt fuel cell systems showed higher efficiencies. In this case more cells are needed but still the amount of Pt is significantly reduced compared to the commercial one. The high-efficiency results can be associated with the vehicle’s power range operation that meets the region where the low-loading Pt fuel cells have high performance. The results suggested a positive direction towards the reduction of Pt in commercial fuel cell vehicles supporting a cost-competitive clean energy transition based on hydrogen.
Investigating the Future of Freight Transport Low Carbon Technologies Market Acceptance across Different Regions
Oct 2024
Publication
Fighting climate change has become a major task worldwide. One of the key energy sectors to emit greenhouse gases is transportation. Therefore long term strategies all over the world have been set up to reduce on-road combustion emissions. In this context the road freight sector faces significant challenges in decarbonization driven by its limited availability of low-emission fuels and commercialized zero-emission vehicles compared with its high energy demand. In this work we develop the Mobility and Energy Transportation Analysis (META) Model a python-based optimization model to quantify the impact of transportation projected policies on freight transport by projecting conventional and alternative fuel technologies market acceptance as well as greenhouse gas (GHG) emissions. Along with introducing e-fuels as an alternative refueling option for conventional vehicles META investigates the market opportunities of Mobile Carbon Capture (MCC) until 2050. To accurately assess this technology a techno-economic analysis is essential to compare MCC abatement cost to alternative decarbonization technologies such as electric trucks. The novelty of this work comes from the detailed cost categories taken into consideration in the analysis including intangible costs associated with heavy-duty technologies such as recharging/refueling time cargo capacity limitations and consumer acceptance towards emerging technologies across different regions. Based on the study results the competitive total cost of ownership (TCO) and marginal abatement cost (MAC) values of MCC make it an economically promising alternative option to decarbonize the freight transport sector. Both in the KSA and EU MCC options could reach greater than 50% market shares of all ICE vehicle sales equivalent to a combined 35% of all new sales shares by 2035.
Economic Prospects of Taxis Powered by Hydrogen Fuel Cells in Palestine
Feb 2024
Publication
Recently major problems related to fuel consumption and greenhouse gas (GHG) emissions have arisen in the transportation sector. Therefore developing transportation modes powered by alternative fuels has become one of the main targets for car manufacturers and governments around the world. This study aimed to investigate the economic prospects of using hydrogen fuel cell technology in taxi fleets in Westbank. For this purpose a model that could predict the number of taxis was developed and the expected economic implications of using hydrogen fuel cell technology in taxi fleets were determined based on the expected future fuel consumption and future fuel cost. After analysis of the results it was concluded that a slight annual increase in the number of taxis in Palestine is expected in the future due to the government restrictions on issuing new taxi permits in order to get this sector organized. Furthermore using hydrogen fuel cells in taxi fleets is expected to become more and more feasible over time due to the expected future increase in oil price and the expected significant reduction in hydrogen cost as a result of the new technologies that are expected to be used in the production and handling of hydrogen.
Subcooled Liquid Hydrogen Technology for Heavy-Duty Trucks
Jan 2024
Publication
Subcooled liquid hydrogen (sLH2) is an onboard storage as well as a hydrogen refueling technology that is currently being developed by Daimler Truck and Linde to boost the mileage of heavy-duty trucks while also improving performance and reducing the complexity of hydrogen refueling stations. In this article the key technical aspects advantages challenges and future developments of sLH2 at vehicle and infrastructure levels will be explored and highlighted.
