Policy & Socio-Economics
Analysis of China’s Low-Carbon Power Transition Path Considering Low-Carbon Energy Technology Innovation
Jan 2025
Publication
Innovation in key low-carbon technologies plays a supporting role in achieving a high-quality low-carbon transition in the power sector. This paper aims to integrate research on the power transition pathway under the “dual carbon” goals with key technological innovation layouts. First it deeply analyzes the development trends of three key low-carbon technologies in the power sector—new energy storage CCUS and hydrogen energy—and establishes a quantitative model for their technological support in the low-carbon transition of the power sector. On this basis the objective function and constraints of traditional power planning models are improved to create an integrated optimization model for the power transition pathway and key low-carbon technologies. Finally a simulation analysis is conducted using China’s power industry “dual carbon” pathway as a case study. The optimization results include the power generation capacity structure power generation mix carbon reduction pathway and key low-carbon technology development path for China from 2020 to 2060. Additionally the impact of uncertainties in breakthroughs in new energy storage CCUS and hydrogen technologies on the power “dual carbon” pathway is analyzed providing technological and decision-making support for the low-carbon transition of the power sector.
UK Hydrogen Roadmap: Financial and Strategic Insights into Oil and Gas Industry’s Transition
Dec 2024
Publication
Inspired by the announcement of the new Hydrogen Strategy for the UK in 2021 this study aimed to determine how the oil and gas industry responds and adapts to the changes. This paper analyses qualitative and quantitative data from the companies’ annual and energy reports. Four oil and gas companies involved in hydrogen projects in the UK were selected as case studies. The responses from the companies were collected using the content analysis research strategy in 2019–2021. A steady increase was observed based on the code frequency reflecting the increasing discussions and actions the companies took regarding this hydrogen pathway. Although only one company appears to be at the forefront of this transition progress with a score of almost 90% based on the strategy management analysis other companies continue to demonstrate their commitment to supporting the national target.
Power and Green Hydrogen Trade Potential between North African and European Countries: Conditions, Challenges, and Sustainability Prospects
Dec 2024
Publication
This study investigates the implications of hydrogen demand and trade between Europe and North Africa emphasizing how renewable energy system (RES) capacity limitations impact both regions. Growing hydrogen demand for decarbonization has fueled interest in North Africa’s potential to export green hydrogen to Europe. Using the eTIMES-EUNA model this study examines how demand trade and RES development challenges shape the energy landscapes of both regions. The findings indicate that hydrogen demand amplifies renewable electricity requirements in both regions with Europe particularly benefiting from importing hydrogen to alleviate additional RES capacity installation. Hydrogen trade reduces overall costs by 1 % yet it shifts a considerable financial burden onto North Africa demanding a rapid RES capacity expansion at a rate significantly higher than the current pace. Slower RES development in North Africa could hinder the region’s ability to meet both domestic and export targets thereby complicating Europe’s hydrogen sourcing strategies which are also challenged by social acceptance issues that limit RES deployment. These constraints in Europe necessitate adjustments to the technological mix and place additional pressure on North Africa to increase production. Furthermore the varying implications and stakes at the national level highlight the need for further analysis as individual countries may prioritize their own interests potentially leading to conflicts with neighboring nations under different development schemes. Consequently the results underscore the importance of coordinated financial and policy support to ensure equitable trade that aligns with both regions’ sustainability goals.
A Pan-Asian Energy Transition? The New Rationale for Decarbonization Policies in the World’s Largest Energy Exporting Countries: A Case Study of Qatar and Other GCC Countries
Jul 2024
Publication
Climate change has become a major agenda item in international relations and in national energy policy-making circles around the world. This review studies the surprising evolution of the energy policy and more particularly the energy transition currently happening in the Arabian Gulf region which features some of the world’s largest exporters of oil and gas. Qatar Saudi Arabia and other neighboring energy exporters plan to export blue and green hydrogen across Asia as well as towards Europe in the years and decades to come. Although poorly known and understood abroad this recent strategy does not threaten the current exports of oil and gas (still needed for a few decades) but prepares the evolution of their national energy industries toward the future decarbonized energy demand of their main customers in East and South Asia and beyond. The world’s largest exporter of Liquefied Natural Gas Qatar has established industrial policies and projects to upscale CCUS which can enable blue hydrogen production as well as natural carbon sinks domestically via afforestation projects.
