Hydrogen Blending
Next for Net Zero Podcast: Unlock & Understand, Achieving a More Sustainable Future
Sep 2022
Publication
This episode examines how we are tackling a sustainable future – with Net Zero hurtling towards us at great pace. We’re around a year on from the pledges made at COP26 the UK’s Green Recovery initiative is well under way and by next year Britain is aiming to blend up to 20 per cent hydrogen into its gas networks. So now is the time to continue to unlock new insight and understand further the realities of both the challenges and opportunities ahead.
The podcast can be found here.
The podcast can be found here.
Blending Hydrogen from Electrolysis into the European Gas Grid
Jan 2022
Publication
In 2020 the European Commission launched a hydrogen strategy for a climate-neutral Europe setting out the conditions and actions for mainstreaming clean hydrogen along with targets for installing renewable hydrogen electrolysers by 2024 and 2030. Blending hydrogen alongside other gases into the existing gas grid is considered a possible interim first step towards decarbonising natural gas. In the present analysis we modelled electrolytic hydrogen generation as a process connecting two separate energy systems (power and gas). The analysis is based on a projection of the European power and gas systems to 2030 based on the EUCO3232.5 scenario. Multiple market configurations were introduced in order to assess the interplay between diverse power market arrangements and constraints imposed by the upper bound on hydrogen concentration. The study identifies the maximum electrolyser capacity that could be integrated in the power and gas systems the impact on greenhouse gas emissions and the level of price support that may be required for a broad range of electrolyser configurations. The study further attempts to shed some light on the potential side effects of having non-harmonised H2 blending thresholds between neighbouring Member States.
Interchangeability of Hydrogen Injection in Zhejiang Natural Gas Pipelines as a Means to Achieve Carbon Neutrality
Sep 2022
Publication
The blending of hydrogen gas into natural gas pipelines is an effective way of achieving the goal of carbon neutrality. Due to the large differences in the calorific values of natural gas from different sources the calorific value of natural gas after mixing with hydrogen may not meet the quality requirements of natural gas and the quality of natural gas entering long-distance natural gas and urban gas pipelines also has different requirements. Therefore it is necessary to study the effect of multiple gas sources and different pipe network types on the differences in the calorific values of natural gas following hydrogen admixing. In this regard this study aimed to determine the quality requirements and proportions of hydrogen-mixed gas in natural gas pipelines at home and abroad and systematically determined the quality requirements for natural gas entering both long-distance natural gas and urban gas pipelines in combination with national standards. Taking the real calorific values of the gas supply cycle of seven atmospheric sources as an example the calorific and Wobbe Index values for different hydrogen admixture ratios in a one-year cycle were calculated. The results showed that under the requirement of natural gas interchangeability there were great differences in the proportions of natural gas mixed with hydrogen from different gas sources. When determining the proportion of hydrogen mixed with natural gas both the factors of different gas sources and the factors of the gas supply cycle should be considered.
Gas Goes Green: Britain's Hydrogen Blending Delivery Plan
Jan 2022
Publication
Britain’s Hydrogen Blending Delivery Plan which sets out how all five of Britain’s gas grid companies will meet the Government’s target for Britain’s network of gas pipes to be ready to deliver 20% hydrogen to homes and businesses from 2023 as a replacement for natural gas.
