Policy & Socio-Economics
Progress in Green Hydrogen Adoption in the African Context
Aug 2024
Publication
Hydrogen is an abundant element and a flexible energy carrier offering substantial potential as an environmentally friendly energy source to tackle global energy issues. When used as a fuel hydrogen generates only water vapor upon combustion or in fuel cells presenting a means to reduce carbon emissions in various sectors including transportation industry and power generation. Nevertheless conventional hydrogen production methods often depend on fossil fuels leading to carbon emissions unless integrated with carbon capture and storage solutions. Conversely green hydrogen is generated through electrolysis powered by renewable energy sources like solar and wind energy. This production method guarantees zero carbon emissions throughout the hydrogen’s lifecycle positioning it as a critical component of global sustainable energy transitions. In Africa where there are extensive renewable energy resources such as solar and wind power green hydrogen is emerging as a viable solution to sustainably address the increasing energy demands. This research explores the influence of policy frameworks technological innovations and market forces in promoting green hydrogen adoption across Africa. Despite growing investments and favorable policies challenges such as high production costs and inadequate infrastructure significantly hinder widespread adoption. To overcome these challenges and speed up the shift towards a sustainable hydrogen economy in Africa strategic investments and collaborative efforts are essential. By harnessing its renewable energy potential and establishing strong policy frameworks Africa can not only fulfill its energy requirements but also support global initiatives to mitigate climate change and achieve sustainable development objectives.
Energy Asset Stranding in Resource-rich Developing Countries and the Just Transition - A Framework to Push Research Frontiers
Jun 2024
Publication
Climate policy will inevitably lead to the stranding of fossil energy assets such as production and transport assets for coal oil and natural gas. Resourcerich developing countries are particularly aected as they have a higher risk of asset stranding due to strong fossil dependencies and wider societal consequences beyond revenue disruption. However there is only little academic and political awareness of the challenge to manage the asset stranding in these countries as research on transition risk like asset stranding is still in its infancy. We provide a research framework to identify wider societal consequences of fossil asset stranding. We apply it to a case study of Nigeria. Analyzing dierent policy measures we argue that compensation payments come with implementation challenges. Instead of one policy alone to address asset stranding a problem-oriented mix of policies is needed. Renewable hydrogen and just energy transition partnerships can be a contribution to economic development and SDGs. However they can only unfold their potential if fair benefit sharing and an improvement to the typical institutional problems in resource-rich countries such as the lack of rule of law are achieved. We conclude with presenting a future research agenda for the global community and acade
Uncovering an Emerging Policy Direction for Australian Energy and Future Fuels Using a "Participatory Decision-Making" Framework
Aug 2024
Publication
Introduction: An online deliberative engagement process was undertaken with members of the general public to understand what they value or would like to change about the energy system within the broader context of decarbonizing Australia's energy networks identifying a role for future fuels (hydrogen and biogas). Citizens developed a set of principles that could guide Australia's path toward a low-carbon energy future reflecting on expectations they place upon energy transition. Next citizens' principles were shared with policy-makers in government and policy-influencers from the energy industry using an online interactive workshop.<br/>Methods: This study analyses policy-makers and -influencers response to citizens' guiding principles using the 'diamond of participatory decision-making' framework for analysis. Convergence and divergence in diverse complex and rich views across cohorts and implications thereupon energy policy were identified.<br/>Results: Although considerable alignment between multi-stakeholders' views was noted key areas of divergence or what is called the “groan zone” were easily identified in relation to social and environmental justice issues. This groan zone highlights the struggles that energy policy-makers face -the need to listen and respond to citizens' voices vs. the need for practical and workable policies that also support overarching government or industry objectives.<br/>Discussion: Policy making when the views of different stakeholders align is relatively straightforward. However this is not the case where the expectations diverge. More creative measures will be needed to address divergent views and expectations whilst maintaining procedural fairness in this case using democratic deliberative engagement processes. While the use of deliberative processes is gaining momentum worldwide particularly concerning climate change and energy transition policies this paper also highlights the benefits of conducting a robust post facto analysis of the content of the processes. Areas of alignment where policy can be made and implemented relatively easily without contention are identified. Other areas (such as making electrification mandatory) might be more complex or have unwanted negative social and environmental justice effects. Overall this paper bridges an analytical gap between “expectation studies” and participatory research. By borrowing terminology from a participatory research framework we sharpen the concepts in “expectation studies” from a consensus inclusion and diversity standpoint.
Cost and Competitiveness of Green Hydrogen and the Effects of the European Union Regulatory Framework
May 2024
Publication
By passing the delegated acts supplementing the revised Renewable Energy Directive the European Commission has recently set a regulatory benchmark for the classifcation of green hydrogen in the European Union. Controversial reactions to the restricted power purchase for electrolyser operation refect the need for more clarity about the efects of the delegated acts on the cost and the renewable characteristics of green hydrogen. To resolve this controversy we compare diferent power purchase scenarios considering major uncertainty factors such as electricity prices and the availability of renewables in various European locations. We show that the permission for unrestricted electricity mix usage does not necessarily lead to an emission intensity increase partially debilitating concerns by the European Commission and could notably decrease green hydrogen production cost. Furthermore our results indicate that the transitional regulations adopted to support a green hydrogen production ramp-up can result in similar cost reductions and ensure high renewable electricity usage.
Energy Valorization Strategies in Rural Renewable Energy Communities: A Path to Social Revitalization and Sustainable Development
May 2025
Publication
Energy communities led by local citizens are vital for achieving the European energy transition goals. This study examines the design of a regional energy community in a rural area of Spain aiming to address the pressing issue of rural depopulation. Seven villages were selected based on criteria such as size energy demand population and proximity to infrastructure. Three energy valorization scenarios generating eight subscenarios were analyzed: (1) self-consumption including direct sale (1A) net billing (1B) and selling to other consumers (1C); (2) battery storage including storing for self-consumption (2A) battery-to-grid (2B) and electric vehicle recharging points (2C); and (3) advanced options such as hydrogen refueling stations (3A) and hydrogen-based fertilizer production (3B). The findings underscore that designing rural energy communities with a focus on social impact—especially in relation to depopulation—requires an innovative approach to both their design and operation. Although none of the scenarios alone can fully reverse depopulation trends or drive systemic change they can significantly mitigate the issue if social impact is embedded as a core principle. For rural energy communities to effectively tackle depopulation strategies such as acting as an energy retailer or aggregating individual villages into a single unified energy community structure are crucial. These approaches align with the primary objective of revitalizing rural communities through the energy transition.
Economy of Scale for Green Hydrogen-derived Fuel Production in Nepal
Apr 2024
Publication
Opportunity for future green hydrogen development in Nepal comes with enduse infrastructural challenges. The heavy reliance of industries on fossil fuels (63.4%) despite the abundance of hydroelectricity poses an additional challenge to the green transition of Nepal. The presented work aims to study the possibility of storing and utilizing spilled hydroelectricity due to runoff rivers as a compatible alternative to imported petroleum fuels. This is achieved by converting green hydrogen from water electrolysis and carbon dioxide from carbon capture of hard-to-abate industries into synthetic methane for heating applications via the Sabatier process. An economy-of-scale study was conducted to identify the optimal scale for the reference case (Industries in Makwanpur District Nepal) for establishing the Synthetic Natural Gas (SNG) production industry. The technoeconomic assessment was carried out for pilot scale and reference scale production unit individually. Uncertainty and sensitivity analyses were performed to study the project profitability and the sensitivity of the parameters influencing the feasibility of the production plant. The reference scale for the production of Synthetic Natural Gas was determined to be 40 Tons Per Day (TPD) with a total capital investment of around 72.15 Million USD. Electricity was identified as the most sensitive parameter affecting the levelized cost of production (LCOP). The 40 TPD plant was found to be price competitive to LPG when electricity price is subsidized below 3.55 NPR/unit (2.7 c/unit) from 12 NPR/unit (9.2 c/unit). In the case of the 2 TPD plant for it to be profitable the price of electricity must be subsidized to well below 2 NPR/kWh. The study concludes that the possibility of SNG production in Nepal is profitable and price-competitive at large scales and at the same time limited by the low round efficiency due to conversion losses. Additionally it was observed that highly favorable conditions driven by government policies would be required for the pilot-scale SNG project to be feasible.
Hydrogen Economy Index - A Comparative Assessment of the Political and Economic Perspective in the MENA Region for a Clean Hydrogen Economy
Jan 2025
Publication
The ongoing discourse on the transition to a hydrogen-based economy and the lessons learned from visions such as the Desertec concept emphasise the necessity for a nuanced approach to the development of metrics to assess a country’s hydrogen readiness. In addition to economic criteria such as investment incentives factors including law and order governance performance geography infrastructure and renewable energy production potential significantly impact a location’s attractiveness. To transparently evaluate sites using multiple criteria defined in the PESTEL framework this article aims to analyse quantify and compare the development of a sustainable hydrogen economy in 18 Middle East and North African states. The index-based assessment integrates criteria across three dimensions offering a comprehensive perspective on regional challenges and opportunities striking for policymakers and investors. The results show that the highest-ranked countries belong to the Gulf Cooperation Council followed by North African countries.
Connotation, Innovation and Vision of "Carbon Neutrality"
Sep 2021
Publication
Global climate change caused by geological processes is one of the main causes of the 5 global mass extinctions in geological history. Human industrialization activities have caused serious damage to the ecosystem the greenhouse effect of atmospheric CO2 has intensified and the living environment is facing threats and challenges. Carbon neutrality is the active action and common goal of mankind in the face of the climate change crisis therefore probing into its theoretical and technological connotation scientific and technological innovation system has far-reaching significance and broad prospects. Studies indicate that (1) Carbon neutrality reflects the theoretical connotations of “energy science” and “carbon neutrality science” including technical connotations of carbon emission reduction zero carbon emission negative carbon emission and carbon trading. (2) Carbon neutrality spawns new industries such as carbon industry centering on CO2 capture utilization and storage (CCUS or CO2 capture and storage CCS) and hydrogen industry centering on green hydrogen. “Gray carbon” and “black carbon” are the two application attributes of CO2. “Carbonþ” “Carbon” and “Carbon¼” are three carbon-neutral products and technologies. (3) China faces three major challenges in achieving the goal of carbon neutrality: first energy transition is large in scale and the cycle is short; Second there are many problems in the process of energy transition such as security uncertainties economic utilization and unpredictable disruptive technologies; Third after transition we may face new key techno-logical “bottlenecks” and “broken chain” of key mineral resources. (4) Based on current knowledge to predict the top 10 disruptive technologies and industries in the energy field: underground coal gasification in-situ conversion process of medium and low-mature shale oil CCUS/CCS hydrogen energy and fuel cells bio-photovoltaic power generation space-based solar power generation optical storage smart micro-grid super energy storage controllable nuclear fusion wisdom energy Internet. Five strategic projects will be implemented including energy conservation and efficiency improvement carbon reduction and sequestration scientific and technological innovation emergency reserve and policy support. (5) In the future different types of energy will have different orientations. Coal will play the role of ensuring the national energy strategy “reserve” and “guarantee the bottom line”. Petroleum will play the role of ensuring national energy security “urgent need” and the “cornerstone” of raw materials in people's livelihood. Natural gas will play the role in ensuring national energy “safety” and “best partner” of new energy. New energy will play the role in ensuring the “replacement” and “main force” of the national energy strategy. (6) Carbon neutrality is a major practice of the green industrial revolution carbon reduction energy revolution and ecological technology revolution which will bring new and profound changes to human society the environment and the economy. (7) Carbon neutrality needs to follow the four principles of “disruptive breakthroughs in technology guarantee of energy security realization of economic feasibility and controllable social stability”. We should rely on technological innovation and management changes to ensure the realization of national energy “independence” and carbon neutrality goal and make China's contribution to the construction of a livable earth green development and ecological civilization.
Diverse Decarbonization Pathways under Near Cost-optimal Futures
Sep 2024
Publication
Energy system optimization models offer insights into energy and emissions futures through least-cost optimization. However real-world energy systems often deviate from deterministic scenarios necessitating rigorous uncertainty exploration in macro-energy system modeling. This study uses modeling techniques to generate diverse near cost-optimal net-zero CO2 pathways for the United States’ energy system. Our findings reveal consistent trends across these pathways including rapid expansion of solar and wind power generation substantial petroleum use reductions near elimination of coal combustion and increased end-use electrification. We also observe varying deployment levels for natural gas hydrogen direct air capture of CO2 and synthetic fuels. Notably carbon-captured coal and synthetic fuels exhibit high adoption rates but only in select decarbonization pathways. By analyzing technology adoption correlations we uncover interconnected technologies. These results demonstrate that diverse pathways for decarbonization exist at comparable system-level costs and provide insights into technology portfolios that enable near cost-optimal net-zero CO2 futures.
