Policy & Socio-Economics
A Review of Technical Advances, Barriers, and Solutions in the Power to Hydrogen Roadmap
Oct 2020
Publication
Power to hydrogen (P2H) provides a promising solution to the geographic mismatch between sources of renewable energy and the market due to its technological maturity flexibility and the availability of technical and economic data from a range of active demonstration projects. In this review we aim to provide an overview of the status of P2H analyze its technical barriers and solutions and propose potential opportunities for future research and industrial demonstrations. We specifically focus on the transport of hydrogen via natural gas pipeline networks and end-user purification. Strong evidence shows that an addition of about 10% hydrogen into natural gas pipelines has negligible effects on the pipelines and utilization appliances and may therefore extend the asset value of the pipelines after natural gas is depleted. To obtain pure hydrogen from hydrogen-enriched natural gas (HENG) mixtures end-user separation is inevitable and can be achieved through membranes adsorption and other promising separation technologies. However novel materials with high selectivity and capacity will be the key to the development of industrial processes and an integrated membrane-adsorption process may be considered in order to produce high-purity hydrogen from HENG. It is also worth investigating the feasibility of electrochemical separation (hydrogen pumping) at a large scale and its energy analysis. Cryogenics may only be feasible when liquefied natural gas (LNG) is one of the major products. A range of other technological and operational barriers and opportunities such as water availability byproduct (oxygen) utilization and environmental impacts are also discussed. This review will advance readers’ understanding of P2H and foster the development of the hydrogen economy.
H2ero Net Zero: Hydrogen Europe Position Paper on the Fit for 55 Package
Jun 2021
Publication
Hydrogen has seen unprecedented development in the year 2020. From innovative niche technology it is fast becoming a systemic element in the European Union’s (EU) efforts to transition to a climate-neutral society in 2050. It will become a crucial energy vector and the other leg of the energy transition – alongside renewable electricity – by replacing coal oil and gas across different segments of the economy. The rapid development of hydrogen is important for meeting the EU’s climate objectives and preserving and enhancing the EU’s industrial and economic competitiveness securing jobs and value creation in this high-tech sector.
Europe is currently leading in hydrogen technology and European companies and knowledge institutions can be instrumental in advancing technological developments and industrial scale-up. It is imperative that Europe maintains this leadership position and seizes the current momentum for hydrogen technologies. The EU is well placed to become the birthplace of a global hydrogen economy denominated in Euro currency.
It is time that hydrogen moves from an afterthought to a central pillar of the energy system. The “Fit for 55 Package” presents a unique opportunity to begin putting into place a concrete and fit for purpose framework for the development of a clean hydrogen economy. In this paper you will find Hydrogen Europe’s recommendations on how hydrogen can:
Europe is currently leading in hydrogen technology and European companies and knowledge institutions can be instrumental in advancing technological developments and industrial scale-up. It is imperative that Europe maintains this leadership position and seizes the current momentum for hydrogen technologies. The EU is well placed to become the birthplace of a global hydrogen economy denominated in Euro currency.
It is time that hydrogen moves from an afterthought to a central pillar of the energy system. The “Fit for 55 Package” presents a unique opportunity to begin putting into place a concrete and fit for purpose framework for the development of a clean hydrogen economy. In this paper you will find Hydrogen Europe’s recommendations on how hydrogen can:
- Unleash the potential of renewables.
- Bring “efficiency” to the energy “system” of the future.
- Enable a carbon-neutral transport system.
The Future of Gas Networks – Key Issues for Debate
Sep 2019
Publication
The Oxford Institute for Energy Studies held a Workshop on “The Future of Gas Networks” to examine decarbonisation plans and the impact of the potential growth in the use of renewable and decarbonised gases in Europe. Participants included representatives from nine European gas network companies (both transmission and distribution) technical experts in decarbonisation regulators government officials and academics. This document summarises the seven key issues for debate arising from the Workshop discussions:
- The major gas networks recognise the need to prepare for and facilitate decarbonisation.