An Overview on Safety Issues Related to Hydrogen and Methane Blend Applications in Domestic and Industrial Use
Sep 2017
Publication
The share of electrical energy hailing from renewable sources in the European electricity mix is increasing. The match between renewable power supply and demand has become the greatest challenge to cope with. Gas infrastructure can accommodate large volumes of electricity converted into gas whenever this supply of renewable power is larger than the grid capacity or than the electricity demand. The Power-to-Gas (P2G) process chain could play a significant role in the future energy system. Renewable electric energy can be transformed into storable hydrogen via electrolysis and subsequent methanation. The aim of this paper is to provide an overview of the required technical adaptations of the most common devices for end users such as heating plants CHP systems home gas furnaces and cooking surfaces wherever these are fuelled with methane and hydrogen blends in variable percentages by volume. Special attention will be given to issues related to essential safety standards firstly comparing existing Italian and European regulations in this regard and secondly highlighting the potential need for legislation to regulate the suitability of hydrogen methane blends. Finally a list of foreseeable technical solutions will be provided and discussed thoroughly
Hydrogen–Natural Gas Blending in Distribution Systems—An Energy, Economic, and Environmental Assessment
Aug 2022
Publication
Taking into account the international policies in the field of environmental protection in the world in general and in the European Union in particular the reduction of greenhouse gas (GHG) emissions and primarily of carbon dioxide has become one of the most important objectives. This can be obtained through various renewable energy sources and non-polluting technologies such as the mixing of hydrogen and natural gas. Combining hydrogen with natural gas is an emerging trend in the energy industry and represents one of the most important changes in the efforts to achieve extensive decarbonisation. The importance of this article consists of carrying out a techno-economic study based on the simulation of annual consumptions regarding the construction and use of production capacities for hydrogen to be used in mixtures with natural gas in various percentages in the distribution network of an important operator in Romania. In order to obtain relevant results natural gas was treated as a mixture of real gases with a known composition as defined in the chromatographic bulletin. The survey presents a case study for the injection of 5% 10% and 20% hydrogen in the natural gas distribution system of Bucharest the largest city in Romania. In addition to conducting this techno-economic study the implications for final consumers of this technical solution in reducing greenhouse gas emissions—mainly those of carbon dioxide from combustion—are also presented.
Pressure Management in Smart Gas Networks for Increasing Hydrogen Blending
Jan 2022
Publication
The injection of hydrogen into existing gas grids is acknowledged as a promising option for decarbonizing gas systems and enhancing the integration among energy sectors. Nevertheless it affects the hydraulics and the quality management of networks. When the network is fed by multiple infeed sites and hydrogen is fed from a single injection point non-homogeneous hydrogen distribution throughout the grid happens to lead to a reduction of the possible amount of hydrogen to be safely injected within the grid. To mitigate these impacts novel operational schemes should therefore be implemented. In the present work the modulation of the outlet pressures of gas infeed sites is proposed as an effective strategy to accommodate larger hydrogen volumes into gas grids extending the area of the network reached by hydrogen while keeping compliance with quality and hydraulic restrictions. A distribution network operated at two cascading pressure tiers interfaced by pressure regulators constitutes the case study which is simulated by a fluid-dynamic and multi-component model for gas networks. Results suggest that higher shares of hydrogen and other green gases can be introduced into existing distribution systems by implementing novel asset management schemes with negligible impact on grid operations.
THyGA - Tightness Testing of Gas Distribution Components in 40%H2+60%CH4
Aug 2022
Publication
The present work is concerned with the evaluation of the tightness of the components located on domestic and commercial gas lines from the gas meter to the end user appliance in presence of a mixture 40%H2+60%CH4 at 35 mbar. The components were taken from installations being used currently in Germany Denmark Belgium and France. The current standard methods to evaluate natural gas distribution tightness propose testing duration of several minutes. In this work the components tightness was first evaluated using such standard methods before carrying out tests on longer period of time and evaluate the potential influence of time and the results were compared to admissible leakage rates for natural gas in distribution network and in appliances.
Impact of Grid Gas Requirements on Hydrogen Blending Levels
Oct 2021
Publication
The aim of the article is to determine what amount of hydrogen in %mol can be transferred/stored in the Estonian Latvian and Lithuanian grid gas networks based on the limitations of chemical and physical requirements technical requirements of the gas network and quality requirements. The main characteristics for the analysis of mixtures of hydrogen and natural gas are the Wobbe Index relative density methane number and calorific value. The calculation of the effects of hydrogen blending on the above main characteristics of a real grid gas is based on the principles described in ISO 6976:2016 and the distribution of the grid gas mole fraction components from the grid gas quality reports. The Wärtsila methane number calculator was used to illustrate the effects of hydrogen blending on the methane number of the grid gas. The calculation results show that the maximum hydrogen content in the grid gas (hydrogen and natural gas mix) depending on the grid gas quality parameters (methane number gross heat of combustion specific gravity and the Wobbe Index) is in the range of 5–23 %mol H2. The minimum hydrogen content (5 %mol H2) is limited by specific gravity (>0.55). The next limitation is at 12 %mol H2 and is related to the gross heat of combustion (>9.69 kWh/m3). It is advisable to explore the readiness of gas grids and consumers in Estonia Latvia and Lithuania before switching to higher hydrogen blend levels. If the applicability and safety of hydrogen blends above 5 %mol is approved then it is necessary to analyse the possible reduction of the minimum requirements for the quality of the grid gas and evaluate the associated risks (primarily related to specific gravity).
