Applications & Pathways
A Review on Application of Hydrogen in Gas Turbines with Intercooler Adjustments
Mar 2024
Publication
In recent years traditional fossil fuels such as coal oil and natural gas have historically dominated various applications but there has been a growing shift towards cleaner alternatives. Among these alternatives hydrogen (H2) stands out as a highly promising substitute for all other conventional fuels. Today hydrogen (H2) is actively taking on a significant role in displacing traditional fuel sources. The utilization of hydrogen in gas turbine (GT) power generation offers a significant advantage in terms of lower greenhouse gas emissions. The performance of hydrogen-based gas turbines is influenced by a range of variables including ambient conditions (temperature and pressure) component efficiency operational parameters and other factors. Additionally incorporating an intercooler into the gas turbine system yields several advantages such as reducing compression work and maintaining power and efficiency. Many scholars and researchers have conducted comprehensive investigations into the components mentioned above within context of gas turbines (GTs). This study provides an extensive examination of the research conducted on hydrogen-powered gas turbine and intercooler with employed different methods and techniques with a specific emphasis on the different case studies of a hydrogen gas turbine and intercooler. Moreover this study not only examined the current state of research on hydrogen-powered gas turbine and intercooler but also covered its influence by offering the effective recommendations and insightful for guiding for future research in this field.
Integration of Microgrids in Chemical Industries with Hydrogen as a Byproduct: Styrene Production Case Study
Feb 2024
Publication
The chemical industry serves as a global economic backbone and it is an intensive consumer of conventional energy. Due to the depletion of fossil fuels and the emission of greenhouse gases it is necessary to analyze energy supply solutions based on renewable energy sources in this industrial sector. Unlike other sectors such as residential or service industries which have been thoroughly analyzed by the scientific community the use of renewable energies in the chemical industry remains comparatively less examined by the scientific community. This article studies the use of an energy supply system based on photovoltaic technology or a PEM fuel cell for a styrene production industry analyzing the integration of energy storage systems such as batteries as well as different uses for the surplus hydrogen produced by the facility. The most interesting conclusions of the article are: (1) the renewable microgrid considered is viable both technically and economically with a discounted payback period between 5.4 and 6.5 years using batteries as an energy storage system; and (2) the use of hydrogen as energy storage system for a styrene industry is not yet a viable option from an economic point of view.
Cost Trajectory of Hydrogen Fuel Cell Technology in China
Apr 2025
Publication
Reducing the cost of hydrogen fuel cell technology is crucial in propelling the hydrogen economy and achieving decarbonized energy systems. This study identifies the hydrogen fuel cell cost trajectory through a multi-stage learning curve model highlighting technology learning mechanisms across different stages. Findings show that innovation and production contribute to cost reduction and the learning by researching holds a more significant role presently while the learning by doing takes precedence in the long term achieving a 14% learning rate. The cost predictions imply that the system cost of hydrogen fuel cell is expected to fall below 1000 yuan/kW after 2031. Moreover the scenario analyses highlight the conducive role of various hydrogen production technologies and the evolution of cost influencing factors on cost reduction. Our research provides critical insights into the evolving dynamics of technological learning and cost trajectory in the hydrogen fuel cell industry with significant implications for policy-making.
The Influence of Gas Fuel Enrichment with Hydrogen on the Combustion Characteristics of Combustors: A Review
Oct 2024
Publication
Hydrogen is a promising fuel because it has good capabilities to operate gas turbines. Due to its ignition speed which exceeds the ignition of traditional fuel it achieves a higher thermal efficiency while the resulting emissions are low. So it was used as a clean and sustainable energy source. This paper reviews the most important research that was concerned with studying the characteristics of hydrogen combustion within incinerators and power generation equipment where hydrogen was used as a fuel mixed with traditional fuel in the combustion chambers of gas turbines. It also includes an evaluation of the combustion processes and flame formation resulting from the enrichment of gaseous fuels with hydrogen and partial oxidation. A large amount of theoretical and experimental work in this field has been reviewed. This review summarizes the predictive and experimental results of various research interests in the field of hydrogen combustion and also production.
Helping the Climate by Replacing Liquefied Natural Gas with Liquefied Hydrogen or Ammonia?