Research & Innovation for Climate Neutrality 2050: Challenges, Opportunities & the Path Forward
Jan 2024
Publication
Transforming Europe into a climate neutral economy and society by 2050 requires extraordinary efforts and the mobilisation of all sectors and economic actors coupled with all the creative and brain power one can imagine. Each sector has to fundamentally rethink the way it operates to ensure it can be transformed towards this new net-zero paradigm without jeopardising other environmental and societal objectives both within the EU and globally. Given the scale of the transformation ahead our ability to meet climate neutrality targets directly depends on our ability to innovate. In this context Research & Innovation programmes have a key role to play and it is crucial to ensure they are fit for purpose and well equipped to support the next wave of breakthrough innovations that will be required to achieve climate neutrality in the EU and globally by 2050. The objective of this study is to contribute to these strategic planning discussions by not only identifying high-risk and high-impact climate mitigation solutions but most importantly look beyond individual solutions and consider how systemic interactions of climate change mitigation approaches can be integrated in the development of R&I agendas.
Towards Suitable Practices for the Integration of Social Life Cycle Assessment into the Ecodesign Framework of Hydrogen-related Products
Feb 2024
Publication
The hydrogen sector is envisaged as one of the key enablers of the energy transition that the European Union is facing to accomplish its decarbonization targets. However regarding the technologies that enable the deployment of a hydrogen economy a growing concern exists about potential burden-shifting across sustainability dimensions. In this sense social life cycle assessment arises as a promising methodology to evaluate the social implications of hydrogen technologies along their supply chains. In the context of the European projects eGHOST and SH2E this study seeks to advance on key methodological aspects of social life cycle assessment when it comes to guiding the ecodesign of two relevant hydrogen-related products: a 5 kW solid oxide electrolysis cell stack for hydrogen production and a 48 kW proton-exchange membrane fuel cell stack for mobility applications. Based on the social life cycle assessment results for both case studies under alternative approaches the definition of a product-specific supply chain making use of appropriate cut-off criteria was found to be the preferable choice when addressing system boundaries definition. Moreover performing calculations according to the activity variable approach was found to provide valuable results in terms of social hotspots identification to support subsequent decision-making processes on ecodesign while the direct calculation approach is foreseen as a complement to ease the interpretation of social scores. It is concluded that advancements in the formalization of such suitable practices could foster the integration of social metrics into the sustainable-by-design framework of hydrogen-related products.
How "Clean" is the Hydrogen Economy? Tracing the Connections Between Hydrogen and Fossil Fuels
Feb 2024
Publication
Hydrogen is experiencing a resurgence in energy transition debates. Before representing a solution however the existing hydrogen economy is still a climate change headache: over 99 % of production depends on fossil fuels oil refining accounts for 42 % of demand and its transportation is intertwined with fossil infrastructure like natural gas pipelines. This article investigates the path-dependent dynamics shaping the hydrogen economy and its interconnections with the oil and gas industry. It draws on the global production networks (GPN) approach and political economy research to provide a comprehensive review of current and prospective enduses of hydrogen modes of transport networks of industrial actors and state strategies along the major production facilities and holders of intellectual property rights. The results presented in this article suggest that the superimposition of private agendas may jeopardise the viability of future energy systems and requires counterbalancing forces to override the negative consequences of path-dependent energy transitions.
The Competitive Edge of Norway's Hydrogen by 2030: Socio-environmental Considerations
Aug 2024
Publication
Can Norway be an important hydrogen exporter to the European Union (EU) by 2030? We explore three scenarios in which Norway’s hydrogen export market may develop: A Business-as-usual B Moderate Onshore C Accelerated Offshore. Applying a sector-coupled energy system model we examine the techno-economic viability spatial and socio-economic considerations for blue and green hydrogen export in the form of ammonia by ship. Our results estimate the costs of low-carbon hydrogen to be 3.5–7.3€/kg hydrogen. While Norway may be cost-competitive in blue hydrogen exports to the EU its sustainability is limited by the reliance on natural gas and the nascent infrastructure for carbon transport and storage. For green hydrogen exports Norway may leverage its strong relations with the EU but is less cost-competitive than countries like Chile and Morocco which benefit from cheaper solar power. For all scenarios significant land use is needed to generate enough renewable energy. Developing a green hydrogen-based export market requires policy support and strategic investments in technology infrastructure and stakeholder engagement ensuring a more equitable distribution of renewable installations across Norway and national security in the north. Using carbon capture and storage technologies and offshore wind to decarbonise the offshore platforms is a win-win solution that would leave more electricity for developing new industries and demonstrate the economic viability of these technologies. Finally for Norway to become a key hydrogen exporter to the EU will require a balanced approach that emphasises public acceptance and careful land use management to avoid costly consequences.
Is it Green? Designing a Blockchain-based Certification System for the EU Hydrogen Market
Dec 2024
Publication
Energy production and consumption are major contributors to greenhouse gas (GHG) emissions exacerbating one of the greatest challenges faced by modern societies: climate change. Thus societies must switch to more sustainable energy sources. Green hydrogen has emerged as a promising alternative energy carrier facilitating storage and utilization across various industries. However amidst different production processes solely sustainable electrolysis stands out as an environmentally benign production method. Hydrogen producers must prove provenance and sustainable production to regulatory bodies and hydrogen buyers to comply with the regulations for sustainable development. Blockchain provides a viable solution encompassing trustworthy and secure information sharing between untrusted partners. In this article we employ a design science research approach to develop a blockchain-based certification system (BLC-CS) for green hydrogen. Through collaboration with experts to gather requirements and conduct evaluations we design an artifact that streamlines the certification process for producers regulators and consumers. Our proposed solution facilitates information gathering verification and reporting contributing to the advancement of sustainable energy practices. We provide a comprehensive discussion of the BLC-CS’s feasibility for green hydrogen certification including technical extensions recommendations for practitioners and directions for future research.
Assessment of the Role of the Green Hydrogen as the Commodity Enabling a New Green Dialogue Among the Mediterranean Shores
Apr 2024
Publication
The Mediterranean basin has been characterized by a net flow of fossil commodities from the North African shore to Southern Europe and the Middle East for decades; however decarbonizing the energy system implies to substantially modify this situation turning the current “black dialogue” into a “green dialogue” (i.e. based on the exchange of renewable electricity and green hydrogen). This paper presents a feasibility study conducted to estimate the potential green hydrogen production by electrolysis in three Tunisian sites. It shows and compares several plant layouts varying the size and typology of renewable electricity generators and electrolyzers. The work adopts local weather data and technical features of the technologies in the computations and accounts for site specific topographical and infrastructural constraints such as land available for construction and local power grid connection capacities. It shows that configurations able to produce large quantities of green hydrogen may not be compliant with such constraints basically nullifying their contribution in any hydrogen strategy. Finally results show that the LCOH lies in the range 1.34 $/kgH2 and 4.06 $/kgH2 depending on both the location and the combination of renewable electricity generators and electrolyzers.
Levelised Cost of Hydrogen Production in Northern Africa and Europe in 2050: A Monte Carlo Simulation for Germany, Norway, Spain, Algeria, Morocco, and Egypt
May 2024
Publication
The production of green hydrogen through electrolysis utilizing renewable energies is recognized as a pivotal element in the pursuit of decarbonization. In order to attain cost competitiveness for green hydrogen reasonable generation costs are imperative. To identify cost-effective import partners for Germany given its limited green hydrogen production capabilities this study undertakes an exhaustive techno-economic analysis to determine the potential Levelized Cost of Hydrogen in Germany Norway Spain Algeria Morocco and Egypt for the year 2050 which represents a critical milestone in European decarbonization efforts. Employing a stochastic approach with Monte Carlo simulations the paper marks a significant contribution for projecting future cost ranges acknowledging the multitude of uncertainties inherent in related cost parameters and emphasizing the importance of randomness in these assessments. Country-specific Weighted Average Cost of Capital are calculated in order to create a refined understanding of political and economic influences on cost formation rather than using a uniform value across all investigated nations. Key findings reveal that among the evaluated nations PV-based hydrogen emerges as the most cost-efficient alternative in all countries except Norway with Spain presenting the lowest Levelized Cost of Hydrogen at 1.66 €/kg to 3.12 €/kg followed by Algeria (1.72 €/kg to 3.23 €/kg) and Morocco (1.73 €/kg to 3.28 €/kg). Consequently for economically favorable import options Germany is advised to prioritize PV-based hydrogen imports from these countries. Additionally hydrogen derived from onshore wind in Norway (2.24 €/kg to 3.73 €/kg) offers a feasible import alternative. To ensure supply chain diversity and reduce dependency on a single source a mixed import strategy is advisable. Despite having the lowest electricity cost Egypt shows the highest Levelized Cost of Hydrogen primarily due to a significant Weighted Average Cost of Capital.
Hydrogen UK Supply Chains Report Executive Summary 2023
Dec 2023
Publication
The strategic importance of hydrogen has gained significant recognition as nations across the world have committed to achieving net zero. Here in the UK there’s a widespread consensus that hydrogen is critical to achieving our net zero target. This commitment culminated in the launch of the UK’s first Hydrogen Strategy and has been reaffirmed by Chris Skidmore’s Independent Review of Net Zero. Both these documents highlight hydrogen’s importance not only to net zero but growing the UK industrial base1 . Analysis by Hydrogen UK estimates up to 20000 jobs could be created by 2030 contributing £26bn in cumulative GVA2. These economic benefits flow from all areas of the value chain ranging from production storage network development and off-taker markets. However with large scale projects still to take final investment decisions current volumes of low-carbon hydrogen produced and consumed fall well below the government’s 2030 ambitions. Encouragingly the UK has a positive track record of deploying low carbon technologies. The combination of the UK’s world leading policies and incentive schemes alongside our vibrant RD&I and engineering environment has enabled rapid deployment of technologies like offshore wind and electric vehicles. Yet despite being world leaders in deployment early opportunities for regional supply chain growth and job creation were not fully realised and taken advantage of from inception. The hydrogen sector is therefore at a tipping point. To capitalise on the economic opportunity hydrogen offers the UK must learn from prior technology deployments and build a strong domestic hydrogen supply chain in parallel to championing deployment. This report delivers on a recommendation from the Hydrogen Champion Report which encouraged industry to create an industry led supply chain strategy3 . With Hydrogen UK steering the work on behalf of the UK hydrogen industry this study focusses on identifying the actions needed to mature a local supply chain that can support the initial deployment of hydrogen technologies across the value chain. The report is segmented into two sections. The first section outlines a voluntary ambition for local content from industry alongside the potential intervention mechanisms needed to achieve the ambition. The second section exploresthe challenges companies across the hydrogen value chain face in maximising UK supply chain opportunities.
This report can be found on Hydrogen UK's website.
This report can be found on Hydrogen UK's website.
What will be the Hydrogen and Power Demands of the Process Industry in a Climate-neutral Germany?
Apr 2024
Publication
The defossilization of industry has far-reaching implications regarding the future demand for hydrogen and other forms of energy. This paper presents and applies a fundamental bottom-up model that relies on techno-economic data of industrial production processes. Its aim is to identify across a range of scenarios the most cost-effective low-carbon options considering a variety of production systems. Subsequently it derives the hydrogen and electricity demand that would result from the implementation of these least-cost low-carbon options in process industries in Germany. Aligning with the German government's target year for achieving climate neutrality this study’s reference year is 2045. The primary contribution lies in analyzing which hydrogen-based and direct electrification solutions would be cost-effective for a range of energy price levels under climate-neutral industrial production and what the resulting hydrogen and electricity demand would be. To this end the methodology of this paper comprises the following steps: selection of the relevant industries (I) definition of conventional reference production systems and their low-carbon options (II) investigation and processing of the techno-economic data of the standardized production systems (III) establishment of a scenario framework (IV) determination of the least-cost low-carbon solution of a conventional reference production system under the scenario assumptions made (V) and estimation of the resulting hydrogen and electricity demand (VI). According to the results the expected industrial hydrogen consumption in 2045 ranges from 255 TWh for higher hydrogen prices in or above the range of onshore wind-based green hydrogen supply costs to up to 542 TWh for very low hydrogen prices corresponding to typical blue hydrogen production costs. Meanwhile the direct electricity consumption of the process industries in the results ranges from 122 TWh for these rather low hydrogen prices to 368 TWh for the higher hydrogen prices in the region of or above the hydrogen supply costs from the electrolysis of energy from an onshore wind farm. Most of the break-even hydrogen prices that are relevant to the choice of low-carbon options are in the range of the benchmark purchase costs for blue hydrogen and green hydrogen produced from offshore wind power which span between €40 per MWh and €97 per MWh.
Hydrogen for a Net-Zero Carbon World
Mar 2024
Publication
The concept of the “hydrogen economy” was first coined by Prof. John Bockris during a talk he gave in 1970 at the General Motors Technical Center. Bockris’s talk introduced the vision of a world economy in which energy was carried in the form of hydrogen resulting in zero emissions at its point of use—be that as a chemical feedstock or as a fuel for industrial or domestic heating for power generation in a gas turbine or in a fuel cell “engine” for transport applications. Despite several waves of significant interest and investment however due to the relative costs and technological immaturity of hydrogen technologies the hydrogen economy was never delivered at scale nor was there sufficient motivation to create the technology needed to overcome these hurdles.<br/>But today as the world seeks to transition to a truly net-zero carbon economy hydrogen has returned to the fore as a key energy carrier—not as a hydrogen economy but as “hydrogen in the economy” synergistically working alongside low- to zero-carbon electricity to decarbonize those parts of the economy that are too expensive or too difficult to be directly decarbonized with electricity. These include:<br/>♦ Transport applications in which large amounts of energy are needed on the vehicle such as planes trains shipping long-distance trucks and heavy-duty vehicles;<br/>♦ Industrial applications such as steelmaking and cement manufacturing;<br/>♦ Long-term energy storage for days to weeks at a time;<br/>♦ The production of green chemicals such as green ammonia and green methanol;<br/>♦ Industrial (and potentially residential) heating.