Hydrogen Addition to Natural Gas in Cogeneration Engines: Optimization of Performances Through Numerical Modeling
Aug 2021
Publication
A numerical study of the energy conversion process occurring in a lean-charge cogenerative engine designed to be powered by natural gas is here conducted to analyze its performances when fueled with mixtures of natural gas and several percentages of hydrogen. The suitability of these blends to ensure engine operations is proven through a zero–one-dimensional engine schematization where an original combustion model is employed to account for the different laminar propagation speeds deriving from the hydrogen addition. Guidelines for engine recalibration are traced thanks to the achieved numerical results. Increasing hydrogen fractions in the blend speeds up the combustion propagation achieving the highest brake power when a 20% of hydrogen fraction is considered. Further increase of this last would reduce the volumetric efficiency by virtue of the lower mixture density. The formation of the NOx pollutants also grows exponentially with the hydrogen fraction. Oppositely the efficiency related to the exploitation of the exhaust gases’ enthalpy reduces with the hydrogen fraction as shorter combustion durations lead to lower temperatures at the exhaust. If the operative conditions are shifted towards leaner air-to-fuel ratios the in-cylinder flame propagation speed decreases because of the lower amount of fuel trapped in the mixture reducing the conversion efficiencies and the emitted nitrogen oxides at the exhaust. The link between brake power and spark timing is also highlighted: a maximum is reached at an ignition timing of 21° before top dead center for hydrogen fractions between 10 and 20%. However the exhaust gases’ temperature also diminishes for retarded spark timings. Lastly an optimization algorithm is implemented to individuate the optimal condition in which the engine is characterized by the highest power production with the minimum fuel consumption and related environmental impact. As a main result hydrogen addition up to 15% in volume to natural gas in real cogeneration systems is proven as a viable route only if engine operations are shifted towards leaner air-to-fuel ratios to avoid rapid pressure rise and excessive production of pollutant emissions.
Analysis of Hydrogen Gas Injection at Various Compositions in an Existing Natural Gas Pipeline
Jul 2021
Publication
The lack of hydrogen (H2) transportation infrastructure restricts the development of the H2 industry. Owing to the high investment of building specific facilities using existing natural gas (NG) pipelines to transport a blend of H2 and NG (H2NG) is a viable means of transportation and approach for large-scale long-time storage. However variation in the thermo-physical properties of an H2NG blend will impact the performance of pipeline appliances. To address the gaps in H2 transmission via an NG system in the context of energy consumption in the present paper a one-dimensional pipeline model is proposed to predict the blended flow in a real existing pipeline (Shan–Jing I China). The data of NG components were derived from real gas fields. Furthermore the influence of H2 fractions on pipeline energy coefficient and the layout of pressurization stations are comprehensively analyzed. In addition the case of intermediate gas injection is investigated and the effects of injection positions are studied. This study serves as a useful reference for the design of an H2NG pipeline system. The present study reveals that with the increasing in H2 fraction the distance between pressure stations increases. Furthermore when the arrangement of original pressure stations is maintained overpressure occur. Intermediate gas injection results in the inlet pressure of subsequent pressurization stations reducing. Using existing pipeline network to transport H2NG it is necessary to make appropriate adjustment.