Apr 2024
Publication
The war in Ukraine caused Europe to more than double its imports of liquefied natural gas (LNG) in only one year. In addition imported LNG remains a crucial source of energy for resource-poor countries such as Japan where LNG imports satisfy about a quarter of the country’s primary energy demand. However an increasing number of countries are formulating stringent decarbonization plans. Liquefied hydrogen and liquefied ammonia coupled with carbon capture and storage (LH2-CCS LNH3-CCS) are emerging as the front runners in the search for low-carbon alternatives to LNG. Yet little is currently known about the full environmental profile of LH2-CCS and LNH3-CCS because several characteristics of the two alternatives have only been analyzed in isolation in previous work. Here we show that the potential of these fuels to reduce greenhouse gas (GHG) emissions throughout the supply chain is highly uncertain. Our best estimate is that LH2-CCS and LNH3-CCS can reduce GHG emissions by 25%–61% relative to LNG assuming a 100 year global warming potential. However directly coupling LNG with CCS would lead to substantial GHG reductions on the order of 74%. Further under certain conditions emissions from LH2-CCS and LNH3-CCS could exceed those of LNG by up to 44%. These results question the suitability of LH2-CCS and LNH3-CCS for stringent decarbonization purposes.
Generalized Thermodynamic Modelling of Hydrogen Storage Tankes for Truck Application
Mar 2024
Publication
Hydrogen-driven heavy-duty trucks are a promising technology for reducing CO2 emissions in the transportation sector. Thus storing hydrogen efficiently onboard is vital. The three available or currently developed physical hydrogen storage technologies (compressed gaseous subcooled liquid and cryo-compressed hydrogen) are promising solutions. For a profound thermodynamic comparison of these storage systems a universally applicable model is required. Thus this article introduces a generalized thermodynamic model and conducts thermodynamic comparisons in terms of typical drive cycle scenarios. Therefore a model introduced by Hamacher et al. [1] for cryo-compressed hydrogen tanks is generalized by means of an explicit model formulation using the property ��2� from REFPROP [2] which is understood as a generic specific isochoric two-phase heat capacity. Due to an implemented decision logic minor changes to the equation system are automatically made whenever the operation mode or phase of the tank changes. The resulting model can simulate all three storage tank systems in all operating scenarios and conditions in the single- and two-phase region. Additionally the explicit model formulation provides deeper insights into the thermodynamic processes in the tank. The model is applied to the three physical hydrogen storage technologies to compare drive cycles heat requirement dormancy behavior and optimal usable density. The highest driving ranges were achieved with cryo-compressed hydrogen however it also comes with higher heating requirements compared to subcooled liquid hydrogen.
Net-zero Energy Management through Multi-criteria Optimizations of a Hybrid Solar-Hydrogen Energy Production System for an Outdoor Laboratory in Toronto
Apr 2024
Publication
Hydrogen production and storage in hybrid systems is a promising solution for sustainable energy transition decoupling the energy generation from its end use and boosting the deployment of renewable energy. Nonetheless the optimal and cost-effective design of hybrid hydrogen-based systems is crucial to tackle existing limitations in diffusion of these systems. The present study explores net-zero energy management via a multi-objective optimization algorithm for an outdoor test facility equipped with a hydrogen-based hybrid energy production system. Aimed at enabling efficient integration of hydrogen fuel cell system the proposed solution attempts to maximize the renewable factor (RF) and carbon mitigation in the hybrid system as well as to minimize the grid dependency and the life cycle cost (LCC) of the system. In this context the techno-enviroeconomic optimization of the hybrid system is conducted by employing a statistical approach to identify optimal design variables and conflictive objective functions. To examine interactions in components of the hybrid system a series of dynamic simulations are carried out by developing a TRNSYS code coupled with the OpenStudio/EnergyPlus plugin. The obtained results indicate a striking disparity in the monthly RF values as well as the hydrogen production rate and therefore in the level of grid dependency. It is shown that the difference in LCC between optimization scenarios suggested by design of experiments could reach $15780 corresponding to 57% of the mean initial cost. The LCOE value yielded for optimum scenarios varies between 0.389 and 0.537 $/kWh. The scenario with net-zero target demonstrates the lowest LCOE value and the highest carbon mitigation i.e. 828 kg CO2/yr with respect to the grid supply case. However the LCC in this scenario exceeds $57370 which is the highest among all optimum scenarios. Furthermore it was revealed that the lowest RF in optimal scenarios is equal to 66.2% and belongs to the most economical solution.