Mid-century Net-zero Emissions Pathways for Japan: Potential Roles of Global Mitigation Scenarios in Informing National Decarbonisation Strategies
Jan 2024
Publication
Japan has formulated a net-zero emissions target by 2050. Existing scenarios consistent with this target generally depend on carbon dioxide removal (CDR). In addition to domestic mitigation actions the import of low-carbon energy carriers such as hydrogen and synfuels and negative emissions credits are alternative options for achieving net-zero emissions in Japan. Although the potential and costs of these actions depend on global energy system transition characteristics which can potentially be informed by the global integrated assessment models they are not considered in current national scenario assessments. This study explores diverse options for achieving Japan's net-zero emissions target by 2050 using a national energy system model informed by international energy trade and emission credits costs estimated with a global energy system model. We found that demand-side electrification and approximately 100 Mt-CO2 per year of CDR implementation equivalent to approximately 10% of the current national CO2 emissions are essential across all net-zero emissions scenarios. Upscaling of domestically generated hydrogen-based alternative fuels and energy demand reduction can avoid further reliance on CDR. While imports of hydrogen-based energy carriers and emission credits are effective options annual import costs exceed the current cost of fossil fuel imports. In addition import dependency reaches approximately 50% in the scenario relying on hydrogen imports. This study highlights the importance of considering global trade when developing national net-zero emissions scenarios and describes potential new roles for global models.
Roadmap to Reach Global Net Zero Emissions for Developing Regions by 2085
Jan 2025
Publication
As climate change intensifies determining a developing region’s role in achieving net-zero emissions worldwide is crucial. However regional efforts considering historical emissions remain underexplored. Here we assess energy system changes technology adoption and investments needed for developing regions including five major- and minor-emitting nations. Our analysis using an integrated assessment model shows a large gap in regional efforts toward global net-zero emissions stemming from the necessary shift of energy systems to low-carbon resources. The use of new technologies like electric vehicles hydrogen and carbon capture varies by region with the highest adoption required between 2020 and 2030. Financing this shift needs an average gross domestic product (GDP) investment rise of 0.464% in minor-emitting regions and up to 2.1% in major-emitting regions by 2085. Our results could guide policies and support setting quantifiable targets for developing nations. The findings are key to facilitating strategic technology use and finance mobilization to achieve a carbon-neutral future.
Optimal Decarbonisation Pathways for the Italian Energy System: Modelling a Long-term Energy Transition to Achieve Zero Emission by 2050
May 2024
Publication
The goal of achieving a zero-emission energy system by 2050 requires accurate energy planning to minimise the overall cost of the energy transition. Long-term energy models based on cost-optimal solutions are extremely dependent on the cost forecasts of different technologies. However such forecasts are inherently uncertain. The aim of the present work is to identify a cost-optimal pathway for the Italian energy system decarbonisation and assess how renewable cost scenarios can affect the optimal solution. The analysis has been carried out with the H2RES model a single-objective optimisation algorithm based on Linear Programming. Different cost scenarios for photovoltaics on-shore and off-shore wind power and lithium-ion batteries are simulated. Results indicate that a 100% renewable energy system in Italy is technically feasible. Power-to-X technologies are crucial for balancing purposes enabling a share of non-dispatchable generation higher than 90%. Renewable cost scenarios affect the energy mix however both on-shore and off-shore wind saturate the maximum capacity potential in almost all scenarios. Cost forecasts for lithium-ion batteries have a significant impact on their optimal capacity and the role of hydrogen. Indeed as battery costs rise fuel cells emerge as the main solution for balancing services. This study emphasises the importance of conducting cost sensitivity analyses in long-term energy planning. Such analyses can help to determine how changes in cost forecasts may affect the optimal strategies for decarbonising national energy systems.
AI-ML Techniques for Green Hydrogen: A Comprehensive Review
Feb 2025
Publication
Green hydrogen is a cleaner source to replace fossil-based fuels and is critical in the global shift toward energy production to combat climate change. This review of embedding artificial intelligence (AI) and machine learning (ML) in the value chain of green hydrogen outlines the significant potential for full transformation. These include optimizing the utilization of renewable sources of energy improving electrolysis process hydrogen storage in the salt cavern that has better condition and smarter systems in distribution side with inexpensive logistics. In this it nullifies leak risks and safeguards the safety operations with detection using AI. Consequently it positions the paper emphasizing AI-ML approaches demonstrating significant advancements in efficiency and sustainability in green hydrogen technology.
Everything About Hydrogen Podcast: Resilience
Jul 2023
Publication
The EAH team discuss Nataliya’s plan for a green Ukraine including working with the current government on the Hydrogen Road Map. We also get another example of incredible Ukrainian resilience and discuss its importance for the current and future energy system.
The podcast can be found on their website.
The podcast can be found on their website.
Governance of Future-making: Green Hydrogen in Namibia and South Africa
Feb 2025
Publication
The green-hydrogen sector has created considerable expectations in the Global South about export-oriented development and industrial path creation. However whether and how these expectations are really materializing requires further scrutiny. This article develops a conceptual approach that we call governance of futuremaking. Thereby we want to understand how actors try to coordinate their expectations about future economic development in different contexts and across scales over time. We conceptualize the emergence of new regional development trajectories as resulting from the use of governance instruments with an increasing bindingness which reflect the interplay between governance of and by expectations. Based on this approach we analyze and compare green-hydrogen activities in Namibia and South Africa. We find that future-making is becoming more binding in both countries but has not resulted in path creation yet.
Hydrogen Revolution: Artificial Intelligence and Machine Learning Driven Policies, Feasibility, Challenges and Opportunities: Insights from Asian Countries
Aug 2025
Publication
Green hydrogen a zero-carbon emission fuel has become a real competitor to transform the energy market thanks to improvements in the electrolysis process decreased costs and the presence of renewable energy resources. Energy industries have shown considerable progress in hydrogen production due to the incorporation of artificial intelligence (AI) knowledge through algorithms AI-based models and data programs. These techniques can greatly enhance the production storage and transportation of hydrogen fuel. The main goal of this article is to demonstrate the recent technological advancements and the influence of various AI techniques algorithms and models on the hydrogen energy sector along with this further examination of the energy policies of countries like China Japan India and South Korea. The key challenges related to these energy policies are addressed through standardized datasets AI models and optimized environmental conditions. This paper serves as a valuable resource for researchers engineers and practitioners interested in applying cutting-edge technologies to enhance hydrogen safety systems. AI-based models contribute to the overall shift towards a sustainable energy future by enhancing efficiency reducing costs and facilitating hydrogen energy commerce for Asian countries. This study accelerates the global investigation and tremendous applications of sophisticated machine-learning methodologies for producing renewable green hydrogen.
Everything About Hydrogen Podcast: Getting Steel in the Ground in an IRA Driven H2 Market
May 2023
Publication
On this episode we speak with Scott Weiss Senior Vice President for Corporate Strategy and Ashleigh Cotting Senior Manager for Green Fuels Marketing with Apex Clean Energy. Apex has a history of developing utility scale renewables with more than 2GW under management and with nearly 8GW of renewables financed. Apex also partnered with Plug Power in April 2021 to develop a 345MW wind facility to support a 30 tonne per day green hydrogen production facility.
We are excited to discuss the emerging opportunities in the US hydrogen market and learn more about the challenges and learnings that the first project is providing and how that helps the team build the next generation of production facilities particularly in the Gulf Coast.
The podcast can be found on their website.
We are excited to discuss the emerging opportunities in the US hydrogen market and learn more about the challenges and learnings that the first project is providing and how that helps the team build the next generation of production facilities particularly in the Gulf Coast.
The podcast can be found on their website.
Everything About Hydrogen Podcast: Opportunities in Africa
Sep 2023
Publication
For the second episode in this new season the team interviews Oghosa Erhahon to discuss hydrogen opportunities in Africa including the African Climate Summit in September and what to look forward to at COP28.
The podcast can be found on their website.
The podcast can be found on their website.
Hydrogen UK - Supply Chain Strategic Assessment: Phase I
Mar 2025
Publication
The UK Hydrogen Supply Chain Strategic Assessment – Phase II report is developed as an appendix to the UK Hydrogen Supply Chain Strategic Assessment – Phase I report published in September 2024. Whereas the Phase I report prioritised the supply side elements of the hydrogen supply chain i.e. power industry storage electrolytic production CCUS enabled production and networks the Phase II focuses on demand side elements in the hydrogen supply chain i.e. fuel cell systems (including cars vans heavy goods vehicles & non road mobile machinery rail marine) and hydrogen refuelling systems. The Phase II adopts the same approach as carried out in Phase I by utilising analysis based on feedback from survey questionnaires interviews with key industrial stakeholders and internal research.
The paper can be found on their website.
The paper can be found on their website.
The European Hydrogen Market Landscape - November 2024
Nov 2024
Publication
This report aims to summarise the status of the European hydrogen market landscape. It is based on the information available at the European Hydrogen Observatory (EHO) initiative the leading source of data on hydrogen in Europe exploring the basic concepts latest trends and role of hydrogen in the energy transition. The data presented in this report is based on research conducted until the end of September 2024. This report contains information on current hydrogen production and trade distribution and storage end-use cost and technology manufacturing as of the end of 2023 except if stated otherwise in Europe. A substantial portion of the data gathering was carried out within the framework of Hydrogen Europe's efforts for the European Hydrogen Observatory. Downloadable spreadsheets of the data can be accessed on the website: https://observatory.clean-hydrogen.europa.eu/. The production and trade section provides insights into hydrogen production capacity and production output by technology in Europe and into international hydrogen trade (export and import) to and between European countries. The section referring to distribution and storage presents the location and main attributes of operational dedicated hydrogen pipelines and storage facilities as well as publicly accessible and operational hydrogen refuelling stations in Europe. The end-use section provides information on annual hydrogen consumption per end-use in Europe the deployment of hydrogen fuel cell electric vehicles in Europe the current and future hydrogen Valleys in Europe and the leading scenarios for future hydrogen demand in Europe in 2030 2040 and 2050 by sector. The cost chapter offers a comprehensive examination of the levelised cost of hydrogen production by technology and country. This chapter also gives estimations of renewable hydrogen break-even prices for different end-use applications in addition to electrolyser cost components by technology. Finally a chapter on technologies manufacturing explores data on the European electrolyser manufacturing capacity and sales and the fuel cell market.
Levelised Cost of Hydrogen (LCOH) Calculator Manual - Update of the May 2024 Manual
May 2025
Publication
The LCOH calculator manual explains the methodology behind the calculator in detail and demonstrates how the calculator can be used.<br/>In this second version the default prices are updated based on the latest data available in the calculator and a new use case is introduced on changing the economic lifetime and cost of capital of an electrolysis installation.
Cruel Utopia of the Seas? Multiple Risks Challenge the Singular Hydrogen Hype in Finnish Maritime Logistics
Oct 2025
Publication
To address the global climate crisis maritime logistics are undergoing a transition away from fossil-based energy sources. The transition is envisaged to be both green (involving renewables) and digital (involving various kinds of digitalization). Much of the hope rests on the new hydrogen economy involving the build-up of infrastructure for hydrogen-derived alternative fuels such as methanol and ammonia. Indeed the new hydrogen economy is often portrayed as set to revolutionize maritime transport. The hope behind the hype reflects a belief in the performativity of hypes: some technological phenomenon will eventually materialise in innovation and business practices. In this paper we critically analyse the current hydrogen hype in the field of Finnish maritime logistics as a paradigmatic case of performative techno-optimism. Based on causal network analysis and thematic analysis of expert interviews and workshop data we argue that the phenomenon of performative techno-optimism is more nuanced than hitherto presented in the related literature. We showcase a variety of stances along a spectrum ranging from radical optimism to radical pessimism. Furthermore our causal network analysis indicates that the current green and digital transition of maritime transport is caught in a systemic catch-22: transitioning to alternative fuels in maritime logistics faces a lock-in of between overly cautious demand for alternative fuels leading to overly cautious investment in supply which only secures the modest demand. Finally our thematic analysis of techno-optimist stances suggests the following two major ways out of the systemic dilemma: large-scale technological innovations and global regulatory solutions.