Dynamic Quality Tracking of Natural Gas and Hydrogen Mixture in a Portion of Natural Gas Grid
Aug 2015
Publication
Direct injection of alternative fuels (biomethane hydrogen) in the natural gas grid appears to be a promising solution to reach environmental objectives of CO2 emission reduction in the current energy scenario. This approach is justified by the large amount of biogas producible which can be upgraded to biomethane; while another proposed solution to increase renewable energy sources exploitation lies in producing hydrogen from excess wind energy followed by injection in the natural gas grid. Nevertheless compliance with composition limits and quality constraints in the resulting natural gas mixture has to be analysed in both stationary and dynamic operations tracking the gas quality downstream the injection point of the alternative fuels. A model was developed to simulate unsteady operation of a portion of gas grid dealing with realistic industrial and residential consumptions concentrated in offtake points. Two case studies were investigated focusing on the comparison between different amounts of hydrogen injection in the pure natural gas flow yielding composition flow rate and pressure profiles. The analysis shows how imposed quality thresholds can be respected although the hydrogen fraction within the natural gas mixture is highly sensitive to the profile and size of the loads connected to the gas pipeline.
Evaluation of the Impact of Green Hydrogen Blending Scenarios in the Italian Gas Network: Optimal Design and Dynamic Simulation of Operation Strategies
Apr 2022
Publication
Blending hydrogen (H2) produced from PEM electrolysis coupled to Renewable Energy Sources (RES) in the existing Natural Gas (NG) network is a promising option for the deep decarbonization of the gas sector. However blending H2 with NG significantly affects the thermophysical properties of the gas mixture changing the gas supply requirements to meet the demand. In this work different scenarios of green hydrogen blending (Blend Ratio BR equal to 5/10/15/20%vol) are analyzed at the national level with different temporal constraints (hour/day/week/month/year) based on real gas demand data in Italy addressing both design requirements (RES and PEM electrolyzer capacity) via Linear Programming (LP) and carrying out dynamic simulations of different operational strategies (constant or variable blend). Although H2/NG blending provides a huge opportunity in terms of deployed H2 volume higher BRs show rapidly increasing design requirements (1.3-1.5 GWe/%vol and 2.5-3 GWe/%vol for PEM electrolyzers and RES capacity respectively) and a significative increase of the total gas mixture volume (0.83 %/%vol) which hinders the CO2 reduction potential (0.37 %/%vol). A variable blend operation strategy (allowing a variation of BR within the analyzed period) allows to balance a variable H2 production from RES. Wider temporal constraints imply several beneficial effects such as relaxing design constraints and avoiding the implementation of an external storage. The Levelized Cost Of Hydrogen (LCOH) is preliminarily estimated at around 7.3 $/kg for yearly scenarios (best-case) although shorter temporal constraints entail significant excess hydrogen which would increase the LCOH if not deployed for other applications.
Accelerating to Net Zero with Hydrogen Blending Standards Development in the UK, Canada and the US - Part 1
Mar 2021
Publication
"Hydrogen is expected to play a critical role in the move to a net-zero economy. However large-scale deployment is still in its infancy and there is still much to be done before we can blend hydrogen in large volumes into gas networks and ramp up the production that is required to meet demands of the energy transport and industry sectors. KTN Global Alliance will host two webinars to explore these challenges and opportunities in hydrogen blending on the 2nd and 3rd March 2021.
Exciting pilot projects are being conducted and explored in the UK Canada and US states such as California to determine the technical feasibility of blending hydrogen into existing natural gas systems. Whilst the deployment of hydrogen is in its early stages there is increasing interest around permitting significant percentage blends of hydrogen into gas networks which would enable the carbon intensity of gas supplies to be reduced creating a new demand for hydrogen and with the use of separation and purification technologies downstream support the transportation of pure hydrogen to markets.
Gaps in codes and standards need to be addressed to enable adoption and there may be opportunities for international collaboration and harmonisation to ensure that best practices are shared globally and to facilitate the growth of trade and export markets. There is an opportunity for the UK Canada and US three G7 countries to work together and show market making leadership in key enabling regulation for the new hydrogen economy.