A Complete Assessment of the Emission Performance of an SI Engine Fueled with Methanol, Methane and Hydrogen
Feb 2024
Publication
This study explores the potentiality of low/zero carbon fuels such as methanol methane and hydrogen for motor applications to pursue the goal of energy security and environmental sustainability. An experimental investigation was performed on a spark ignition engine equipped with both a port fuel and a direct injection system. Liquid fuels were injected into the intake manifold to benefit from a homogeneous charge formation. Gaseous fuels were injected in direct mode to enhance the efficiency and prevent abnormal combustion. Tests were realized at a fixed indicated mean effective pressure and at three different engine speeds. The experimental results highlighted the reduction of CO and CO2 emissions for the alternative fuels to an extent depending on their properties. Methanol exhibited high THC and low NOx emissions compared to gasoline. Methane and even more so hydrogen allowed for a reduction in THC emissions. With regard to the impact of gaseous fuels on the NOx emissions this was strongly related to the operating conditions. A surprising result concerns the particle emissions that were affected not only by the fuel characteristics and the engine test point but also by the lubricating oil. The oil contribution was particularly evident for hydrogen fuel which showed high particle emissions although they did not contain carbon atoms.
Hydrogen Refueling Stations Powered by Hybrid PV/Wind Renewable Energy Systems: Techno-socio-economic Assessment
Mar 2024
Publication
Hydrogen is considered as an attractive alternative to fossil fuels in the transportation sector. However the penetration of Fuel Cell Electric Vehicles (FCEV) is hindered by the lack of hydrogen refueling station infrastructures. In this study the feasibility of a hybrid PV/wind system for hydrogen refueling station is investigated. Refueling events data is collected in different locations including industrial residential highway and tourist areas. Station Occupancy Fractions (SOF) and Social-to-Solar Fraction (STSF) indicators are developed to assess the level of synchronization between the hydrogen demand and solar potential. Then a validated computer code is used to optimize the renewable system components for off/on-grid cases based on minimizing the Net Present Cost (NPC) and the Loss of Hydrogen Supply Probability (LHSP). For off grid cases the results show that STSF attains maximum value in the industrial area where 0.62 fraction of refueling events occur during the sunshine hours and minimum NPC is achieved. It is observed that when STSF attains lower values of 0.52 0.41 and 0.38 for residential highway and tourist areas NPC increases by 8 16 and 31% respectively. This is associated with lower level of coordination between the hydrogen demand and solar potential. The same conclusion can be stated for the on-grid cases. Therefore for green hydrogen production via solar energy utilization it is recommended that a tariff should be applied to encourage refueling hydrogen vehicles during the availability of solar radiation while reducing the environmental impact storage requirements and eventually the cost of hydrogen production.
Energy Efficiency of Hydrogen for Vehicle Propulsion: On- or Off-board H2 to Electricity Conversion?
Nov 2024
Publication
If hydrogen fuel is available to support the transportation sector decarbonization its usage can be placed either directly onboard in a fuel cell vehicle or indirectly off-board by using a fuel cell power station to produce electricity to charge a battery electric vehicle. Therefore in this work the direct and indirect conversion scenarios of hydrogen to vehicle propulsion were investigated regarding energy efficiency. Thus in the first scenario hydrogen is the fuel for the onboard electricity production to propel a fuel cell vehicle while in the second hydrogen is the electricity source to charge the battery electric vehicle. When simulated for a drive cycle results have shown that the scenario with the onboard fuel cell consumed about 20% less hydrogen demonstrating higher energy efficiency in terms of driving range. However energy efficiency depends on the outside temperature when heat loss utilization is considered. For outside temperatures of − 5 ◦C or higher the system composed of the battery electric vehicle fueled with electricity from the off-board fuel cell was shown to be more energyefficient. For lower temperatures the system composed of the onboard fuel cell again presented higher total (heat + electricity) efficiency. Therefore the results provide valuable insights into how hydrogen fuel can be used for vehicle propulsion supporting the hydrogen economy development.