Decarbonizing Combustion with Hydrogen Blended Fuels: An Exploratory Study of Impact of Hydrogen on Hydrocarbon Autoignition
Jan 2024
Publication
Blending hydrogen to existing fuel mix represents a major opportunity for decarbonisation. One important consideration for this application is the chemical interaction between hydrogen and hydrocarbon fuels arising from their different combustion chemistries and varying considerably with combustion processes. This paper conducted an exploratory study of hydrogen’s impact on autoignition in several combustion processes where hydrogen is used as a blending component or the main fuel. Case studies are presented for spark ignition engines (H2/natural gas) compression ignition engines (H2/diesel) moderate or intense low-oxygen dilution (MILD) combustors (H2/natural gas) and rotational detonation engines (H2/natural gas). Autoignition reactivity as a function of the hydrogen blending level is investigated numerically using the ignition delay iso-contours and state-of-the-art kinetic models at time scales representative of each application. The results revealed drastically different impact of hydrogen blending on autoignition due to different reaction temperature pressure and time scale involved in these applications leaving hydrocarbon interacting with hydrogen at different ignition branches where the negative pressure/temperature dependency of oxidation kinetics could take place. The resulted non-linear and at times non-monotonic behaviours indicate a rich topic for combustion chemistry and also demonstrates ignition delay iso-contour as a useful tool to scope autoignition reactivity for a wide range of applications.
Towards Energy Freedom: Exploring Sustainable Solutions for Energy Independence and Self-sufficiency using Integrated Renewable Energy-driven Hydrogen System
Jan 2024
Publication
n the pursuit of sustainable energy solutions the integration of renewable energy sources and hydrogen technologies has emerged as a promising avenue. This paper introduces the Integrated Renewable Energy-Driven Hydrogen System as a holistic approach to achieve energy independence and self-sufficiency. Seamlessly integrating renewable energy sources hydrogen production storage and utilization this system enables diverse applications across various sectors. By harnessing solar and/or wind energy the Integrated Renewable EnergyDriven Hydrogen System optimizes energy generation distribution and storage. Employing a systematic methodology the paper thoroughly examines the advantages of this integrated system over other alternatives emphasizing its zero greenhouse gas emissions versatility energy resilience and potential for large-scale hydrogen production. Thus the proposed system sets our study apart offering a distinct and efficient alternative compared to conventional approaches. Recent advancements and challenges in hydrogen energy are also discussed highlighting increasing public awareness and technological progress. Findings reveal a payback period ranging from 2.8 to 6.7 years depending on the renewable energy configuration emphasizing the economic attractiveness and potential return on investment. This research significantly contributes to the ongoing discourse on renewable energy integration and underscores the viability of the Integrated Renewable EnergyDriven Hydrogen System as a transformative solution for achieving energy independence. The employed model is innovative and transferable to other contexts.
Techno-economic Feasibility of Distributed Waste-to-hydrogen Systems to Support Green Transport in Glasgow
Mar 2022
Publication
Distributed waste-to-hydrogen (WtH) systems are a potential solution to tackle the dual challenges of sustainable waste management and zero emission transport. Here we propose a concept of distributed WtH systems based on gasification and fermentation to support hydrogen fuel cell buses in Glasgow. A variety of WtH scenarios were configured based on biomass waste feedstock hydrogen production reactors and upstream and downstream system components. A cost-benefit analysis (CBA) was conducted to compare the economic feasibility of the different WtH systems with that of the conventional steam methane reforming-based method. This required the curation of a database that included inter alia direct cost data on construction maintenance operations infrastructure and storage along with indirect cost data comprising environmental impacts and externalities cost of pollution carbon taxes and subsidies. The levelized cost of hydrogen (LCoH) was calculated to be 2.22 GB P/kg for municipal solid waste gasification and 2.02 GB P/kg for waste wood gasification. The LCoHs for dark fermentation and combined dark and photo fermentation systems were calculated to be 2.15 GB P/kg and 2.29 GB P/kg. Sensitivity analysis was conducted to identify the most significant influential factors of distributed WtH systems. It was indicated that hydrogen production rates and CAPEX had the largest impact for the biochemical and thermochemical technologies respectively. Limitations including high capital expenditure will require cost reduction through technical advancements and carbon tax on conventional hydrogen production methods to improve the outlook for WtH development.