Regional Disparities and Strategic Implications of Hydrogen Production in 27 European Countries
Aug 2024
Publication
This study examines hydrogen production across 27 European countries highlighting disparities due to varying energy policies and industrial capacities. Germany leads with 109 plants followed by Poland France Italy and the UK. Mid-range contributors like the Netherlands Spain Sweden and Belgium also show substantial investments. Countries like Finland Norway Austria and Denmark known for their renewable energy policies have fewer plants while Estonia Iceland Ireland Lithuania and Slovenia are just beginning to develop hydrogen capacities. The analysis also reveals that a significant portion of the overall hydrogen production capacity in these countries remains underutilized with an estimated 40% of existing infrastructure not operating at full potential. Many countries underutilize their production capacities due to infrastructural and operational challenges. Addressing these issues could enhance output supporting Europe’s energy transition goals. The study underscores the potential of hydrogen as a sustainable energy source in Europe and the need for continued investment technological advancements supportive policies and international collaboration to realize this potential.
Assessment of the Role of the Green Hydrogen as the Commodity Enabling a New Green Dialogue Among the Mediterranean Shores
Apr 2024
Publication
The Mediterranean basin has been characterized by a net flow of fossil commodities from the North African shore to Southern Europe and the Middle East for decades; however decarbonizing the energy system implies to substantially modify this situation turning the current “black dialogue” into a “green dialogue” (i.e. based on the exchange of renewable electricity and green hydrogen). This paper presents a feasibility study conducted to estimate the potential green hydrogen production by electrolysis in three Tunisian sites. It shows and compares several plant layouts varying the size and typology of renewable electricity generators and electrolyzers. The work adopts local weather data and technical features of the technologies in the computations and accounts for site specific topographical and infrastructural constraints such as land available for construction and local power grid connection capacities. It shows that configurations able to produce large quantities of green hydrogen may not be compliant with such constraints basically nullifying their contribution in any hydrogen strategy. Finally results show that the LCOH lies in the range 1.34 $/kgH2 and 4.06 $/kgH2 depending on both the location and the combination of renewable electricity generators and electrolyzers.
Renewable Fuels of Nob-biological Origin in the European Union - Status Report on Technology Development, Trends, Value Chains & Markets
Jan 2024
Publication
This report investigates the status and trend of Renewable Fuels of Non-Biological Origin (RFNBO) except hydrogen which are needed to cover part of the EU’s demand for low carbon renewable fuels in the coming years. The report is an update of the CETO 2023 report. Most of the conversion technologies investigated have been already demonstrated at small-scale and the current EU legislative framework under the recast of the Renewable Energy Directive (EU) 2018/2001 (Directive EU 2023/2413) sets specific targets for their use. As a pre-requisite well-established solid hydrogen supply chains are needed together with carbon capture technologies to provide carbon dioxide as Carbon Capture and Use (CCU). Fuels that may be produced starting from H2 and CO2 or N2 are hydrocarbons alcohols and ammonia. RFNBO may play a crucial role in the energytransition towards decarbonisation especially in hard-to-abate sectors where direct electrification is not possible. In addition most RFNBO can use existing infrastructure. The growing interest in these fuels is witnessed by the many funding programmes which are today available. Moreover EU leads the sector in terms of patents companies and demonstration activities. Finally the report considers the major challenges and the opportunities for a rapid market uptake of such fuels.
Power-to-X Economy: Green E-hydrogen, E-fuels, E-chemicals, and E-materials Opportunities in Africa
Aug 2024
Publication
Africa has enormous potential to produce low-cost e-fuels e-chemicals and e-materials required for complete defossilisation using its abundant renewable resources widely distributed across the continent. This research builds on techno-economic investigations using the LUT Energy System Transition Model and related tools to assess the power-to-X potential in Africa for meeting the local demand and exploring the export potential of power-to-products applications. In this context we analysed the economic viability of exporting green e-fuel echemicals and e-materials from Africa to Europe. We also present the core elements of the Power-to-X Economy i.e. renewable electricity and hydrogen. The results show that hydrogen will likely not be traded simply due to high transport costs. However there is an opportunity for African countries to export e-ammonia e-methanol ekerosene jet fuel e-methane e-steel products and e-plastic to Europe at low cost. The results show that Africa’s low-cost power-to-X products backed by low-cost renewable electricity mainly supplied by solar photovoltaics is the basis for Africa’s vibrant export business opportunities. Therefore the Power-to-X Economy could more appropriately be called a Solar-to-X Economy for Africa. The Power-to-X Economy will foster socio-economic growth in the region including new industrial opportunities new investment portfolios boost income and stimulate local technical know-how thereby delivering a people-driven energy economy. Research on the topic in Africa is limited and at a nascent stage. Thus more studies are required in future to guide investment decisions and cater to policy decisions in achieving carbon neutrality with e-fuels e-chemicals and e-materials.