Towards Low-carbon Power Networks: Optimal Location and Sizing of Renewable Energy Sources and Hydrogen Storage
Apr 2024
Publication
This paper proposes a systematic optimization framework to jointly determine the optimal location and sizing decisions of renewables and hydrogen storage in a power network to achieve the transition to low-carbon networks efficiently. We obtain these strategic decisions based on the multi-period alternating current optimal power flow (AC MOPF) problem that jointly analyzes power network renewable and hydrogen storage interactions at the operational level by considering the uncertainty of renewable output seasonality of electricity demand and electricity prices. We develop a tailored solution approach based on second-order cone programming within a Benders decomposition framework to provide globally optimal solutions. In a test case we show that the joint integration of renewable sources and hydrogen storage and consideration of the AC MOPF model significantly reduces the operational cost of the power network. In turn our findings can provide quantitative insights to decision-makers on how to integrate renewable sources and hydrogen storage under different settings of the hydrogen selling price renewable curtailment cost emission tax price and conversion efficiency.
Numerical Simulation of the Transport and the Thermodynamic Properties of Imported Natural Gas Inected with Hydrogen in the Manifold
Nov 2023
Publication
Blending hydrogen with natural gas (NG) is an efficient method for transporting hydrogen on a large scale at a low cost. The manifold at the NG initial station is an important piece of equipment that enables the blending of hydrogen with NG. However there are differences in the components and component contents of imported NG from different countries. The components of hydrogen-blended NG can affect the safety and efficiency of transportation through pipeline systems. Therefore numerical simulations were performed to investigate the blending process and changes in the thermodynamic properties of four imported NGs and hydrogen in the manifold. The higher the heavy hydrocarbon content in the imported NG the longer the distance required for the gas to mix uniformly with hydrogen in the pipeline. Hydrogen blending reduces the temperature and density of NG. The gas composition is the main factor affecting the molar calorific value of a gas mixture and hydrogen blending reduces the molar calorific value of NG. The larger the content of high-molar calorific components in the imported NG the higher the molar calorific value of the gas after hydrogen blending. Increasing both the temperature and hydrogen mixing ratio reduces the Joule-Thomson coefficient of the hydrogen-blended NG. The results of this study provide technical references for the transport of hydrogen-blended NG.
Charting the Course: Navigating Decarbonisation Pathways in Greece, Germany, The Netherlands, and Spain’s Industrial Sectors
Jul 2024
Publication
In the quest for a sustainable future energy-intensive industries (EIIs) stand at the forefront of Europe’s decarbonisation mission. Despite their significant emissions footprint the path to comprehensive decarbonisation remains elusive at EU and national levels. This study scrutinises key sectors such as non-ferrous metals steel cement lime chemicals fertilisers ceramics and glass. It maps out their current environmental impact and potential for mitigation through innovative strategies. The analysis spans across Spain Greece Germany and the Netherlands highlighting sector-specific ecosystems and the technological breakthroughs shaping them. It addresses the urgency for the industry-wide adoption of electrification the utilisation of green hydrogen biomass bio-based or synthetic fuels and the deployment of carbon capture utilisation and storage to ensure a smooth transition. Investment decisions in EIIs will depend on predictable economic and regulatory landscapes. This analysis discusses the risks associated with continued investment in high-emission technologies which may lead to premature decommissioning and significant economic repercussions. It presents a dichotomy: invest in climate-neutral technologies now or face the closure and offshoring of operations later with consequences for employment. This open discussion concludes that while the technology for near-complete climate neutrality in EIIs exists and is rapidly advancing the higher costs compared to conventional methods pose a significant barrier. Without the ability to pass these costs to consumers the adoption of such technologies is stifled. Therefore it calls for decisive political commitment to support the industry’s transition ensuring a greener more resilient future for Europe’s industrial backbone.