System Efficiency Analysis of Direct Coupled PV-PEM Electrolyzer Systems
Oct 2025
Publication
Green hydrogen is an important technology in the energy transition with potential to decarbonize industrial processes increase renewable energy use and reduce reliance on fossil fuels yet it currently accounts for less than 1% of global hydrogen demand. One promising approach to expand production is the direct coupling of photovoltaic–electrolyzer systems. In this study overall and sub-system efficiencies were analyzed for different system setups coupling points and operating conditions such as temperature and irradiance. The highest overall system efficiencies were found to be more than 18%. The effect of varying irradiances on the coupled efficiency was not more than 5.7%. Different system designs optimized for different irradiances led to effects such as an increase in current density at the electrolyzer and thus an increase in the overvoltage which resulted in an overall efficiency loss of more than 3%. A key finding was that aligning the PV maximum power point with the electrolyzer polarization curve enables consistently high system efficiencies across the investigated irradiances. The findings were validated with two real life systems reproducing the coupling efficiencies of the model with 12%–14% including loss factors and approximately 18% for a direct coupled system respectively
Hydrogen Valleys to Foster Local Decarbonisation Targets: A Multiobjective Optimisation Approach for Energy Planning
Oct 2025
Publication
Hydrogen Valley represents localised ecosystems that enable the integrated production storage distribution and utilisation of hydrogen to support the decarbonisation of the energy system. However planning such integrated systems necessitates a detailed evaluation of their interconnections with variable renewable generation sector coupling and system flexibility. The novelty of this work lies in addressing a critical gap in system-level modelling for Hydrogen Valleys by introducing an optimization-based framework to determine their optimal configuration. This study focuses on the scenario-based multiobjective design of local hydrogen energy systems considering renewable integration infrastructure deployment and sector coupling. We developed and simulated three scenarios based on varying hydrogen pathways and penetration levels using the EnergyPLAN model implemented through a custom MATLAB Toolbox. Several decision variables such as renewable energy capacity electrolyser size and hydrogen storage were optimised to minimise CO₂ emissions total annual system cost and critical excess electricity production simultaneously. The findings show that Hydrogen Valley deployment can reduce CO₂ emissions by up to 30 % triple renewable penetration in the primary energy supply and lower the levelized cost of hydrogen from 7.6 €/kg to 5.6 €/kg despite a moderate increase in the total cost of the system. The approach highlights the potential of sector coupling and Power-to-X technologies in enhancing system flexibility and supporting green hydrogen integration. The outcome of our research offers valuable insights for policymakers and planners seeking to align local hydrogen strategies with broader decarbonisation targets and regulatory frameworks.
Examining Dynamics of Hydrogen Supply Chains
Mar 2025
Publication
Hydrogen is poised to play a pivotal role in achieving net-zero targets and advancing green economies. However a range of complex operational challenges hinders its planning production delivery and adoption. At the same time numerous drivers within the hydrogen value chain present significant opportunities. This paper investigates the intricate relationships between these drivers and barriers associated with hydrogen supply chain (HSC). Utilising expert judgment in combination Grey-DEMATEL technique we propose a framework to assess the interplay of HSC drivers and barriers. Gaining insight into these relationships not only improves access to hydrogen but also foster innovation in its development as a low-carbon resource. The use of prominence scores and net influence rankings for each driver and barrier in the framework provides a comprehensive understanding of their relative significance and impact. Our findings demonstrate that by identifying and accurately mapping these attributes clear cause-and-effect relationships can be established contributing to a more nuanced understanding of the HSC. These insights have broad implications across operational policy scholarly and social domains. For instance this framework can aid stakeholders in recognizing the range of opportunities available by addressing key barriers to hydrogen adoption.
Towards Inclusive Path Transplanation: Local Agency for Green Hydrogen Linkage Creation in Namibia
Aug 2025
Publication
Many countries of the Global South struggle to achieve inclusive growth paths despite investment in the exploitation of rich resources. Resource-based industrialization literature stresses the potential for achieving broader development effects via the development of production linkages with local enterprises. The focus lies on market-driven outsourcing dynamics that foster linkage development such as efficiency location-specific knowledge and technology and scale complexity. However little is known about the opportunity space for both policy making and local firms to create these linkages. To address this issue we incorporate the concept of change agency stemming from the path development literature into the discussion on production linkages to show how both (local) firm agency and system-level agency can achieve linkage creation for inclusive path transplantation. We illustrate the framework by scrutinizing the potential inclusion of solar energy companies in Namibia’s emerging green hydrogen economy. The study finds that while the potential for renewable energy companies in Namibia to participate in the value chain is limited an integrated bundle of measures relying on firm- and system-level agency could address peripheral contextual factors overcome entry barriers and leverage further potential for linkage creation in the solar energy sector: mobilizing the local workforce fostering inter-firm cooperation leveraging local advantages creating knowledge institutions enhancing the regulatory framework upgrading infrastructure and enforcing local content regulations.
The European Hydrogen Policy Landscape - Extensive Update of the April 2024 Report
Jan 2025
Publication
This report aims to summarise the status of the European hydrogen policy landscape. It is based on the information available at the European Hydrogen Observatory (EHO) website the leading source of data on hydrogen in Europe. The data presented in this report is based on research conducted by Hydrogen Europe until the end of July 2024 but also goes beyond this timeline for major policies legislations or standards implemented recently. This report builds upon the previous version published in April 2024 which reflected data as of August 2023 providing updated insights on European policies and legislation national strategies national policies and legislation and codes and standards. Interactive data dashboards can be accessed on the website: https://observatory.cleanhydrogen.europa.eu/ The EU policies and legislation section provides insights into the main European policies and legislation relevant to the hydrogen sector which are briefly summarized on content and their potential impact to the sector. The national hydrogen strategies chapter offers a comprehensive examination of the hydrogen strategies adopted in Europe. It summarizes the quantitative indicators that have been published (targets and estimates) and provides brief summaries of the different national strategies that have been adopted. The section referring to national policies and legislation focuses on the policy framework measures incentives and targets in place that have an impact on the development of the respective national hydrogen markets within Europe. The codes and standards section provides information on current European standards and initiatives developed by the standardisation bodies including CEN CENELEC ISO IEC OIML The standards are categorised according to the different stages of the hydrogen value chain: production distribution and storage and end-use applications.
Green Energy and Steel Imports Reduce Europe's Net-zero Infrastructure Needs
Jun 2025
Publication
Importing renewable energy to Europe may offer many potential benefits including reduced energy costs lower pressure on infrastructure development and less land use within Europe. However open questions remain: on the achievable cost reductions how much should be imported whether the energy vector should be electricity hydrogen or derivatives like ammonia or steel and their impact on Europe’s infrastructure needs. This study integrates a global energy supply chain model with a European energy system model to explore net-zero emission scenarios with varying import volumes costs and vectors. We find system cost reductions of 1-10% within import cost variations of ± 20% with diminishing returns for larger import volumes and a preference for methanol steel and hydrogen imports. Keeping some domestic power-to-X production is beneficial for integrating variable renewables leveraging local carbon sources and power-to-X waste heat. Our findings highlight the need for coordinating import strategies with infrastructure policy and reveal maneuvering space for incorporating non-cost decision factors.
Clean Hydrogen Joint Undertaking: Consolidated Annual Activity Report Year 2024
Aug 2025
Publication
The year 2024 saw a year of important developments for the Clean Hydrogen JU continuing built on the achievements of previous years and intensifying the efforts on hydrogen valleys. With a total operational commitment of EUR 203 million and the launch of 22 new projects the overall portfolio reached a total number of 147 projects under active management towards the end of the year. The budget execution reached the outstanding level of 98% in for commitments and 84% in payments in line with previous year showing the JU’s continued effort to use the available credits. In 2024 the JU launched a call for proposals with a budget of EUR 113.5 million covering R&I activities across the whole hydrogen value chain to which was added an amount of EUR 60 million from the RePowerEU plan focusing on hydrogen valleys. That amount served for valleys-related grants and the “Hydrogen Valleys Facility” tender designed for project development assistance that will support Hydrogen Valleys at different levels of maturity. The Hydrogen Valleys concept has become a key instrument for the European Commission to scale up hydrogen technology deployment and establish interconnections between hydrogen ecosystems. At the end of 2024 the Clean Hydrogen JU has already funded 20 hydrogen valleys. This support was complemented by additional credits from third countries and the optimal use- of leftover credits from previous years allowing the award of 29 new grants from the call for 2024.
Geopolitics of Renewables: Asymmetries, New Interdependencies, and Cooperation around Portuguese Solar Energy and Green Hydrogen Strategies
Oct 2025
Publication
This article explores how the implementation of solar PV and transportation infrastructure – grid or hydrogen pipeline – has implications for various aspects of security cooperation and geopolitical powershifts. Highlighting the emerging intra-European green hydrogen pipeline project H2Med we examine the Portuguese geopolitical ambitions related to their geographical advantage for solar PV energy production. Using media and document analysis we identified two main axes of solar PV implementation in Portugal – one centered on resilience and one on exports – and further explored underlying and resulting tensions in neighboring countries’ energy strategies and cleantech innovation policies. Our analysis revealed that policy prioritizations in solar PV diffusion result in unequal effects on resilience energy security and power shifts. In particular solar PV implementations such as individual to local or regional grid-based ‘prosumption’ setups result in notably different geopolitical effects compared to large-scale solar PV to green hydrogen-production for storage and export. Thereby emerging possibilities of storage and long-distance trade of renewable energies have more significant implications on geopolitics and energy security than what is typically recognized.
Country Risk Impacts on Export Costs of Green Hydrogen and its Synthetic Downstream Products from the Middle East and North Africa
May 2025
Publication
Green hydrogen produced from renewable energy sources such as wind and solar is increasingly recognized as a critical enabler of the global energy transition and the decarbonization of industrial and transport sectors. The successful adoption of green hydrogen and its derivatives is closely linked to production costs which can vary substantially between countries depending not only on resource potential but also on country-specific financing conditions. These differences arise from country-specific risk factors that affect the costs of capital ultimately influencing investment decisions. However comprehensive assessments that integrate these risks with future cost projections for renewable energy green hydrogen and its synthetic downstream products are lacking. Using the Middle East and North Africa (MENA) as an example this study introduces a novel approach that allows to incorporate mainly qualitative country-specific investment risks into quantitative analyses such as costpotential and energy modelling. Our methodology calculates weighted average costs of capital (WACC) for 17 MENA countries under different risk scenarios providing a more nuanced assessment compared to traditional models that use uniform cost of capital assumptions. The results indicate significant variations in WACC such as between 4.67% in the United Arab Emirates and 24.84% in Yemen or Syria in the business-as-usual scenario. The incorporation of country-specific capital cost scenarios in quantitative analysis is demonstrated by modelling the cost-potential of Fischer-Tropsch (FT) fuels. The results show that countryspecific investment risks significantly impact costs. For instance by 2050 the starting LCOFs in high-risk scenarios can be up to 180% higher than in lowerrisk contexts. This underlines that while renewable energy potential and its cost are important it are the country-specific risk factors—captured through WACC—that have a greater influence in determining the competitiveness of exports and consequently the overall development of the renewable energy green hydrogen and synthetic fuel sectors.
Green Hydrogen: A Pathway to Vietnam’s Energy Security
Oct 2025
Publication
Green hydrogen is increasingly recognized as a pivotal energy carrier in the global transition toward low-carbon energy systems. Beyond its established applications in industry and transportation the development of green hydrogen could accelerate its integration into the power generation sector thus enabling a more sustainable deployment of renewable energy sources. Vietnam endowed with abundant renewable energy potential—particularly solar and wind—has a strong foundation for green hydrogen. This emerging energy source holds significant potential to support the strategic objectives in recent national energy policies aligning with the country’s socio-economic development. However despite this promise the integration of green hydrogen into Vietnam’s energy system remains limited. This paper provides a critical review of the current landscape of green hydrogen in Vietnam examining both the opportunities and challenges associated with its production and deployment. Special attention is given to regulatory frameworks infrastructure readiness and economic viability. Additionally the study also explores the potential of green hydrogen in enhancing energy security within the context of the national energy transition.
An International Review of Hydrogen Technology and Policy Developments, with a Focus on Wind- and Nuclear Power-Produced Hydrogen and Natural Hydrogen
Aug 2025
Publication
The potential for hydrogen to reshape energy systems has been recognized for over a century. Yet as decarbonization priorities have sharpened in many regions three distinct frontier areas are critical to consider: hydrogen produced from wind; hydrogen produced from nuclear power; and the development of natural hydrogen. These pathways reflect technology and policy changes including a 54% increase in the globally installed wind capacity since 2020 plus new signs of potential emerging in nuclear energy and natural hydrogen. Broadly speaking there are a considerable number of studies covering hydrogen production from electrolysis yet none systematically examine wind- and nuclear-derived hydrogen natural hydrogen or the policies that enable their adoption in key countries. This article highlights international policy and technology developments with a focus on prime movers: Germany China the US and Russia.
Synergies Between Green Hydrogen and Renewable Energy in South Africa
Aug 2025
Publication
South Africa has excellent conditions for renewable energy generation making it well placed to produce green hydrogen for both domestic use and export. In building a green hydrogen economy around export markets it will face competition from countries with equivalent or better resources and/or that are located closer to export markets (e.g. in North Africa and the Middle East) or have lower capital costs (developed markets like Australia and Canada). South Africa however has an extensive energy system with unserved electricity demand. The ability to trade electricity with the national grid (feeding into the grid during times of peak dedicated renewable energy supply and extracting from the grid during times of low dedicated renewable energy availability) could reduce the cost of producing green hydrogen by as much as 10–25 %. This paper explores the opportunity for South African green hydrogen producers presented by the electricity supply crisis that has been ongoing since 2007. It highlights the potential for a mutually reinforcing growth cycle between renewable energy and green hydrogen to be established which will contribute not only to the mitigation of greenhouse gas emissions but to the local economy and broader society.