Delivered by KTN Global Alliance on behalf of the British Consulate-General in Vancouver and the UK Science and Innovation Network in Canada and the US these two webinars will showcase hydrogen blending pilot projects in the UK Canada and California highlighting challenges and opportunities with regard to standards development for hydrogen blending and supporting further transatlantic collaboration in this area. The events also form part of the UK’s international engagement to build momentum towards a successful outcome at COP26 the UN climate summit that the UK will host in Glasgow in November 2021. The webinars will bring together experts from industry academia and policy from the UK Canada and California. Attendees will have an opportunity to ask questions and interact using Mentimeter."
Part 2 Highlights and Perspectives from Canada and California can be found here.
Exciting pilot projects are being conducted and explored in the UK Canada and US states such as California to determine the technical feasibility of blending hydrogen into existing natural gas systems. Whilst the deployment of hydrogen is in its early stages there is increasing interest around permitting significant percentage blends of hydrogen into gas networks which would enable the carbon intensity of gas supplies to be reduced creating a new demand for hydrogen and with the use of separation and purification technologies downstream support the transportation of pure hydrogen to markets.
Gaps in codes and standards need to be addressed to enable adoption and there may be opportunities for international collaboration and harmonisation to ensure that best practices are shared globally and to facilitate the growth of trade and export markets. There is an opportunity for the UK Canada and US three G7 countries to work together and show market making leadership in key enabling regulation for the new hydrogen economy.
Delivered by KTN Global Alliance on behalf of the British Consulate-General in Vancouver and the UK Science and Innovation Network in Canada and the US these two webinars will showcase hydrogen blending pilot projects in the UK Canada and California highlighting challenges and opportunities with regard to standards development for hydrogen blending and supporting further transatlantic collaboration in this area. The events also form part of the UK’s international engagement to build momentum towards a successful outcome at COP26 the UN climate summit that the UK will host in Glasgow in November 2021. The webinars will bring together experts from industry academia and policy from the UK Canada and California. Attendees will have an opportunity to ask questions and interact using Mentimeter."
Part 2 Highlights and Perspectives from Canada and California can be found here.
Hydrogen Blending and the Gas Commercial Framework - Report on Conclusions of NIA study
Sep 2020
Publication
Blending hydrogen into the gas grid could be an important stepping stone during the transition to a sustainable net zero system. In particular it may: provide a significant and reliable source of demand for hydrogen producers supporting the investment case for hydrogen; provide learnings and incremental change towards what could potentially become a 100% hydrogen grid; and immediately decarbonise a portion of the gas flowing through the grid. Technical questions relating to hydrogen blending are being taken forward by the industry (e.g. through the HyDeploy project in relation to the maximum potential blend of hydrogen that can be accommodated without end user appliances needing to be altered or replaced). But if blending is to take place changes to commercial arrangements will be necessary as today these assume a relatively uniform gas quality. In particular the commercial framework will need to ensure that limits on the percentage of hydrogen that can safely be blended (currently expected to be around 20% by volume) are not exceeded. We have been commissioned by Cadent to undertake a Network Innovation Allowance (NIA) project to identify the changes required to the gas commercial framework that will enable hydrogen blending in the GB gas grid and to set out a roadmap for how these can be delivered. This report sets out our recommendations.
Domestic Gas Meter Durability in Hydrogen and Natural Gas Mixtures
Nov 2021
Publication
Blending hydrogen into the natural gas infrastructure is becoming a very promising practice to increase the exploitation of renewable energy sources which can be used to produce “green” hydrogen. Several research projects and field experiments are currently aimed at evaluating the risks associated with utilization of the gas blend in end-use devices such as the gas meters. In this paper the authors present the results of experiments aimed at assessing the effect of hydrogen injection in terms of the durability of domestic gas meters. To this end 105 gas meters of different measurement capabilities and manufacturers both brand-new and withdrawn from service were investigated in terms of accuracy drift after durability cycles of 5000 and 10000 h with H2NG mixtures and H2 concentrations of 10% and 15%. The obtained results show that there is no metrologically significant or statistically significant influence of hydrogen content on changes in gas meter indication errors after subjecting the meters to durability testing with a maximum of 15% H2 content over 10000 h. A metrologically significant influence of the long-term operation of the gas meters was confirmed but it should not be made dependent on the hydrogen content in the gas. No safety problems related to the loss of external tightness were observed for either the new or 10-year-old gas meters.