Towards the Design of a Hydrogen-powered Ferry for Cleaner Passenger Transport
Aug 2024
Publication
The maritime transportation sector is a large and growing contributor of greenhouse gas and other emissions. Therefore stringent measures have been taken by the International Maritime Organization to mitigate the environmental impact of the international shipping. These lead to the adoption of new technical solutions involving clean fuels such as hydrogen and high efficiency propulsion technologies that is fuel cells. In this framework this paper proposes a methodological approach aimed at supporting the retrofit design process of a car-passenger ferry operating in the Greece’s western maritime zone whose conventional powertrain is replaced with a fuel cell hybrid system. To this aim first the energy/power requirements and the expected hydrogen consumption of the vessel are determined basing on a typical operational profile retrieved from data provided by the shipping company. Three hybrid powertrain configurations are then proposed where fuel cell and batteries are balanced out according to different design criteria. Hence a new vessel layout is defined for each of the considered options by taking into account on-board weight and space constraints to allocate the components of the new hydrogen-based propulsion systems. Finally the developed vessel configurations are simulated in a virtual towing tank environment in order to assess their hydrodynamic response and compare them with the original one thus providing crucial insights for the design process of new hydrogen-fueled vessel solutions. Findings from this study reveal that the hydrogen-based configurations of the vessel are all characterized by a slight reduction of the payload mainly due to the space required to allocate the hydrogen storage system; instead the hydrodynamic behavior of the H2 powered vessels is found to be similar to the one of the original Diesel configuration; also from a hydrodynamic point of view the results show that mid load operating conditions get relevance for the design process of the hybrid vessels.
Real-Time Energy Management Strategy of Hydrogen Fuel Cell Hybrid Electric Vehicles Based on Power Following Strategy–Fuzzy Logic Control Strategy Hybrid Control
Nov 2023
Publication
Fuel cell hybrid electric vehicles have the advantages of zero emission high efficiency and fast refuelling etc. and are one of the key directions for vehicle development. The energy management problem of fuel cell hybrid electric vehicles is the key technology for power distribution. The traditional power following strategy has the advantage of a real-time operation but the power correction is usually based only on the state of charge of a lithium battery which causes the operating point of the fuel cell to be in the region of a low efficiency. To solve this problem this paper proposes a hybrid power-following-fuzzy control strategy where a fuzzy logic control strategy is used to optimise the correction module based on the power following strategy which regulates the state of charge while correcting the output power of the fuel cell towards the efficient operating point. The results of the joint simulation with Matlab + Advisor under the Globally Harmonised Light Vehicle Test Cycle Conditions show that the proposed strategy still ensures the advantages of real-time energy management and for the hydrogen fuel cell the hydrogen consumption is reduced by 13.5% and 4.1% compared with the power following strategy and the fuzzy logic control strategy and the average output power variability is reduced by 14.6% and 5.1% respectively which is important for improving the economy of the whole vehicle and prolonging the lifetime of fuel cell.
Feasibility Study on the Provision of Electricity and Hydrogen for Domestic Purposes in the South of Iran using Grid-connected Renewable Energy Plants
Dec 2018
Publication
This work presents a feasibility study on the provision of electricity and hydrogen with renewable grid connected and off-the-grid systems for Bandar Abbas City in the south of Iran. The software HOMER Pro® has been used to perform the analysis. A techno-enviro-economic study comparing a hybrid system consisting of the grid/wind turbine and solar cell is done. The wind turbine is analyzed using four types of commercially available vertical axis wind turbines (VAWTs). According to the literature review no similar study has been performed so far on the feasibility of using VAWTs and also no work exists on the use of a hybrid system in the studied area. The results indicated that the lowest price of providing the required hydrogen was $0.496 which was achieved using the main grid. Also the lowest price of the electricity generated was $1.55 which was obtained through using EOLO VAWT in the main grid/wind turbine/solar cell scenario. Also the results suggested that the highest rate of preventing CO2 emission which was also the lowest rate of using the national grid with 3484 kg/year was associated with EOLO wind turbines where only 4% of the required electricity was generated by the national grid.
The Impact of Methane Leakage on the Role of Natural Gas in the European Energy Transition
Sep 2023
Publication
Decarbonising energy systems is a prevalent topic in the current literature on climate change mitigation but the additional climate burden caused by methane emissions along the natural gas value chain is rarely discussed at the system level. Considering a two-basket greenhouse gas neutrality objective (both CO2 and methane) we model cost-optimal European energy transition pathways towards 2050. Our analysis shows that adoption of best available methane abatement technologies can entail an 80% reduction in methane leakage limiting the additional environmental burden to 8% of direct CO2 emissions (vs. 35% today). We show that while renewable energy sources are key drivers of climate neutrality the role of natural gas strongly depends on actions to abate both associated CO2 and methane emissions. Moreover clean hydrogen (produced mainly from renewables) can replace natural gas in a substantial proportion of its end-uses satisfying nearly a quarter of final energy demand in a climate-neutral Europe.