Potential Vulnerability of US Green Hydrogen in a World of Interdependent Networks
Jul 2025
Publication
Green hydrogen is viewed as a promising pathway to future decarbonized energy systems. However hydrogen production depends on a few critical minerals particularly platinum and iridium. Here we examine how the supply of these minerals is subject to vulnerabilities hidden in interdependent global networks of trade and investment. We develop an index to quantify these vulnerabilities for a combination of a target country an investing country an intermediary country and a commodity. Focusing on the US as the target country for the import of platinum and iridium we show how vulnerability-inducing investing countries changed between 2010 and 2019. We find that the UK is consistently among investing countries that can potentially induce US vulnerabilities via intermediary exporters of platinum and iridium with South Africa being the primary intermediary country. Future research includes incorporating geopolitical factors and technological innovations to move the index closer from potential to real-world vulnerabilities.
The Hydrogen Challenge: Addressing Storage, Safety, and Environmental Concerns in the Hydrogen Economy
Aug 2025
Publication
As part of global decarbonization efforts hydrogen has emerged as a key energy carrier that can achieve deep emission reductions in various sectors. This review critically assesses the role of hydrogen in the low-carbon energy transition and highlights the interlinked challenges within the Techno-Enviro-Socio-Political (TESP) framework. It examines key aspects of deployment including production storage safety environmental impacts and socio-political factors to present an integrated view of the opportunities and barriers to large-scale adoption. Despite growing global interest over 90 % of the current global hydrogen production originated from fossilbased processes resulting in around 920 Mt of CO2 emissions two-thirds of which were attributable to fossil fuels. The Life Cycle Assessment (LCA) shows that coal-based electrolysis resulted in the highest GHG emission (144 - 1033 g CO2-eq/MJ) and an energy consumption (1.55–10.33 MJ/MJ H2). Without a switch to low-carbon electricity electrolysis cannot deliver significant climate benefits. Conversely methanol steam reforming based on renewable feedstock offered the lowest GHG intensity (23.17 g CO2-eq/MJ) and energy demand (0.23 MJ/ MJ) while biogas reforming proved to be a practical short-term option with moderate emissions (51.5 g CO2-eq/ MJ) and favourable energy figures. Catalytic ammonia cracking which is suitable for long-distance transport represents a compromise between low energy consumption (2.93 MJ/MJ) and high water intensity (8.34 L/km). The thermophysical properties of hydrogen including its low molecular weight high diffusivity and easy flammability lead to significant safety risks during storage and distribution which are exacerbated by its sensitivity to ignition and jet pulse effects. The findings show that a viable hydrogen economy requires integrated strategies that combine decarbonised production scalable storage harmonised safety protocols and cross-sector stakeholder engagement for better public acceptance. This review sets out a multi-dimensional approach to guide technological innovation policy adaptation and infrastructure readiness to support a scalable and environmentally sustainable hydrogen economy.
Understanding the Framing of Hydrogen Technology: A Cross-national Content Analysis of Newspaper Coverage in Germany, Saudi Arabia, UAE, and Egypt
Jul 2025
Publication
Introduction: The implementation of national hydrogen strategies targeting zero-emission goals has sparked public discussions regarding energy and environmental communication. However gaining societal acceptance for hydrogen technology poses a significant challenge in numerous countries. Hence this research investigates the framing of hydrogen technology through a comparative analysis of opinion-leading newspapers in Germany Saudi Arabia the United Arab Emirates and Egypt. Methods: Utilizing a quantitative framing analysis based on Entman’s framing approach this research systematically identifies media frames and comprehend their development through specific frame characteristics. A factor analysis identified six distinct frames: Hydrogen as a Sustainable Energy Solution Benefits of Economic and Political Collaboration Technological and Scientific Challenges Governance Issues and Energy Security Industrial and Climate Solutions and Economic Risk. Results: The findings reveal that newspapers frames vary significantly due to contextual factors such as national hydrogen strategies media systems political ideologies article types and focusing events. Specifically German newspapers display diverse and balanced framing in line with its pluralistic media environment and national emphasis on green hydrogen and energy security while newspapers from MENA countries primarily highlight economic and geopolitical benefits aligned with their national strategies and state-controlled media environments. Additionally the political orientation of newspapers affects the diversity of frames particularly in Germany. Moreover non-opinion articles in Germany exhibit greater framing diversity compared to opinion pieces while in the MENA region the framing remains uniform regardless of article type due to centralized media governance. A notable shift in media framing in Germany was found after a significant geopolitical event which changed the frame from climate mitigation to energy security. Discussion: This study underscores the necessity for theoretical and methodological thoroughness in identifying frames as well as the considerable impact of contextual factors on the media representation of emerging sustainable technologies.
An Expert Opinion-based Perspective on Emerging Policy and Economic Research Priorities for Advancing the Low-carbon Hydrogen Sector
Jun 2025
Publication
This perspective sheds light on emerging research priorities crucial for advancing the low-carbon hydrogen sector considered critical for achieving net zero greenhouse gas emissions targets especially for hard-to-abate sectors. Our analysis follows a five-step process including drawing from news media academic discourse and expert consultations. We identify twenty-one major research challenges. Among the top priorities highlighted by experts are: (i) Evaluating the trade-offs of hydrogen-fueled power generation compared to hydrocarbon fuels and renewables with alternative storage solutions and the feasibility of co-firing hydrogen and ammonia with hydrocarbon fuels for backup or independent power generation; (ii) Exploring how global hydrogen trade could be shaped by market forces such as price volatility geopolitical dynamics and international collaborations; (iii) Examining the financial considerations for investors from developed nations pursuing hydrogen projects in resource-rich developing countries balancing costs investment risks and expected returns. We find statistically significant differences in opinions on hydrogen/ammonia co-firing for power generation between experts from China and those from the U.S. and Germany.
The Financial Results of Energy Sector Companies in Europe and Their Involvement in Hydrogen Production
Jun 2025
Publication
In response to growing environmental concerns hydrogen production has emerged as a critical element in the transition to a sustainable global economy. We evaluate the impact of hydrogen production on both the financial performance and market value of energy sector companies using balanced panel data from 288 European-listed firms over the period of 2018 to 2022. The findings reveal a paradox. While hydrogen production imposes significant financial constraints it is positively recognized by market participants. Despite short-term financial challenges companies engaged in hydrogen production experience higher market value as investors view these activities as a long-term growth opportunity aligned with global sustainability goals. We contribute to the literature by offering empirical evidence on the financial outcomes and market valuation of hydrogen engagement distinguishing between production and storage activities and further categorizing production into green blue and gray hydrogen. By examining these nuances we highlight the complex relationship between financial market results. While hydrogen production may negatively impact short-term financial performance its potential for long-term value creation driven by decarbonization efforts and sustainability targets makes it attractive to investors. Ultimately this study provides valuable insights into how hydrogen engagement shapes corporate strategies within the evolving European energy landscape.
Towards Net-Zero: Comparative Analysis of Hydrogen Infrastructure Development in USA, Canada, Singapore, and Sri Lanka
Sep 2025
Publication
This paper compares national hydrogen (H2) infrastructure plans in Canada the United States (the USA) Singapore and Sri Lanka four countries with varying geographic and economic outlooks but shared targets for reaching net-zero emissions by 2050. It examines how each country approaches hydrogen production pipeline infrastructure policy incentives and international collaboration. Canada focuses on large-scale hydrogen production utilizing natural resources and retrofitted natural gas pipelines supplemented by carbon capture technology. The USA promotes regional hydrogen hubs with federal investment and intersectoral collaboration. Singapore suggests an innovation-based import-dominant strategy featuring hydrogen-compatible infrastructure in a land-constrained region. Sri Lanka maintains an import-facilitated pilot-scale model facilitated by donor funding and foreign collaboration. This study identifies common challenges such as hydrogen embrittlement leakages and infrastructure scalability as well as fundamental differences based on local conditions. Based on these findings strategic frameworks are proposed including scalability adaptability partnership policy architecture digitalization and equity. The findings highlight the importance of localized hydrogen solutions supported by strong international cooperation and international partnerships.
Design and Analysis of Small‑Scale Hydrogen Valleys Success Factors: A Stratified Network‑Based Hybrid Fuzzy Approach
Sep 2025
Publication
Hydrogen energy one of the renewable energy sources plays a crucial role in combating climate change since its usage aims to reduce carbon emissions and enhance energy security. As the global energy trend moves toward cleaner alternatives countries start to adapt their energy strategies. In this transition hydrogen is one of the energy sources with the potential to increase long-term energy security. Developing countries face challenges such as high energy import dependency rising industrial demand and the need for infrastructure modernization making hydrogen valleys one of the viable solutions since they integrate hydrogen production storage distribution and utilization at one facility. However establishing small-scale hydrogen valleys requires a comprehensive decision-making strategy consisting of technical financial environmental social and political factors while addressing uncertainties in the system. To systematically manage the process this study proposes a Z-numberbased fuzzy cognitive mapping approach which models the interdependencies among success factors supported by Z-number Decision-Making Trial and Evaluation Laboratory for structured prioritization with a multi-expert perspective. The results indicate that Financial Factors emerged as the most critical category with Government Incentives Infrastructure Investment Cost and Land Acquisition Cost ranking as the top three sub-success factors. Availability of Skilled Workforce and Regional Energy Supply followed in importance which demonstrates the importance of social and technical dimensions in the hydrogen valley development. These findings demonstrate the critical role of policy support infrastructure readiness and workforce availability in the design process. Sensitivity analyses are also conducted to present robustness of the given decisions for the analysis of the results. Based on the results and analyses possible implications based on the policy and practical dimensions are also discussed. By integrating fuzzy logic and Z-numbers the study aims to minimize loss of information enhances the analytical background for decision-making and provides a strategic roadmap for hydrogen valley development.
Modeling and Optimization Control of SOEC with Flexible Adjustment Capabilities
Jul 2025
Publication
Due to the random fluctuations in power experienced by high-temperature green electric hydrogen production systems further deterioration of spatial distribution characteristics such as temperature voltage/current and material concentration inside the solid oxide electrolysis cell (SOEC) stack may occur. This has a negative impact on the system’s flexibility and the corresponding control capabilities. In this paper based on the SOEC electrolytic cell model a comprehensive optimization method using an adaptive incremental Kriging surrogate model is proposed. The reliability of this method is verified by accurately analyzing the dynamic performance of the SOEC and the spatial characteristics of various physical quantities. Additionally a thermal dynamic analysis is performed on the SOEC and an adaptive time-varying LPV-MPC optimization control method is established to ensure the temperature stability of the electrolysis cell stack aiming to maintain a stable efficient and sustainable SOEC operation. The simulation analysis of SOEC hydrogen production adopting a variable load operation has demonstrated the advantages of this method over conventional PID control in stabilizing the temperature of the stack. It allows for a rapid adjustment in the electrolysis voltage and current and improves electrolysis efficiency. The results highlighted that the increase in the electrolysis load increases the current density while the water vapor electrolysis voltage and H2 flow rate significantly decrease. Finally the SOEC electrolytic hydrogen production module is introduced for optimization scheduling of energy consumption in Xinjiang China. The findings not only confirmed that the SOEC can transition to the current load operating point at each scheduling period but also demonstrated higher effectiveness in stabilizing the stack temperature and improving electrolysis efficiency.
Grid Infrastructure and Renewables Integration for Singapore Energy Transition
Oct 2025
Publication
Considering rising environmental concerns and the energy transition towards sustainable energy Singapore’s power sector stands at a crucial juncture. This study explores the integration of grid infrastructure with both generated and imported renewable energy (RE) sources as a strategic pathway for the city-state’s energy transition to reach net-zero carbon emissions by 2050. Employing a combination of simulation modeling and data analysis for energy trading and advanced energy management technologies we examine the current and new grid infrastructure’s capacity to assimilate RE sources particularly solar photovoltaic and energy storage systems. The findings reveal that with strategic upgrades and smart grid technologies; Singapore’s grid can efficiently manage the variability and intermittency of RE sources. This integration is pivotal in achieving a higher penetration of renewables as well as contributing significantly to Singapore’s commitment to the Paris Agreement and sustainable development goals. While the Singapore’s power system has links to the Malay Peninsula the planned ASEAN regional interconnection might alter the grid operation in Singapore and possibly make Singapore a new green energy hub. The study also highlights the key challenges and opportunities associated with cross-border energy trade with ASEAN countries including the need for harmonized regulatory frameworks and incentives to foster public–private partnerships. The insights from this study could guide policymakers industry stakeholders and researchers offering a roadmap for a sustainable energy transition in Singapore towards meeting its 2050 carbon emission goals.