- The route to decarbonisation can take many forms though hydrogen is likely to feature in most networks. In larger countries solutions are likely to be regional rather than national.
- There are a number of pilot projects and targets/aspirations for 2050 – there is less clarity on how the targets will be achieved or on who will lead.
- Regulation is a key issue. In most countries existing regulatory objectives may need changing in order to align with government decarbonisation aspirations and the achievement of targets.
- There is a lack of consensus on whether and how market models might need to adapt.
- Detailed stakeholder analysis – and in particular customer attitudes – will be required.
- There are a range of important technical issues including standardisation data quality and transparency verification and certification to be considered.
Hydrogen in Grid Balancing: The European Market Potential for Pressurized Alkaline Electrolyzers
Jan 2022
Publication
To limit the global temperature change to no more than 2 ◦C by reducing global emissions the European Union (EU) set up a goal of a 20% improvement on energy efficiency a 20% cut of greenhouse gas emissions and a 20% share of energy from renewable sources by 2020 (10% share of renewable energy (RE) specifically in the transport sector). By 2030 the goal is a 27% improvement in energy efficiency a 40% cut of greenhouse gas emissions and a 27% share of RE. However the integration of RE in energy system faces multiple challenges. The geographical distribution of energy supply changes significantly the availability of the primary energy source (wind solar water) and is the determining factor rather than where the consumers are. This leads to an increasing demand to match supply and demand for power. Especially intermittent RE like wind and solar power face the issue of energy production unrelated to demand (issue of excess energy production beyond demand and/or grid capacity) and forecast errors leading to an increasing demand for grid services like balancing power. Megawatt electrolyzer units (beyond 3 MW) can provide a technical solution to convert large amounts of excess electricity into hydrogen for industrial applications substitute for natural gas or the decarbonization of the mobility sector. The demonstration of successful MW electrolyzer operation providing grid services under dynamic conditions as request by the grid can broaden the opportunities of new business models that demonstrate the profitability of an electrolyzer in these market conditions. The aim of this work is the demonstration of a technical solution utilizing Pressurized Alkaline Electrolyzer (PAE) technology for providing grid balancing services and harvesting Renewable Energy Sources (RES) under realistic circumstances. In order to identify any differences between local market and grid requirements the work focused on a demonstration site located in Austria deemed as a viable business case for the operation of a largescale electrolyzer. The site is adapted to specific local conditions commonly found throughout Europe. To achieve this this study uses a market-based solution that aims at providing value-adding services and cash inflows stemming from the grid balancing services it provides. Moreover the work assesses the viability of various business cases by analyzing (qualitatively and quantitatively) additional business models (in terms of business opportunities/energy source potential grid service provision and hydrogen demand) and analyzing the value and size of the markets developing recommendations for relevant stakeholder to decrease market barriers.
Modeling and Economic Operation of Energy Hub Considering Energy Market Price and Demand
Feb 2022
Publication
This paper discusses the economic operation strategy of the energy hub which is being established in South Korea. The energy hub has five energy conversion devices: a turbo expander generator a normal fuel cell a fuel cell with a hydrogen outlet a small-scale combined heat and power device and a photovoltaic device. We are developing the most economically beneficial operation strategy for the operators who own the hub without making any systematic improvements to the energy market. First sixteen conversion efficiency matrices can be achieved by turning each device (except the PV) on or off. Next even the same energy must be divided into different energy flows according to price. The energy flow is controlled to obtain the maximum profit considering the internal load of the energy hub and the price fluctuations of the energy market. Using our operating strategy the return on investment period is approximately 9.9 years which is three years shorter than that without the operating strategy.