Hazard Footprint of Alternative Fuel Storage Concepts for Hydrogen-powered Urban Buses
Nov 2023
Publication
Hydrogen mobility is a powerful strategy to fight climate change promoting the decarbonization of the transportation sector. However the higher flammability of hydrogen in comparison with traditional fuels raises issues concerning the safety of hydrogen-powered vehicles in particular when urban mobility in crowded areas is concerned. In the present study a comparative analysis of alternative hydrogen storage concepts for buses is carried out. A specific inherent safety assessment methodology providing a hazard footprint of alternative hydrogen storage technologies was developed. The approach provides a set of ex-ante safety performance indicators and integrates a sensitivity analysis performed by a Monte Carlo method. Integral models for consequence analysis and a set of baseline frequencies are used to provide a preliminary identification of the worstcase credible fire and explosion scenarios and to rank the inherent safety of alternative concepts. Cryocompressed storage in the supercritical phase resulted as the more hazardous storage concept while cryogenic storage in the liquid phase at ambient pressure scored the highest safety performance. The results obtained support risk-informed decision-making in the shift towards the promotion of sustainable mobility in urban areas.
Simple Energy Model for Hydrogen Fuel Cell Vehicles: Model Development and Testing
Dec 2024
Publication
Hydrogen fuel cell vehicles (HFCVs) are a promising technology for reducing vehicle emissions and improving energy efficiency. Due to the ongoing evolution of this technology there is limited comprehensive research and documentation regarding the energy modeling of HFCVs. To address this gap the paper develops a simple HFCV energy consumption model using new fuel cell efficiency estimation methods. Our HFCV energy model leverages real-time vehicle speed acceleration and roadway grade data to determine instantaneous power exertion for the computation of hydrogen fuel consumption battery energy usage and overall energy consumption. The results suggest that the model’s forecasts align well with real-world data demonstrating average error rates of 0.0% and −0.1% for fuel cell energy and total energy consumption across all four cycles. However it is observed that the error rate for the UDDS drive cycle can be as high as 13.1%. Moreover the study confirms the reliability of the proposed model through validation with independent data. The findings indicate that the model precisely predicts energy consumption with an error rate of 6.7% for fuel cell estimation and 0.2% for total energy estimation compared to empirical data. Furthermore the model is compared to FASTSim which was developed by the National Renewable Energy Laboratory (NREL) and the difference between the two models is found to be around 2.5%. Additionally instantaneous battery state of charge (SOC) predictions from the model closely match observed instantaneous SOC measurements highlighting the model’s effectiveness in estimating real-time changes in the battery SOC. The study investigates the energy impact of various intersection controls to assess the applicability of the proposed energy model. The proposed HFCV energy model offers a practical versatile alternative leveraging simplicity without compromising accuracy. Its simplified structure reduces computational requirements making it ideal for real-time applications smartphone apps in-vehicle systems and transportation simulation tools while maintaining accuracy and addressing limitations of more complex models.
Reversible Solid Oxide Cell Coupled to an Offshore Wind Turbine as a Poly-generation Energy System for Auxiliary Backup Generaiton and Hydrogen Production
Nov 2022
Publication
The coupling of a reversible Solid Oxide Cell (rSOC) with an offshore wind turbine is investigated to evaluate the mutual benefits in terms of local energy management. This integrated system has been simulated with a dynamic model under a control algorithm which manages the rSOC operation in relation to the wind resource implementing a local hydrogen storage with a double function: (i) assure power supply to the wind turbine auxiliary systems during power shortages (ii) valorize the heat produced to cover the desalinization system needs. With an export-based strategy which maximize the rSOC capacity factor up to 15 tons of hydrogen could be produced for other purposes. The results show the compatibility between the auxiliary systems supply of a 2.3 MW wind turbine and a 120/21 kWe rSOC system which can cover the auxiliaries demand during wind shortages or maintenance. The total volume required by such a system occupy less than the 2% if compared with the turbine tower volume. Additionally thermal availability exceeds the desalination needs representing a promising solution for small-scale onsite desalination in offshore environments.
No more items...