Accelerating to Net Zero with Hydrogen Blending Standards Development in the UK, Canada and the US - Part 2
Mar 2021
Publication
Hydrogen is expected to play a critical role in the move to a net-zero economy. However large-scale deployment is still in its infancy and there is still much to be done before we can blend hydrogen in large volumes into gas networks and ramp up the production that is required to meet demands of the energy transport and industry sectors. KTN Global Alliance will host two webinars to explore these challenges and opportunities in hydrogen blending on the 2nd and 3rd March 2021.
Exciting pilot projects are being conducted and explored in the UK Canada and US states such as California to determine the technical feasibility of blending hydrogen into existing natural gas systems. Whilst the deployment of hydrogen is in its early stages there is increasing interest around permitting significant percentage blends of hydrogen into gas networks which would enable the carbon intensity of gas supplies to be reduced creating a new demand for hydrogen and with the use of separation and purification technologies downstream support the transportation of pure hydrogen to markets.
Gaps in codes and standards need to be addressed to enable adoption and there may be opportunities for international collaboration and harmonisation to ensure that best practices are shared globally and to facilitate the growth of trade and export markets. There is an opportunity for the UK Canada and US three G7 countries to work together and show market making leadership in key enabling regulation for the new hydrogen economy.
Delivered by KTN Global Alliance on behalf of the British Consulate-General in Vancouver and the UK Science and Innovation Network in Canada and the US these two webinars will showcase hydrogen blending pilot projects in the UK Canada and California highlighting challenges and opportunities with regard to standards development for hydrogen blending and supporting further transatlantic collaboration in this area. The events also form part of the UK’s international engagement to build momentum towards a successful outcome at COP26 the UN climate summit that the UK will host in Glasgow in November 2021. The webinars will bring together experts from industry academia and policy from the UK Canada and California. Attendees will have an opportunity to ask questions and interact using Mentimeter.
Part 1 Highlights and Perspectives from the UK can be found here.
Exciting pilot projects are being conducted and explored in the UK Canada and US states such as California to determine the technical feasibility of blending hydrogen into existing natural gas systems. Whilst the deployment of hydrogen is in its early stages there is increasing interest around permitting significant percentage blends of hydrogen into gas networks which would enable the carbon intensity of gas supplies to be reduced creating a new demand for hydrogen and with the use of separation and purification technologies downstream support the transportation of pure hydrogen to markets.
Gaps in codes and standards need to be addressed to enable adoption and there may be opportunities for international collaboration and harmonisation to ensure that best practices are shared globally and to facilitate the growth of trade and export markets. There is an opportunity for the UK Canada and US three G7 countries to work together and show market making leadership in key enabling regulation for the new hydrogen economy.
Delivered by KTN Global Alliance on behalf of the British Consulate-General in Vancouver and the UK Science and Innovation Network in Canada and the US these two webinars will showcase hydrogen blending pilot projects in the UK Canada and California highlighting challenges and opportunities with regard to standards development for hydrogen blending and supporting further transatlantic collaboration in this area. The events also form part of the UK’s international engagement to build momentum towards a successful outcome at COP26 the UN climate summit that the UK will host in Glasgow in November 2021. The webinars will bring together experts from industry academia and policy from the UK Canada and California. Attendees will have an opportunity to ask questions and interact using Mentimeter.
Part 1 Highlights and Perspectives from the UK can be found here.