Increasing Public Acceptance of Fuel Cell Vehicles in Germany: A Perspective on Pioneer Users
Jun 2025
Publication
Fuel cell vehicles (FCVs) represent an intriguing alternative to battery electric vehicles (BEVs). While the acceptance of BEVs has been widely discussed acceptance-based recommendations for promoting adoption of FCVs remain ambiguous. This paper aims to improve our understanding by reporting results from a pioneer study based on the standardized Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). The sample consists of n1 = 258 registered customers of H2mobility in Germany. For effect control another n2 = 294 participant sample was drawn from the baseline population. Data were analyzed using SmartPLS 4 and importance-performance mapping (IPMA). Results demonstrate that FCV acceptance primarily relies on Perceived Usefulness Perceived Conditions and Normative Influence while surprisingly hypotheses involving Perceived Risk and Green Attitude are rejected. Finally a discussion reveals ways to increase the level of public acceptance. Three practical strategies emerge. For future acceptance analyses the authors suggest incorporating the young concept of ‘societal readiness’.
A Comprehensive Review of Advances in Bioenergy including Emerging Trends and Future Directions
Aug 2025
Publication
Bioenergy is a promising alternative to fossil fuels-based energy with significant potential to transform global energy systems and promote environmental sustainability. This review provides a comprehensive overview of the evolution of bioenergy emphasizing its role in the global transition to sustainable energy. It explores a diverse range of biomass sources including forest and agricultural residues algae and industrial by-products and their conversion into energy via thermochemical biochemical and physicochemical pathways. The paper also highlights recent technological advancements and assesses the environmental sustainability of bioenergy systems. Additionally it examines key challenges hindering bioenergy development such as feedstock logistics technological limitations economic viability and policy gaps that need resolution to fully realise its potential. By synthesizing literature from 2010 to 2025 the review identifies strategic priorities for research and deployment aiming to inform efforts that align bioenergy utilization with global decarbonization goals.
Optimizing Vietnam's Hydrogen Strategy: A Life-cycle Perspective on Technology Choices, Environmental Impacts, and Cost Trade-offs
Sep 2025
Publication
Vietnam recognizes hydrogen as a key fuel for decarbonization under its National Hydrogen Strategy. Here we quantified the environmental and economic performance of Vietnam’s optimal hydrogen-production pathways by evaluating combinations of green and blue hydrogen under varying demand scenarios using life-cycle assessment and optimization modeling techniques. The environmental performance of hydrogen production proved highly sensitive to the electricity source with water electrolysis powered by renewable energy offering the most favorable outcomes. Although green hydrogen production reduced carbon emissions it shifted environmental burdens toward increased resource extraction. Producing 20 Mt of hydrogen by 2050 would require 741.56 TWh of electricity 178 Mt of water and USD 294 billion in investment and it would emit 50.48 Mt CO2. These findings highlight the importance of strategic hydrogen planning and resource strategy aligned with national priorities for energy transition to navigate trade-offs among technology selection emissions costs and resource consumption.
A Critical Review of China's Hydrogen Supply Chain and Equipment
Sep 2025
Publication
China’s dual-carbon goals have positioned hydrogen as a central pillar of its energy transition. This review examines the recent development of China’s hydrogen supply chain with particular focus on manufacturing technologies for alkaline electrolysers high-pressure cylinders and diaphragm compressors. In 2024 China produced 36.5 million tons of hydrogen of which 77 % was grey and only 1 % derived from electrolysis. Storage and transportation account for nearly 30 % of end-use costs while reliance on imported compressors increases refuelling station expenses by approximately 40 %. We identify key bottlenecks including limited electrolyser efficiency the high cost of carbon fibres for Type III/IV cylinders and insufficient domestic capacity for highreliability compressors. To address these challenges targeted advances are proposed: membrane materials with engineered hydrophilicity advanced surface modifications and hydrophilic inhibitors; liner design incorporating grooved-liner braided layers with double-fibre configurations; and a three-layer diaphragm compressor architecture. By consolidating fragmented studies this review provides the integrated manufacturing perspective on China’s hydrogen supply chain offering both scientific insights and practical guidance for accelerating costeffective large-scale low-carbon hydrogen deployment.
Energy Storage in the Energy Transition and Blue Economy: Challenges, Innovations, Future Perspectives, and Educational Pathways
Sep 2025
Publication
Transitioning to renewable energy is vital to achieving decarbonization at the global level but energy storage is still a major challenge. This review discusses the role of energy storage in the energy transition and the blue economy focusing on technological development challenges and directions. Effective storage is vital for balancing intermittent renewable energy sources like wind solar and marine energy with the power grid. The development of battery technologies hydrogen storage pumped hydro storage and emerging technologies like sodium-ion and metal-air batteries is discussed for their potential for large-scale deployment. Shortages in critical raw materials environmental impact energy loss and costs are some of the challenges to large-scale deployment. The blue economy promises opportunities for offshore energy storage notably through ocean thermal energy conversion (OTEC) and compressed air energy storage (CAES). Moreover the capacity of datadriven optimization and artificial intelligence to enhance storage efficiency is discussed. Policy interventions and economic incentives are necessary to spur the development and deployment of sustainable energy storage technology. Education and workforce training are also important in cultivating future researchers engineers and policymakers with the ability to drive energy innovation. Merging sustainability training with an interdisciplinary approach can potentially establish an efficient workforce that is capable of addressing energy issues. Future work needs to focus on higher energy density efficiency recyclability and cost-effectiveness of the storage technologies without sacrificing their environmental sustainability. The study underlines the need for converging technological economic and educational approaches to enable a sustainable and resilient energy future.
Overcoming Hurdles and Harnessing the Potential of the Hydrogen Transition in Germany
Jun 2025
Publication
Green hydrogen has become a core element of Europe’s energy transition to assist in lowering carbon emissions. However the transition to green hydrogen faces challenges including the cost of production availability of renewable energy sources public opposition and the need for supportive government policies and financial initiatives. While there are other alternatives for producing low-carbon hydrogen for example blue hydrogen German funding favours projects that involve hydrogen production via electrolysis. Beyond climate goals it is anticipated that a green hydrogen industry will create economic benefits and a wide-range of collaborative opportunities with key international partnerships increasing energy security if done appropriately. Germany a leader in green hydrogen technology will need to rely on imports to meet long-term demand due to limited renewable energy capacity. Despite the current obstacles to transitioning to green hydrogen it is felt that ultimately the benefits of this industry and reducing emissions will outweigh the associated costs of production. This study analyses the hydrogen transition in Germany by interviewing 37 European experts guided by the research question: What are the key perceived barriers and opportunities influencing the successful adoption and integration of hydrogen technologies in Germany’s hydrogen transition?
Renewables, Electrification and Flexibility for a Competitive EU Energy System Transformation by 2030
Jun 2025
Publication
The European Union is on a pathway to achieve climate neutrality by 2050. This report explores the historic and necessary efforts to align Europe′s electricity heating and transport systems with transformative EU benchmarks for 2030 to meet that longer-term goal. CO2 emissions have declined significantly in the EU electricity subsystem over the past few decades. This presents an important opportunity to decarbonise rapidly in the near future and to roll out electrification to other sectors while strengthening energy independence security and competitiveness for all EU countries. Through accelerated gains in energy and resource efficiency and the alignment of Member States′ efforts within a more coherent EU energy system the rapid electrification of buildings transport and industry can greatly reduce Europe′s reliance on foreign fossil fuels and unlock critical progress in heating and transport. Over the past five years EU policy frameworks for climate mitigation and energy system transformation have become far more coherent and complete. Infrastructure security and resilience have been bolstered through integrated climate and energy planning in tandem with national and cross-border efforts to ensure sound policy implementation. It is now critical that decision-makers translate objectives and priorities for the energy system transition into actionable measures. This includes crafting fiscal strategies to finance key upfront infrastructure investments; distributing the cost of capital proportionally to not overburden taxpayers; aligning taxation pricing and information signals across the whole energy system; and regularly monitoring and evaluating performance to recalibrate policies when needed.
A Review of Green Hydrogen Technologies and Their Role in Enabling Sustainable Energy Access in Remote and Off-Grid Areas Within Sub-Saharan Africa
Sep 2025
Publication
Electricity access deficits remain acute in Sub-Saharan Africa (SSA) where more than 600 million people lack reliable supply. Green hydrogen produced through renewablepowered electrolysis is increasingly recognized as a transformative energy carrier for decentralized systems due to its capacity for long-duration storage sector coupling and near-zero carbon emissions. This review adheres strictly to the PRISMA 2020 methodology examining 190 records and synthesizing 80 peer-reviewed articles and industry reports released from 2010 to 2025. The review covers hydrogen production processes hybrid renewable integration techno-economic analysis environmental compromises global feasibility and enabling policy incentives. The findings show that Alkaline (AEL) and PEM electrolyzers are immediately suitable for off-grid scenarios whereas Solid Oxide (SOEC) and Anion Exchange Membrane (AEM) electrolyzers present high potential for future deployment. For Sub-Saharan Africa (SSA) the levelized costs of hydrogen (LCOH) are in the range of EUR5.0–7.7/kg. Nonetheless estimates from the learning curve indicate that these costs could fall to between EUR1.0 and EUR1.5 per kg by 2050 assuming there is (i) continued public support for the technology innovation (ii) appropriate flexible and predictable regulation (iii) increased demand for hydrogen and (iv) a stable and long-term policy framework. Environmental life-cycle assessments indicate that emissions are nearly zero but they also highlight serious concerns regarding freshwater usage land occupation and dependence on platinum group metals. Namibia South Africa and Kenya exhibit considerable promise in the early stages of development while Niger demonstrates the feasibility of deploying modular community-scale systems in challenging conditions. The study concludes that green hydrogen cannot be treated as an integrated solution but needs to be regarded as part of blended off-grid systems. To improve its role targeted material innovation blended finance and policies bridging export-oriented applications to community-scale access must be established. It will then be feasible to ensure that hydrogen
Techno-Economic Environmental Risk Analysis (TERA) in Hydrogen Farms
Sep 2025
Publication
This study presents a techno-economic environmental risk analysis (TERA) of large-scale green hydrogen production using Alkaline Water Electrolysis (AWE) and Proton Exchange Membrane (PEM) systems. The analysis integrates commercial data market insights and academic forecasts to capture variability in capital expenditure (CAPEX) efficiency electricity cost and capacity factor. Using Libya as a case study 81 scenarios were modelled for each technology to assess financial and operational trade-offs. For AWE CAPEX is projected between $311 billion and $905.6 billion for 519 GW (gigawatts) of installed capacity equivalent to 600–1745 $/kW. PEM systems show a wider range of $612 billion to $1020 billion for 510 GW translating to 1200–2000 $/kW. Results indicate that AWE while requiring greater land use provides significant cost advantages due to lower capital intensity and scalability. In contrast PEM systems offer compact design and operational flexibility but at substantially higher costs. The five most economical scenarios for both technologies consistently feature low CAPEX and high efficiency while sensitivity analyses confirm these two parameters as the dominant cost drivers. The findings emphasise that technology choice should reflect context-specific priorities such as land availability budget and performance needs. This study provides actionable guidance for policymakers and investors developing cost-effective hydrogen infrastructure in emerging green energy markets.
Global Warming Impacts of the Transition from Fossil Fuel Conversion and Infrastructure to Hydrogen
Jul 2025
Publication
Emissions from fossil fuel extraction conveyance and combustion are among the most significant causes of air pollution and climate change leading to arguably the most acute crises mankind has ever faced. The transition from fossil fuel-based energy systems to hydrogen is essential for meeting a portion of global decarbonization goals. Hydrogen offers certain features such as high gravimetric energy density that is required for heavy-duty shipping and freight applications and chemical properties such as high temperature combustion and reducing capabilities that are required for steel chemicals and fertilizer industries. However hydrogen that leaks has indirect climate implications stemming from atmospheric interactions that are emerging as a critical area of research. This study reviews recent literature on hydrogen’s global warming potential (GWP) highlighting its indirect contributions to radiative forcing via methane’s extended atmospheric lifetime tropospheric ozone formation and stratospheric water vapor formation. The 100-year GWP (GWP100) of hydrogen estimated to range between 8 and 12.8 underscores the need to minimize leakage throughout the hydrogen supply chain to maximize the climate benefits of using hydrogen instead of fossil fuels. Comparisons with methane reveal hydrogen’s shorter atmospheric lifetime and reduced long-term warming effects establishing it as a viable substitute for fossil fuels in sectors such as steel cement and heavy-duty transport. The analysis emphasizes the importance of accurate leakage assessments robust policy frameworks and advanced infrastructure to ensure hydrogen realizes its potential as a sustainable energy carrier that displaces the use of fossil fuels. Future research is recommended to refine climate models better understand atmospheric sinks and hydrogen leakage phenomena and develop effective strategies to minimize hydrogen emissions paving the way for environmentally sound use of hydrogen.