Willingness to Pay and Public Acceptance for Hydrogen Buses: A Case Study of Perugia
Sep 2015
Publication
Sustainability transportation is characterized by a positive externality on the environment health social security land use and social inclusion. The increasing interest in global warming has caused attention to be paid to the introduction of the hydrogen bus (H2B). When introducing new environmental technologies such as H2B it is often necessary to assess the environmental benefits related to this new technology. However such benefits are typically non-priced due to their public good nature. Therefore we have to address this problem using the contingent valuation (CV) method. This method has been developed within environmental economics as a means to economically assess environmental changes which are typically not traded in the market. So far several big cities have been analyzed to evaluate the perceived benefit related to H2B introduction but to the best of our knowledge no one has performed a CV analysis of a historical city where smog also damages historical buildings. This paper presents the results obtained using a multi-wave survey. We have investigated user preferences to elicit their willingness to pay for H2B introduction in Perugia taking into account all types of negative externalities due to the traffic pollution. The results confirm that residents in Perugia are willing to pay extra to support the introduction of H2B.
Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options
Feb 2022
Publication
With the restructuring of the power system household-level end users are becoming more prominent participants by integrating renewable energy sources and smart devices and becoming flexible prosumers. The use of microgrids is a way of aggregating local end users into a single entity and catering for the consumption needs of shareholders. Various microgrid architectures are the result of the local energy community following different decarbonisation strategies and are frequently not optimised in terms of size technology or other influential factors for energy systems. This paper discusses the operational and planning aspects of three different microgrid setups looking at them as individual market participants within a local electricity market. This kind of implementation enables mutual trade between microgrids without additional charges where they can provide flexibility and balance for one another. The developed models take into account multiple uncertainties arising from photovoltaic production day-ahead electricity prices and electricity load. A total number of nine case studies and sensitivity analyses are presented from daily operation to the annual planning perspective. The systematic study of different microgrid setups operational principles/goals and cooperation mechanisms provides a clear understanding of operational and planning benefits: the electrification strategy of decarbonising microgrids outperforms gas and hydrogen technologies by a significant margin. The value of coupling different types of multi-energy microgrids with the goal of joint market participation was not proven to be better on a yearly level compared to the operation of same technology-type microgrids. Additional analyses focus on introducing distribution and transmission fees to an MG cooperation model and allow us to come to the conclusion of there being a minor impact on the overall operation.
Can the Current EU Regulatory Framework Deliver Decarbonisation of Gas?
Jun 2020
Publication
This Energy Insight examines the current regulatory framework and challenges facing the natural gas industry (producers transporters suppliers and consumers) during the transition to a zero-carbon economy. The EU has declared its intention to be climate neutral by 2050 which means that the current level of natural gas usage will no longer be possible. However natural gas is a crucial component of energy supply representing 24 per cent of primary energy supply for the EU27+UK and 36 per cent of residential energy consumption. In some countries the use of natural gas is much higher – around 40 per cent of primary energy supply in Netherlands UK and Italy. The current framework impacting gas addresses two different market failures – natural monopolies for gas transportation and the externalities of Greenhouse Gas Emissions. The framework will not deliver decarbonisation of gas as it does not stimulate either supply or demand for alternatives such as hydrogen nor create the conditions to enable gas networks to transition to a decarbonised future. Policy makers need to prioritise their objectives to take account of the trade-offs involved in designing a new framework. Exclusion of certain low carbon technologies risks driving away investors and reduces the chances of targets being met whilst “picking winners” involves risks because of the many uncertainties involved such as future costs and time required to build new value chains.
Link to Document on Oxford Institute for Energy Studies website
Link to Document on Oxford Institute for Energy Studies website
Hydrogen Act Towards the creation of the European Hydrogen Economy
Apr 2021
Publication
It is time that hydrogen moves from an afterthought to a central pillar of the energy system and its key role in delivering climate neutrality means it merits a dedicated framework. It becomes paramount to allow hydrogen to express its full potential as the other leg of the energy mobility and industry transitions. The proposed “Hydrogen Act” is not a single piece of legislation it is intended to be a vision for an umbrella framework aimed at harmonising and integrating all separate hydrogen-related actions and legislations. It focuses on infrastructure and market aspects describing three phases of development: the kick-start phase the ramp-up phase and the market-growth phase.