Modelling and Analyzing the Impact of Hydrogen Enriched Natural Gas on Domestic Gas Boilers in a Decarbonization Perspective
Aug 2020
Publication
Decarbonization of energy economy is nowadays a topical theme and several pathways are under discussion. Gaseous fuels have a fundamental role for this transition and the production of low carbon-impact fuels is necessary to deal with this challenge. The generation of renewable hydrogen is a trusted solution since this energy vector can be promptly produced from electricity and injected into the existing natural gas infrastructure granting storage capacity and easy transportation. This scenario will lead in the near future to hydrogen enrichment of natural gas whose impact on the infrastructures is being actively studied. The effect on end-user devices such as domestic gas boilers instead is still little analyzed and tested but is fundamental to be assessed. The aim of this research is to generate knowledge on the effect of hydrogen enrichment on the widely used premixed boilers: the investigations include pollutant emissions efficiency flashback and explosion hazard control system and materials selection. A model for calculating several parameters related to combustion of hydrogen enriched natural gas is presented. Guidelines for the design of new components are provided and an insight is given on the maximum hydrogen blending bearable by the current boilers.
Mitigation of CO Poisoning Hazard in Malfunctioning Gas Appliances Through Use of Hydrogen Blended Gas
Sep 2021
Publication
The HyDeploy project [1] has undertaken an extensive research programme to assess safety and performance of the existing UK gas appliances population fueled with natural gas / hydrogen admixtures (hydrogen blended gas). The first stage of this work [2] focused on well maintained and normally functioning appliances. This work demonstrated that unmodified gas appliances can operate safely with hydrogen blended gas (up to 20 vol% hydrogen) and the key hazard areas of carbon monoxide (CO) production light back and flame out and the operation of flame failure devices are unaffected. It is widely recognized that due to aging and variable degrees of maintenance that the combustion performance of a gas appliance will depreciate over time. In extreme cases this can lead to situations where high levels of CO may be released back into the dwelling resulting in CO poisoning to the occupants. To obtain a universal appreciation of the effect of hydrogen addition on the safety and performance of all gas appliances operation under sub optimal conditions is required and therefore it is important that the operation of malfunctioning appliances fuelled with hydrogen blended gas is assessed. A review of failure modes identified six key scenarios where the composition of the fuel gas may lead to changes in safety performance - these primarily related to the resulting composition of the flue gas but also included delayed ignition. Gas appliance faults that will increase the CO production were tested through a series of experiments to simulate fault conditions and assess the effect of hydrogen blended gas. The fault modes examined included linting flame chilling incorrect appliance set up and modification of gas valve operation. The programme utilized six different appliances tested with three methane-hydrogen fuel blends (containing 0 20 and 28.4 vol% hydrogen). In all cases the switch to hydrogen blended gas reduced CO production. The change in CO production when using hydrogen blended gas is a consequence of a decrease in the theoretical air requirement to achieve complete combustion. In some cases the amount of CO produced was identical to the nonfault baseline performance on methane thereby fully mitigating the consequence of the malfunction. In the case of very high CO production a 90% reduction was recorded when using 20 vol% hydrogen blended gas. In situations such as non-optimal boiler set up the addition of hydrogen to the gas supply would prevent the production of high levels of CO. The findings here together with the results from HyDeploy 1 [2] indicate that the safety and performance of unmodified existing UK gas appliances are not detrimentally affected when using hydrogen blended gas. Furthermore the addition of hydrogen to the fuel gas has been shown to reduce CO production under fault conditions therefore the introduction of hydrogen into the gas network may serve to mitigate the hazard posed by existing faulty appliances that are producing elevated levels of CO.
Effect of Hydrogen Blending on the Energy Capacity of Natural Gas Transmission Networks
Dec 2022
Publication
In this paper the effects of hydrogen on the transport of natural gas-hydrogen mixture in a high-pressure natural gas transmission system are investigated in detail. Our research focuses on the decrease in transferable energy content under identical operating conditions as hydrogen is blended in the gas transmission network. Based on the extensive literature review the outstanding challenges and key questions of using hydrogen in the natural gas system are introduced. In our research the transmissible energy factor - TEF - is defined that quantifies the relative energy capacity of the pipeline caused by hydrogen blending. A new equation is proposed in this paper to find the value of TEF at specific pressure and temperature conditions for different hydrogen concentrations. This practical equation helps the natural gas system operators in the decision-making process when hydrogen emerges in the gas transmission system. In this paper the change of the compression power requirement which increases significantly with hydrogen blending is investigated in detail.
No more items...