Who Is in and How? A Comprehensive Study on Stakeholder Perspectives in the Green Hydrogen Sector in Luxembourg
Oct 2025
Publication
Green hydrogen has the potential to contribute to the decarbonization of the fossil fuel industry and its development is expected to increase in the coming years. The social dynamics among the various actors in the green hydrogen sector are studied to understand their public perception. Using the technological innovation system research approach for the stakeholder analysis and the qualitative thematic analysis method for the interviews with experts this study presents an overview of the actors in the green hydrogen sector and their relations in Luxembourg. As a central European country with strategic political and geographic relevance Luxembourg offers a timely case for analyzing public perception before the large-scale implementation of green hydrogen. Observing this early stage allows for future comparative insights as the national hydrogen strategy progresses. Results show high expectations for green hydrogen in mobility and industry but concerns persist over infrastructure costs safety and public awareness. Regional stakeholders demonstrate a strong willingness to collaborate recognizing that local public acceptance still requires effort particularly in areas such as clear and inclusive communication sharing knowledge and fostering trust. These findings provide practical insights for stakeholder engagement strategies and theoretical contributions to the study of social dynamics in sustainability transitions.
Socio-political Determinants of Public Acceptance of Green Hydrogen
Mar 2025
Publication
Green hydrogen produced through renewable energy sources is emerging as a pivotal element in global energy transitions. Despite its potential public acceptance remains a critical barrier to its large-scale implementation. This study aims to identify the socio-political and demographic determinants of public acceptance of green hydrogen. Using advanced variable selection methods including ridge lasso and elastic net regression we analyzed perceptions of climate change trust in government policies and demographic characteristics. The findings reveal that individuals prioritizing climate change over economic growth perceiving its impacts as severe and recognizing it as South Korea’s most pressing issue are more likely to accept green hydrogen. Trust in the government’s climate change response also emerged as a key factor. Demographic characteristics such as younger age higher income advanced education smaller family size and conservative political ideology were significantly associated with greater acceptance. These results highlight the importance of raising public awareness about the urgency of climate change and enhancing trust in government policies to promote societal acceptance of green hydrogen. Policymakers should consider these factors when developing strategies to advance the adoption of green hydrogen technologies and foster sustainable energy transitions.
Digital Twin Framework for Energy Transition in Gas Networks Based on Open-Source Tools: Methodology and Case Study in Southern Italy
Oct 2025
Publication
The ongoing digitalization of energy infrastructure is a crucial enabler for improving efficiency reliability and sustainability in gas distribution networks especially in the context of decarbonization and the integration of alternative energy carriers (e.g. renewable gases including biogas green hydrogen). This study presents the development and application of a Digital Twin framework for a real-world gas distribution network developed using open-source tools. The proposed methodology covers the entire digital lifecycle: from data acquisition through smart meters and GIS mapping to 3D modelling and simulation using tools such as QGIS FreeCAD and GasNetSim. Consumption data are collected processed and harmonized via Python-based workflows hourly simulations of network operation including pressure flow rate and gas quality indicators like the Wobbe Index. Results demonstrate the effectiveness of the Digital Twin in accurately replicating real network behavior and supporting scenario analyses for the introduction of greener energy vectors such as hydrogen or biomethane. The case study highlights the flexibility and transparency of the workflow as well as the critical importance of data quality and availability. The framework provides a robust basis for advanced network management optimization and planning offering practical tools to support the energy transition in the gas sector.
The Total Costs of Energy Transitions With and Without Nuclear Energy
Oct 2025
Publication
Within energy system analysis there is discourse regarding the role and economic benefits of nuclear energy in terms of overall system costs. The reported findings range from considerable drawbacks to substantial benefits depending on the chosen models scenarios and underlying assumptions. This article addresses existing gaps by demonstrating how subtle variations in model assumptions significantly impact analysis outcomes. Historically uncertainties associated with nuclear energy costs have been well documented whereas renewable energy costs have steadily declined and have been relatively predictable. However as land availability increasingly constrains future renewable expansion development is shifting from onshore to offshore locations where cost uncertainties are greater and anticipated cost reductions are less reliable. This study emphasizes this fundamental shift highlighting how uncertainties in future renewable energy costs could strengthen the economic case of nuclear energy within fully integrated sector-coupled energy systems especially when the costs of all technologies and weather conditions are set in the moderate range. Focusing specifically on Denmark this article presents a thorough sensitivity analysis of renewable energy costs and weather conditions within anticipated future ranges providing a nuanced perspective on the role of nuclear energy. Ultimately the findings underscore that when examining total annual system costs the differences between scenarios with low and high nuclear energy shares are minimal and are within ±5 % for the baseline assumptions while updated adjustments reduce this variation to ±1 %.
Techno-Economic Analysis of Marine Hybrid Clusters for Use in Chile and Mexico
Oct 2025
Publication
This study assesses the feasibility and profitability of marine hybrid clusters combining wave energy converters (WECs) and offshore wind turbines (OWTs) to power households and marine aquaculture. Researchers analyzed two coastal sites: La Serena Chile with high and consistent wave energy resources and Ensenada Mexico with moderate and more variable wave power. Two WEC technologies Wave Dragon (WD) and Pelamis (PEL) were evaluated alongside lithium-ion battery storage and green hydrogen production for surplus energy storage. Results show that La Serena’s high wave power (26.05 kW/m) requires less hybridization than Ensenada’s (13.88 kW/m). The WD device in La Serena achieved the highest energy production while PEL arrays in Ensenada were more effective. The PEL-OWT cluster proved the most cost-effective in Ensenada whereas the WD-OWT performed better in La Serena. Supplying electricity for seaweed aquaculture particularly in La Serena proves more profitable than for households. Ensenada’s clusters generate more surplus electricity suitable for the electricity market or hydrogen conversion. This study emphasizes the importance of tailoring emerging WEC systems to local conditions optimizing hybridization strategies and integrating consolidated industries such as aquaculture to enhance both economic and environmental benefits.
Early Transition to Near-zero Emissions Electricity and Carbon Dioxide Removal is Essential to Achieve Net-zero Emissions at a Low Cost in Australia
Aug 2025
Publication
Achieving net-zero emissions requires major changes across a nation’s economy energy and land systems particularly due to sectors where emissions are difficult to eliminate. Here we adapt two global scenarios from the International Energy Agency—the net-zero emissions by 2050 and the Stated Policies Scenario—using an integrated numerical economic-energy model tailored to Australia. We explore how emissions may evolve by sector and identify key technologies for decarbonisation. Our results show that a rapid shift to near-zero emissions electricity is central to reducing costs and enabling wider emissions reductions. From 2030 onwards carbon removal through land management and engineered solutions such as direct air capture and bioenergy with carbon capture and storage becomes critical. Australia is also well-positioned to become a global supplier of clean energy such as hydrogen made using renewable electricity helping reduce emissions beyond its borders.
Hydrogen Production from Winery Wastewater Through a Dual-Chamber Microbial Electrolysis Cell
Jun 2025
Publication
This study explores the feasibility of producing biohydrogen from winery wastewater using a dual-chamber microbial electrolysis cell (MEC). A mixed microbial consortium pre-adapted to heavy-metal environments and enriched with Geobacter sulfurreducens was anaerobically cultivated from diverse waste streams. Over 5000 h of development the MEC system was progressively adapted to winery wastewater enabling long-term electrochemical stability and high organic matter degradation. Upon winery wastewater addition (5% v/v) the system achieved a sustained hydrogen production rate of (0.7 ± 0.3) L H2 L −1 d −1 with an average current density of (60 ± 4) A m−3 and COD removal efficiency exceeding 55% highlighting the system’s resilience despite the presence of inhibitory compounds. Coulombic efficiency and cathodic hydrogen recovery reached (75 ± 4)% and (87 ± 5)% respectively. Electrochemical impedance spectroscopy provided mechanistic insight into charge transfer and biofilm development correlating resistive parameters with biological adaptation. These findings demonstrate the potential of MECs to simultaneously treat agro-industrial wastewaters and recover energy in the form of hydrogen supporting circular resource management strategies.
Spatial Planning Policies for Export-oriented Green-hydrogen Projects in Chile, Namibia, and South Africa
Jun 2025
Publication
Export-oriented green-hydrogen projects (EOGH2P) are being developed in regions with optimal renewableenergy resources. Their reliance on economies of scale makes them land-intensive and object of spatial planning policies. However the impact of spatial planning on the development of EOGH2P remains underexplored. Drawing on the spatial planning and megaproject literatures the analysis of planning documents and expert interviews this paper analyzes how spatial planning influences the development of EOGH2P in Chile Namibia and South Africa. The three countries have developed different spatial planning approaches for EOGH2Ps and are analyzed by employing a comparative case-study design. Our findings reveal that Namibia pursues a restrictive approach South Africa a facilitative approach whereas Chile is shifting from a market-based to a restrictive approach. The respective approaches reflect different political priorities and stakeholder interests and imply diverse effects on the development of EOGH2Ps in terms of their number size shared infrastructure socioenvironmental impact and acceptance. This study underscores the need for well-designed spatial planning frameworks and provides insights for planners and stakeholders on their potential effects.
Europe's Environment 2025 - Main Report, Europe's Environment and Climate: Knowledge for Resilience, Prosperity and Sustainability
Jan 2025
Publication
Every five years as mandated in its founding regulation the European Environment Agency (EEA) publishes a state of the environment report. Europe's environment 2025 provides decision makers at European and national levels as well as the general public with a comprehensive and cross-cutting assessment on environment climate and sustainability in Europe. Europe's environment 2025 is the 7th state of the environment report published by the EEA since 1995. Europe's environment 2025 has been prepared in close collaboration with the EEA’s European Environment Information and Observation Network (Eionet). The report draws on the Eionet’s vast expertise of leading experts and scientists in the environmental field across the EEA’s 32 member countries and six cooperating countries.
Green Hydrogen in the Alps: Mapping Local Stakeholders Perspectives and Identifying Opportunities for Decarbonization
Jun 2025
Publication
The effects of climate change and reliance on fossil fuels in the Alps highlight the need for energy sufficiency improved efficiency and renewable energy deployment to support decarbonization goals. Hydrogen has gained attention as a versatile zero-emission energy carrier with the potential to drive cleaner energy solutions and sustainable tourism in Alpine regions. This study shares findings from a hydrogen survey conducted within the Interreg Alpine Space AMETHyST project which included questionnaires and roundtable discussions across Alpine territories. The survey explored hydrogen’s role in decarbonizing the Alps gathering insights from local stakeholders about their knowledge expertise needs and targets for hydrogen solutions. It also mapped existing hydrogen initiatives. Results revealed strong interest in hydrogen implementation with many territories eager to launch projects. However high investment and operational costs along with associated risks are key barriers. The absence of clear local hydrogen strategies and of a comprehensive regulatory framework also poses significant challenges. Incentivization schemes could facilitate initiatives and foster local hydrogen economies. The most promising application areas for hydrogen in the Alps are private and public mobility sectors. The residential sector particularly in tourist accommodations also presents potential. Regardless of specific uses developing renewable energy capacity and infrastructure is essential to create green hydrogen ecosystems that can store excess renewable energy from intermittent sources for later use.
Microwaves in Clean Energy Technologies
Mar 2025
Publication
Energy in the microwave spectrum is increasingly applied in clean energy technologies. This review discusses recent innovations using microwave fields in hydrogen production and synthesis of new battery materials highlighting the unique properties of microwave heating. Key innovations include microwave-assisted hydrogen generation from water hydrocarbons and ammonia and the synthesis of high-performance anode and cathode materials. Microwave-assisted catalytic water splitting using Gd-doped ceria achieves efficient hydrogen production below 250°C. For hydrocarbons advanced microwave-active catalysts Fe–Ni alloys and ruthenium nanoparticles enable high conversion rates and hydrogen yields. In ammonia synthesis microwaves reduce the energy demands of the Haber–Bosch process and enhance hydrogen production efficiency using catalysts such as ruthenium and Co2Mo3N. In battery technology microwave-assisted synthesis of cathode materials like LiFePO4 and LiNi0.5Mn1.5O4 yields high-purity materials with superior electrochemical performance. Developing nanostructured and composite materials including graphene-based anodes significantly improves battery capacities and cycling stability. The ability of microwave technology to provide rapid selective heating and enhance reaction rates offers significant advancements in clean energy technologies. Ongoing research continues to bridge theoretical understanding and practical applications driving further innovations in this field. This review aims to highlight recent advances in clean energy technologies based upon the novel use of microwave energy. The potential impact of these emerging applications is now being fully understood in areas that are critical to achieving net zero and can contribute to the decarbonization of key sectors. Notable in this landscape are the sectors of hydrogen fuel and battery technologies. This review examines the role of microwaves in these areas.