Mapping Australia's Hydrogen Future and release of the Hydrogen Economic Fairways Tool
Apr 2021
Publication
Hydrogen can be used for a variety of domestic and industrial purposes such as heating and cooking (as a replacement for natural gas) transportation (replacing petrol and diesel) and energy storage (by converting intermittent renewable energy into hydrogen). The key benefit of using hydrogen is that it is a clean fuel that emits only water vapour and heat when combusted.
To support implementation of the National Hydrogen Strategy Geoscience Australia in collaboration with Monash University are releasing the Hydrogen Economic Fairways Tool (HEFT). HEFT is a free online tool designed to support decision making by policymakers and investors on the location of new infrastructure and development of hydrogen hubs in Australia. It considers both hydrogen produced from renewable energy and from fossil fuels with carbon capture and storage.
This seminar demonstrates HEFT’s capabilities its potential to attract worldwide investment into Australia’s hydrogen industry and what’s up next for hydrogen at Geoscience Australia.
You can use the Hydrogen Economic Fairways Tool (HEFT) on the Website of the Australian government at the link here
To support implementation of the National Hydrogen Strategy Geoscience Australia in collaboration with Monash University are releasing the Hydrogen Economic Fairways Tool (HEFT). HEFT is a free online tool designed to support decision making by policymakers and investors on the location of new infrastructure and development of hydrogen hubs in Australia. It considers both hydrogen produced from renewable energy and from fossil fuels with carbon capture and storage.
This seminar demonstrates HEFT’s capabilities its potential to attract worldwide investment into Australia’s hydrogen industry and what’s up next for hydrogen at Geoscience Australia.
You can use the Hydrogen Economic Fairways Tool (HEFT) on the Website of the Australian government at the link here
Contrasting European Hydrogen Pathways: An Analysis of Differing Approaches in Key Markets
Mar 2021
Publication
European countries approach the market ramp-up of hydrogen very differently. In some cases the economic and political starting points differ significantly. While the probability is high that some countries such as Germany or Italy will import hydrogen in the long term other countries such as United Kingdom France or Spain could become hydrogen exporters. The reasons for this are the higher potential for renewable energies but also a technology-neutral approach on the supply side.
Life Cycle Assessment of Hydrogen Production and Consumption in an Isolated Territory
Apr 2018
Publication
Hydrogen produced from renewables works as an energy carrier and as energy storage medium and thus hydrogen can help to overcome the intermittency of typical renewable energy sources. However there is no comprehensive environmental performance study of hydrogen production and consumption. In this study detailed cradle to grave life cycle analyses are performed in an isolated territory. The hydrogen is produced on-site by Polymer Electrolyte Membrane (PEM) water electrolysis based on electricity from wind turbines that would otherwise have been curtailed and subsequently transported with gas cylinder by road and ferry. The hydrogen is used to provide electricity and heat through fuel cell stacks as well as hydrogen fuel for fuel cell vehicles. In order to evaluate the environmental impacts related to the hydrogen production and utilisation this work conducts an investigation of the entire life cycle of the described hydrogen production transportation and utilisation. All the processes related to the equipment manufacture operation maintenance and disposal are considered in this study.
Lessons Learned from Australian Infrastructure Upgrades
Feb 2020
Publication
This report fulfils Deliverable Five for Research Project 2.1-01 of the Future Fuels CRC. The aims of this project Crystallising lessons learned from major infrastructure upgrades are to provide a report on lessons learned from earlier infrastructure upgrades and fuel transitions and identify tools that can be used to develop consistent messaging around the proposed transition to hydrogen and/or other low-carbon fuels. In both the report and the toolkit there are recommendations on how to apply lessons learned and shape messaging throughout the value chain based on prior infrastructure upgrades.