Industrial and Academic Collaboration Strategies on Hydrogen Fuel Cell Technology Development in Malaysia
Nov 2013
Publication
Hydrogen fuel cells are electrochemical power generators of high conversion efficiency and incredibly clean operation. Throughout the world the growth of fuel cell research and application has been very rapid in the last ten years where successful pilot projects on many areas have been implemented. In Malaysia approximately RM40 million has been granted to academic research institutions for fuel cell study and development. Recently Malaysia saw the emergence of its first hydrogen fuel cell developer signaling the readiness of the industrial sector to be involved in marketing the potential of fuel cells. Focusing mainly on Polymer Electrolyte Membrane fuel cell technology this paper demonstrates the efforts by Malaysian institutions both industrial and academic to promote hydrogen fuel cell education training application R&D as well as technology transfer. Emphasis is given to the existing collaboration between G-Energy Technologies and UniversitiTeknologi MARA that culminates with the successful application of a locally developed fuel cell system for a single-seated vehicle. Briefs on the potential of realizing a large-scale utilization of this clean technology into Malaysia’s mainstream power industry domestic consumers and energy consuming industries is also discussed. Key challenges are also identified where pilot projects government policy and infrastructural development is central to strengthen the prospect of hydrogen fuel cell implementation in Malaysia.
Dual Fuel-based Multi-Energy System for Australian Renewable Energy Zones at Country Scale
Jul 2025
Publication
This paper aims to optimize dual-fuel facilitated off-/on-grid multi-energy systems (MESs) for different renewable energy zones (REZs) in Australia. The main objective is to develop a novel MES with the main feature of green hydrogen production and blended natural gas utilization for remote households. The proposed optimal system produces green hydrogen of 5343 kg/yr via proton exchange membrane (PEM) electrolyzer and blends it with natural gas. It involves 20 % hydrogen and 80 % natural gas in the overall volume of the blending process. This study contributes by performing optimal sizing of the components economic-energy-environmental and performance analyses to examine the most feasible solution for each REZ. The results indicate that the optimal system in North Queensland REZ has the lowest levelized cost of energy (LCE) of 1.28 A$/kWh and 0.1003 A $/kWh and the net present cost (NPC) of A$0.311 million and A$0.219 million for off-grid and on-grid configurations. The optimal on-grid system has 95.27 % less carbon emissions than the natural gas-fueled combustion energy system.
A Review of Liquid Hydrogen Aircraft and Propulsion Technologies
Jan 2024
Publication
Sustainable aviation is a key part of achieving Net Zero by 2050 and is arguably one of the most challenging sectors to decarbonise. Hydrogen has gained unprecedented attention as a future fuel for aviation for use within fuel cell or hydrogen gas turbine propulsion systems. This paper presents a survey of the literature and industrial projects on hydrogen aircraft and associated enabling technologies. The current and predicted technology capabilities are analysed to identify important trends and to assess the feasibility of hydrogen propulsion. Several key enabling technologies are discussed in detail and gaps in knowledge are identified. It is evident that hydrogen propelled aircraft are technologically viable by 2050. However convergence of a number of critical factors is required namely: the extent of industrial collaboration the understanding of environmental science and contrails green hydrogen production and its availability at the point of use and the safety and certification of the aircraft and supporting infrastructure.
Lab-Scale Investigation of the Integrated Backup/Storage System for Wind Turbines Using Alkaline Electrolyzer
Apr 2023
Publication
The depletion of fossil fuel sources has encouraged the authorities to use renewable resources such as wind energy to generate electricity. A backup/storage system can improve the performance of wind turbines due to fluctuations in power demand. The novelty of this study is to utilize a hybrid system for a wind farm using the excess electricity generated by the wind turbines to produce hydrogen in an alkaline electrolyzer (AEL). The hydrogen storage tank stores the produced hydrogen and provides hydrogen to the proton-exchange membrane fuel cell (PEMFC) to generate electricity once the power demand is higher than the electricity generated by the wind turbines. The goal of this study is to use the wind profile of a region in Iran namely the Cohen region to analyze the performance of the suggested integrated system on a micro scale. The output results of this study can be used as a case study for construction in the future based on the exact specification of NTK300 wind turbines. The results indicate that with the minimum power supply of 30 kW from the wind turbines on a lab scale the generated power by the PEMFC will be 1008 W while the maximum generated hydrogen will be 304 mL/h.
No more items...