From Grey to "Green": Modelling the Non-energy Uses of Hydrogen for the EU Energy Transition
Jun 2025
Publication
Hydrogen (H2) used as feedstock (i.e. as raw material) in chemicals refineries and steel is currently produced from fossil fuels thus leading to significant carbon dioxide (CO2) emissions. As these hard-to-abate sectors have limited electrification alternatives H2 produced by electrolysis offers a potential option for decarbonising them. Existing modelling analyses to date provide limited insights due to their predominant use of sector-specific static non-recursive and non-open models. This paper advances research by presenting a dynamic recursive open-access energy model using System Dynamics to study long-term systemic and environmental impacts of transitioning from fossil-based methods to electrolytic H2 production for industrial feedstock. The regional model adopts a bottom-up approach and is applied to the EU across five innovative decarbonisation scenarios including varying technological transition speeds and a paradigm-shift scenario (Degrowth). Our results indicate that assuming continued H2 demand trends and large-scale electrolytic H2 deployment by 2030 grid decarbonisation in the EU must accelerate to ensure green H2 for industrial feedstock emits less CO2 than fossil fuel methods doubling the current pace. Otherwise electrolytic H2 won’t offer clear CO2 reduction benefits until 2040. The most effective CO2 emission mitigation occurs in growth-oriented ambitious decarbonisation (− 91 %) and Degrowth (− 97 %) scenarios. From a sectoral perspective H2 use in steel industry achieves significantly greater decarbonisation (− 97 %). However meeting electricity demand for electrolytic H2 (700–1180 TWh in 2050 for 14–22.5 Mtons) in growth-oriented scenarios would require 25 %–42 % of the EU’s current electricity generation exceeding current renewable capacity and placing significant pressure on future power system development.
A Comprehensive Review of Sustainable Energy Systems in the Context of the German Energy Transition Part 2: Renewable Energy and Storage Technologies
Sep 2025
Publication
As a continuation of part 1 which examined the development status and system foundations of sustainable energy systems (SES) in the context of German energy transition this paper provides a comprehensive review of the core technologies enabling the development of SES. It covers recent advances in photovoltaic (PV) wind energy geo‑ thermal energy hydrogen and energy storage. Key trends include the evolution of high-efficiency solar and wind technologies intelligent control systems sector coupling through hydrogen integration and the diversification of electrochemical and mechanical storage solutions. Together these innovations are fostering a more flexible resil‑ ient and low-carbon energy infrastructure. The review further highlights the importance of system-level integration by linking generation conversion and storage to address the intermittency of renewable energy and support longterm decarbonization goals.
Little to Lose: The Case for a Robust European Green Hydrogen Strategy
Jul 2025
Publication
The EU targets 10 Mt of green hydrogen production by 2030 but has not committed to targets for 2040. Green hydrogen competes with carbon capture and storage biomass and imports as well as direct electrification in reaching emissions reductions; earlier studies have demonstrated the great uncertainty in future costoptimal development of green hydrogen. In spite of this we show that Europe risks little by setting green hydrogen production targets at around 25 Mt by 2040. Employing an extensive scenario analysis combined with novel near-optimal techniques we find that this target results in systems that are within 10% of cost-optimal in all considered scenarios with current-day biomass availability and baseline transportation electrification. Setting concrete targets is important in order to resolve significant uncertainty that hampers investments. Targeting green hydrogen reduces the dependence on carbon capture and storage and green fuel imports making for a more robust European climate strategy.
Development of the Hydrogen Market and Local Green Hydrogen Offtake in Africa
Jun 2025
Publication
Creating a hydrogen market in Africa is a great opportunity to assist in the promotion of sustainable energy solutions and economic growth. This article addresses the legislation and regulations that need to be developed to facilitate growth in the hydrogen market and allow local green hydrogen offtake across the continent. By reviewing current policy and strategy within particular African countries and best practices globally from key hydrogen economies the review establishes compelling issues challenges and opportunities unique to Africa. The study identifies the immense potential in Africa for renewable energy and in particular for solar and wind as the foundation for the production of green hydrogen. It examines how effective policy frameworks can establish a vibrant hydrogen economy by bridging infrastructural gaps cost hurdles and regulatory barriers. The paper also addresses how local offtake contracts for green hydrogen can be used to stimulate economic diversification energy security and sustainable development. Policy advice is provided to assist African authorities and stakeholders in the deployment of enabling regulatory frameworks and the mobilization of funds. The paper contributes to global hydrogen energy discussions by introducing Africa as an eligible stakeholder in the emerging hydrogen economy and outlining prospects for its inclusion into regional and global energy supply chains.
Opportunities and Challenges of Latent Thermal Energy Usage in the Hydrogen Economy
Aug 2025
Publication
Hydrogen plays a key role in decarbonising hard-to-abate sectors like aviation steel and shipping. However producing pure hydrogen requires significant energy to break chemical bonds from its sources such as gas and water. Ideally the energy used for this process should match the energy output from hydrogen but in reality energy losses occur at various stages of the hydrogen economy—production packaging delivery and use. This results in needing more energy to operate the hydrogen economy than it can ultimately provide. To address this passive power sources like latent thermal energy storage systems can help reduce costs and improve efficiency. These systems can enable passive cooling or electricity generation from waste heat cutting down on the extra energy needed for compression liquefaction and distribution. This study explores integrating latent thermal energy storage into all stages of the hydrogen economy offering a cost and sizing approach for such systems. The integration could reduce costs close the waste-heat recycling loop and support green hydrogen production for achieving NetZero by 2050.
Solar Enabled Pathway to Large-scale Green Hydrogen Production and Storage: A Framework for Oman's Advancing Renewable Energy Goals
Aug 2025
Publication
The utilisation of renewable energy sources for hydrogen production is increasingly vital for ensuring the long-term sustainability of global energy systems. Currently the Sultanate of Oman is actively integrating renewable energy particularly through the deployment of solar photovoltaic (PV) systems as part of its ambitious targets for the forthcoming decades. Also Oman has target to achieve 1 million tonnes of green-H2 production annually. Leveraging Oman's abundant solar resources to produce green hydrogen and promote the clean transportation industry could significantly boost the country's sustainable energy sector. This paper outlines a standalone bifacial solar-powered system designed for large-scale green hydrogen (H2) production and storage to operate both a hydrogen refuelling station and an electric vehicle charging station in Sohar Oman. Using HOMER software three scenarios: PV/Hydrogen/Battery PV/Hydrogen PV/Battery systems were compared from a techno-economic perspective. Also the night-time operation (Battery/Hydrogen) was investigated. Varying cost of electricity were obtained depending on the system from $3.91/kWh to $0.0000565kWh while the bifacial PV/Hydrogen/Battery system emerged as the most efficient option boasting a unit cost of electricity (COE) of $3.91/kWh and a levelized cost of hydrogen (LCOH) value of $6.63/kg with net present cost 199M. This system aligns well with Oman's 2030 objectives with the capacity to generate 1 million tonnes of green-H2 annually. Additionally the findings show that the surplus electricity from the system could potentially cover over 30% of Oman's total energy consumption with zero harmful emissions. The implementation of this system promises to enhance Oman's economic and transportation industries by promoting the adoption of electric and fuel cell vehicles while reducing reliance on traditional energy sources.
Techno-economic Optimization of Renewable Hydrogen Infrastructure via AI-based Dynamic Pricing
Aug 2025
Publication
This study presents a techno-economic optimization of hydrogen production using hybrid wind-solar systems across six Australian cities highlighting Australia’s green hydrogen potential. A hybrid PVwind-electrolyzer-hydrogen tank (PV-WT-EL-HT) system demonstrated superior performance with Perth achieving the lowest Levelized Cost of Hydrogen (LCOH) at $0.582/kg Net Present Cost (NPC) of $27.5k and Levelized Cost of Electricity (LCOE) of $0.0166/kWh. Perth also showed the highest return on investment present worth and annual worth making it the preferred project site. All locations maintained a 100% renewable fraction proving the viability of fully decarbonized hydrogen production. Metaheuristic validation using nine algorithms showed the Mayfly Algorithm improved techno-economic metrics by 3–8% over HOMER Pro models. The Gray Wolf and Whale Optimization Algorithms enhanced system stability under wind-dominant conditions. Sensitivity analysis revealed that blockchain-based dynamic pricing and reinforcement learning-driven demand response yielded 8–10% cost savings under ±15% demand variability. Nevertheless regional disparities persist; southern cities such as Hobart and Melbourne exhibited 20–30% higher LCOH due to reduced renewable resource availability while densely urbanized cities like Sydney presented optimization ceilings with minimal LCOH improvements despite algorithmic refinements. Investment in advanced materials (e.g. perovskite-VAWTs) and offshore platforms targeting hydrogen export markets is essential. Perth emerged as the optimal hub with hybrid PV/WT/B systems producing 200–250 MWh/ month of electricity and 200–250 kg/month of hydrogen supported by policy incentives. This work offers a blueprint for region-specific AI-augmented hydrogen systems to drive Australia’s hydrogen economy toward $2.10/kg by 2030.
The Role of Financial Mechanisms in Advancing Renewable Energy and Green Hydrogen
Jun 2025
Publication
Europe’s transition toward a low-carbon energy system relies on the deployment of hydrogen produced with minimized carbon emissions; however regulatory requirements increase system costs and create financial barriers. This study investigates the financial implications of enforcing European Commission rules for renewable hydrogen production from 2024 to 2048. Using a scenario-based modeling approach that draws on European power system investments in renewable energy the results show that immediate compliance leads to an additional cost of approximately eighty billion euros over twenty-four years corresponding to a 3.6 percent increase in total system costs. To address this investment gap the study employs a segmentation analysis of support mechanisms based on existing policies and market practices identifying seven categories that range from investment incentives and production subsidies to infrastructure and financial instruments. Among these hydrogen offtake support and infrastructure funding are identified as the most effective measures for reducing risk and enabling private investment. These findings provide strategic insights for policymakers seeking to align their regulatory ambitions with financially viable pathways for integrating renewable energy.
Energy Management in an Insular Region with Renewable Energy Sources and Hydrogen: The Case of Graciosa, Azores
Sep 2025
Publication
Insular regions face unique energy management challenges due to physical isolation. Graciosa (Azores) has high renewable energy sources (RES) potential theoretically enabling a 100% green system. However RES intermittency combined with the lack of energy storage solutions reduces renewable penetration and raises curtailment. This article studies the technical and economic feasibility of producing green hydrogen from curtailment energy in Graciosa through two distinct case studies. Case Study 1 targets maximum renewable penetration with green hydrogen serving as chemical storage converted back to electricity via fuel cells during RES shortages. Case Study 2 focuses on maximum profitability where produced gases are sold to monetize curtailment without additional electricity production. Levelized Cost of Hydrogen (LCOH) values of €3.06/kgH2 and €2.68/kgH2 respectively and Internal Rate of Return (IRR) values of 3.7% and 17.1% were obtained for Case Studies 1 and 2 with payback periods of 15.2 and 6.1 years. Hence only Case Study 2 is economically viable but it does not allow increasing the renewable share in the energy mix. Sensitivity analysis for Case Study 1 shows that overall efficiency and CAPEX are the main factors affecting viability highlighting the need for technological advances and economies of scale as well as the importance of public funding to promote projects like this.
Modeling Gas Producibility and Hydrogen Potential—An Eastern Mediterranean Case Study
Oct 2025
Publication
The transition to low-carbon energy systems demands robust strategies that leverage existing fossil resources while integrating renewable technologies. In this work a single-cycle Gaussian-based producibility model is developed to forecast natural gas production profiles domestic consumption export potential hydrogen production and revenues adaptive for untapped natural gas discoveries. Annual natural gas production is represented by a bell curve defined by peak year and maximum capacity allowing flexible adaptation to different reserve sizes. The model integrates renewable energy adoption and steam–methane reforming to produce hydrogen while tracking revenue streams from domestic sales exports and hydrogen markets alongside carbon taxation. Applicability is demonstrated through a case study of Eastern Mediterranean gas discoveries where combined reserves of 2399 bcm generate a production peak of 100 bcm/year in 2035 and deliver 40.71 billion kg of hydrogen by 2050 leaving 411.87 bcm of reserves. A focused Cyprus scenario with 411 bcm of reserves peaks at 10 bcm/year produces 4.07 billion kg of hydrogen and retains 212.29 bcm of reserves. Cumulative revenues span from USD 84.37 billion under low hydrogen pricing to USD 247.29 billion regionally while the Cyprus-focused case yields USD 1.79 billion to USD 18.08 billion. These results validate the model’s versatility for energy transition planning enabling strategic insights into infrastructure deployment market dynamics and resource management in gas-rich regions.
Low-emission Hydrogen: Global Value Chain Opportunities for Latecomers and Industrial Policy Challenges
Jul 2025
Publication
To meet decarbonization targets demand for low-emission hydrogen is increasing. A considerable share of supply will come from latecomer countries. We study how latecomer countries and firms participate in the emerging global low-emission hydrogen economy and how industrial policies can help maximize societal benefits. This requires a specific conceptualization of industrial policy: First the latecomer condition calls for specific policy mixes as latecomers typically cannot build on established innovation systems and network externalities and rather need to combine FDI attraction with measures strengthening absorptive capacity and ensuring knowledge transfer from FDI to domestic firms; second low-emission hydrogen is a policy-induced alternative that requires creating entirely new firm ecosystems while competing with lower-cost emission-intensive incumbent technologies. Hence industrial policies need to account for enhanced coordination failure and internalization of environmental costs. We analyze the published national hydrogen strategies of 20 latecomer economies and derive a novel typology differentiating four hydrogen-specific industrial development pathways. For each pathway we assess entry barriers and risks identify the policies suggested in the country strategies and discuss how likely those are to be successful. The novel pathway typology and comparison of associated policy mixes may help policymakers maximize the gains of hydrogen investments.
No more items...