Data Hub for Life Cycle Assessment of Climate Change Solutions—Hydrogen Case Study
Nov 2024
Publication
Life cycle assessment which evaluates the complete life cycle of a product is considered the standard methodological framework to evaluate the environmental performance of climate change solutions. However significant challenges exist related to datasets used to quantify these environmental indicators. Although extensive research and commercial data on climate change technologies pathways and facilities exist they are not readily available to practitioners of life cycle assessment in the right format and structure using an open platform. In this study we propose a new open data hub platform for life cycle assessment considering a hierarchical data flow starting with raw data collected on climate change technologies at laboratory pilot demonstration or commercial scales to provide the information required for policy and decision-making. This platform makes data accessible at multiple levels for practitioners of life cycle assessment while making data interoperable across platforms. The proposed data hub platform and workflow are explained through the polymer electrolyte membrane electrolysis hydrogen production as a case study. The climate change environment impact of 1.17 ± 0.03 kg CO2 eq./kg H2 was calculated for the case study. The current data hub platform is limited to evaluating environmental impacts; however future additions of economic and social aspects are envisaged.
Review of the Hydrogen Supply Chain and Use in Africa
Oct 2024
Publication
The high potential in renewable energy sources (RES) and the availability of strategic minerals for green hydrogen technologies place Africa in a promising position for the development of a climate-compatible economy leveraging on hydrogen. This study reviews the potential hydrogen value chain in Africa considering production and final uses while addressing perspectives on policies possible infrastructures and facilities for hydrogen logistics. Through scientific studies research and searching in relevant repositories this review features the collection analysis of technical data and georeferenced information about key aspects of the hydrogen value chain. Detailed maps and technical data for gas transport infrastructure and liquefaction terminals in the continent are reported to inform and elaborate findings about readiness for hydrogen trading and domestic use in Africa. Specific maps and technical data have been also collected for the identification of potential hydrogen offtakers focusing on individual industrial installations to produce iron and steel chemicals and oil refineries. Finally georeferenced data are presented for main road and railway corridors as well as for most important African ports as further end-use and logistic platforms. Beyond technical information this study collects and discusses more recent perspectives about policies and implementation initiatives specifically addressing hydrogen production logistics and final use also introducing potential criticalities associated with environmental and social impacts.
Investments in Green Hydrogen as a Flexibility Source for the European Power System by 2050: Does it Pay Off?
Oct 2024
Publication
The European Union aims to deploy a high share of renewable energy sources in Europe’s power system by 2050. Large-scale intermittent wind and solar power production requires flexibility to ensure an adequate supply–demand balance. Green hydrogen (GH) can increase power systems’ flexibility and decrease renewable energy production’s curtailment. However investing in GH is costly and dependent on electricity prices which are important for operational costs in electrolysis. Moreover the use of GH for power system flexibility might not be economically viable if there is no hydrogen demand from the hydrogen market. If so questions would arise as to what would be the incentives to introduce GH as a source of flexibility in the power system and how would electrolyzer costs hydrogen demand and other factors affect the economic viability of GH usage for power system flexibility. The paper implements a European power system model formulated as a stochastic program to address these questions. The authors use the model to compare various instances with hydrogen in the power system to a no-hydrogen instance. The results indicate that by 2050 deployment of approximately 140 GW of GH will pay off investments and make the technology economically viable. We find that the price of hydrogen is estimated to be around €30/MWh.
China and Italy’s Energy Development Trajectories: Current Landscapes and Future Cooperation Potential
Feb 2024
Publication
In order to achieve the ambitious goal of “carbon neutrality” countries around the world are striving to develop clean energy. Against this background this paper takes China and Italy as representatives of developing and developed countries to summarize the energy structure composition and development overview of the two countries. The paper analyzes the serious challenges facing the future energy development of both countries and investigates the possibilities of energy cooperation between the two countries taking into account their respective advantages in energy development. By comparing the policies issued by the two governments to encourage clean energy development this paper analyzes the severe challenges faced by the two countries’ energy development in the future and combines their respective energy development advantages to look forward to the possibility of energy cooperation between the two countries in the future. This lays the foundation for China and Italy to build an “Energy Road” after the “Silk Road”.