This report presents three Australian case studies that that are relevant to the development of future fuels: the transition from town gas to natural gas the use of ethanol and LPG as motor fuels and the development of coal seam gas resources. Drawing on published information each case study provides an account of the issues that arose during the upgrade or transition and of the approaches through which industry and government stakeholders managed these issues. From these accounts lessons are identified that can guide stakeholder engagement in future infrastructure upgrades and fuel transitions. The findings from the case studies and academic literature have been used to develop an accompanying draft toolkit for use by FFCRC stakeholders.
The report also distils applicable lessons and frameworks from academic literature about stakeholder analysis megaprojects and the social acceptance of industries and technologies. This report is meant to be used in conjunction with a companion toolkit that provides a framework for making coordinated decisions across the fuel value chain.
You can read the full report on the Future Fuels CRC website here
This report presents three Australian case studies that that are relevant to the development of future fuels: the transition from town gas to natural gas the use of ethanol and LPG as motor fuels and the development of coal seam gas resources. Drawing on published information each case study provides an account of the issues that arose during the upgrade or transition and of the approaches through which industry and government stakeholders managed these issues. From these accounts lessons are identified that can guide stakeholder engagement in future infrastructure upgrades and fuel transitions. The findings from the case studies and academic literature have been used to develop an accompanying draft toolkit for use by FFCRC stakeholders.
The report also distils applicable lessons and frameworks from academic literature about stakeholder analysis megaprojects and the social acceptance of industries and technologies. This report is meant to be used in conjunction with a companion toolkit that provides a framework for making coordinated decisions across the fuel value chain.
You can read the full report on the Future Fuels CRC website here
Unpacking Leadership-driven Global Scenarios Towards the Paris Agreement: Report Prepared for the UK Committee on Climate Change
Dec 2020
Publication
Outline
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
This independent report by Vivid Economics and University College London was commissioned to support the Climate Change Committee’s (CCC) 2020 report The Sixth Carbon Budget -The path to Net Zero. This research provided supporting information for Chapter 7 of the CCC’s report which considered the UK’s contribution to the global goals of the Paris Agreement.
Key recommendations
The report models ‘leadership-driven’ global scenarios that could reduce global emissions rapidly to Net Zero and analyses the levers available to developed countries such as the UK to help accelerate various key aspects of the required global transition.
It highlights a set of opportunities for the UK alongside other developed countries to help assist global decarbonisation efforts alongside achieving it’s domestic emissions reduction targets
Developing Community Trust in Hydrogen
Oct 2019
Publication
The report documents current knowledge of the social issues surrounding hydrogen projects. It reviews leading practice stakeholder engagement and communication strategies and findings from focus groups and research activities across Australia.
The full report can be found at this link.
The full report can be found at this link.
Analysis of Strategic Directions in Sustainable Hydrogen Investment Decisions
Jun 2020
Publication
This study seeks to find the appropriate strategies necessary to make sustainable and effective hydrogen energy investments. Within this scope nine different criteria are defined regarding social managerial and financial factors. A hesitant interval-valued intuitionistic fuzzy (IVIF) decision-making trial and evaluation laboratory (DEMATEL) methodology is considered to calculate the degree of importance of the criteria. Additionally impact relation maps are also generated to visualize the causality relationship between the factors. The findings indicate that the technical dimension has the greatest importance in comparison to managerial and financial factors. Furthermore it is also concluded that storage and logistics research and development and technological infrastructure are the most significant factors to be considered when defining hydrogen energy investment strategies. Hence before investing in hydrogen energy necessary actions should be taken to minimize the storage and logistic costs. Among them building the production site close to the usage area will contribute significantly to this purpose. In this way possible losses during the transportation of hydrogen can be minimized. Moreover it is essential to identify the lowest-cost hydrogen storage method by carrying out the necessary research and development activities thereby increasing the sustainability and effectiveness of hydrogen energy investment projects.
HydroGenerally - Episode 2: Where Should Hydrogen Be Used?
Apr 2022
Publication
The Innovate UK KTN Hydrogen Innovation Network is bringing you this second episode with Steffan Eldred and Simon Buckley from Innovate UK KTN who continue their ‘back to basics' approach and delve deeper to understand where hydrogen should be used with their special guest Joanna Richart Head of Hydrogen Business at Ricardo. As with any technology or fuel discussions can get carried away implying they are the solution to all things but at Innovate UK KTN we strongly believe that we should ensure hydrogen is used where it can be most effective for decarbonising energy industrial and chemical industries.
The podcast can be found on their website
The podcast can be found on their website
Power-to-Gas Hydrogen: Techno-economic Assessment of Processes Towards a Multi-purpose Energy Carrier
Dec 2016
Publication
The present work investigates Power-to-Gas (PtG) options for variable Renewable Electricity storage into hydrogen through low temperature (alkaline and PEM) and high-temperature (SOEC) water electrolysis technologies. The study provides the assessment of the cost of the final product when hydrogen is employed for mobility (on-site refueling stations) electricity generation (by fuel cells in Power-to-Power systems) and grid injection in the natural gas network. Costs estimations are performed for 2013-2030 scenarios. A case study on the impact of variable Renewable Electricity storage by hydrogen generation on the Italian electricity and mobility sectors is presented.
Cost of Long-Distance Energy Transmission by Different Carriers
Nov 2021
Publication
This paper compares the relative cost of long-distance large-scale energy transmission by electricity and by gaseous and liquid carriers (e-fuels). The results indicate that the cost of electrical transmission per delivered MWh can be up to eight times higher than for hydrogen pipelines about eleven times higher than for natural gas pipelines and twenty to fifty times higher than for liquid fuels pipelines. These differences generally hold for shorter distances as well. The higher cost of electrical transmission is primarily due to lower carrying capacity (MW per line) of electrical transmission lines compared to the energy carrying capacity of the pipelines for gaseous and liquid fuels. The differences in the cost of transmission are important but often unrecognized and should be considered as a significant cost component in the analysis of various renewable energy production distribution and utilization scenarios.
Producing Low Carbon Gas- Future Gas Series part 2
Jul 2018
Publication
Of all the sectors in the UK decarbonising heat remains one of the most challenging. Heat used for industrial domestic and commercial purposes generates around a third of all UK carbon emissions 70% of which is due to burning natural gas. In order to meet our legally binding national climate change targets unabated natural gas use for heat must be phased out. Low carbon gas - including hydrogen and biogases - is one option to replace it. The Future Gas Series examines the opportunities and challenges associated with using low carbon gas to help decarbonise the UK economy.<br/><br/>This is the second report in the three-part Future Gas Series. Part 1: Next Steps for the Gas Grid explored the potential to decarbonise the existing gas grid. The report Part 2: the Production of Low Carbon Gas focuses on the issues related to the production of low carbon gas. It considers the different production technologies the potential scale of deployment of each method and the potential feedstocks. It also discusses issues related to bulk transport and storage of gas. Put together from expert evidence from across industry and academia it provides a balanced guide for policy makers in this area. It was a co-chaired by James Heappey MP (Conservative) Alan Whitehead MP (Labour) and Alistair Carmichael MP (SNP).<br/><br/>Carbon Connect suggests that biogases- such as biomethane and bioSNG- provide low regrets opportunities in the near term to provide low carbon heat and could also potentially make use of waste that would otherwise go to landfill. However they require further support to allow them to continue contributing to decarbonising the UK economy. Hydrogen could provide huge decarbonisation opportunities and has applications across the energy system from putting hydrogen in the gas grid to be burnt for heat in homes to hydrogen buses and trains. However to realise this potential a market for hydrogen must be built up. This should incentivise business to invest in hydrogen technologies reward those who use hydrogen and build up hydrogen infrastructure.<br/><br/>
No more items...