Levelised Cost of Hydrogen Production in Northern Africa and Europe in 2050: A Monte Carlo Simulation for Germany, Norway, Spain, Algeria, Morocco, and Egypt
May 2024
Publication
The production of green hydrogen through electrolysis utilizing renewable energies is recognized as a pivotal element in the pursuit of decarbonization. In order to attain cost competitiveness for green hydrogen reasonable generation costs are imperative. To identify cost-effective import partners for Germany given its limited green hydrogen production capabilities this study undertakes an exhaustive techno-economic analysis to determine the potential Levelized Cost of Hydrogen in Germany Norway Spain Algeria Morocco and Egypt for the year 2050 which represents a critical milestone in European decarbonization efforts. Employing a stochastic approach with Monte Carlo simulations the paper marks a significant contribution for projecting future cost ranges acknowledging the multitude of uncertainties inherent in related cost parameters and emphasizing the importance of randomness in these assessments. Country-specific Weighted Average Cost of Capital are calculated in order to create a refined understanding of political and economic influences on cost formation rather than using a uniform value across all investigated nations. Key findings reveal that among the evaluated nations PV-based hydrogen emerges as the most cost-efficient alternative in all countries except Norway with Spain presenting the lowest Levelized Cost of Hydrogen at 1.66 €/kg to 3.12 €/kg followed by Algeria (1.72 €/kg to 3.23 €/kg) and Morocco (1.73 €/kg to 3.28 €/kg). Consequently for economically favorable import options Germany is advised to prioritize PV-based hydrogen imports from these countries. Additionally hydrogen derived from onshore wind in Norway (2.24 €/kg to 3.73 €/kg) offers a feasible import alternative. To ensure supply chain diversity and reduce dependency on a single source a mixed import strategy is advisable. Despite having the lowest electricity cost Egypt shows the highest Levelized Cost of Hydrogen primarily due to a significant Weighted Average Cost of Capital.
Advancing the Affordable and Clean Energy in Large Energy-consuming Economies: The Role of Green Transition, Complexity-based, and Geostrategy Policy
Aug 2023
Publication
With decreasing costs of the clean technologies the balanced scales of the Sustainable Development Goal 7 targets e.g. energy equity (EE) energy security (ES) and environmental sustainability (EVS) are quickly changing. This fundamental balancing process is a key requirement for a net-zero future. Accordingly this research analyzes the regime-switching effect of Hydrogen economy as the green transition sharing economy and economic complexity as the complexity-based and geopolitical risks and energy prices as the geostrategy policies on the Goal 7 targets. To this end a Markov-switching panel vector autoregressive method with regime-heteroskedasticity is applied to study advancing the Goal 7 in the world's twenty-five large energy consumers during 2004–2020. Concerning the parameters and statistics of the model the results refer to the existence of two regimes associated with the Goal 7 corners called “upward and downward” regimes for EE and “slightly upward and sharply upward” regimes for ES and EVS. It is revealed that the vulnerability of EE and ES targets is considerably reduced when the regime switches to the dominant regime that is “downward” and “slightly upward” regimes respectively and that of the EVS target remains unaffected. Through the impulse-response analysis the findings denote that the first hypothesis of the efficiency of the Hydrogen economy in promoting the Goal 7 targets is insignificant. However the significant short-term and dynamic shock effects of the complexity-based and geostrategy policies on the Hydrogen economy are detected which will be a feasible alternative assessment in advancing the Goal 7. Further the complexity-based policies support the Goal 7 targets under different regimes especially in the short- and medium-term. Hence the second hypothesis regarding the effectiveness of the complexity-based policies in promoting Goal 7 targets is confirmed. The third hypothesis concerning the complexity of the impact of geostrategy policies on the Goal 7 targets is verified. Particularly the switching process towards the Goal 7 may not necessarily be restricted by the geopolitical risks. Moreover EE is supported through energy prices in the short-term under both regimes while they are non-conductive to promote ES and EVS through time. Accordingly the decision-makers should acknowledge adopting a regime-switching path forward for ensuring the time-varying balanced growth of the Goal 7 targets as the impact of the suggested policy instruments is asymmetric.
Hydrogen Economy Index - A Comparative Assessment of the Political and Economic Perspective in the MENA Region for a Clean Hydrogen Economy
Jan 2025
Publication
The ongoing discourse on the transition to a hydrogen-based economy and the lessons learned from visions such as the Desertec concept emphasise the necessity for a nuanced approach to the development of metrics to assess a country’s hydrogen readiness. In addition to economic criteria such as investment incentives factors including law and order governance performance geography infrastructure and renewable energy production potential significantly impact a location’s attractiveness. To transparently evaluate sites using multiple criteria defined in the PESTEL framework this article aims to analyse quantify and compare the development of a sustainable hydrogen economy in 18 Middle East and North African states. The index-based assessment integrates criteria across three dimensions offering a comprehensive perspective on regional challenges and opportunities striking for policymakers and investors. The results show that the highest-ranked countries belong to the Gulf Cooperation Council followed by North African countries.
Breakthrough Position and Trajectory of Sustainable Energy Technology
Jan 2025
Publication
This research aims to determine the position and the breakthrough trajectory of sustainable energy technologies. Fine-grained insights into these breakthrough positions and trajectories are limited. This research seeks to fill this gap by analyzing sustainable energy technologies’ breakthrough positions and trajectories in terms of development application and upscaling. To this end the breakthrough positions and trajectories of seven sustainable energy technologies i.e. hydrogen from seawater electrolysis hydrogen airplanes inland floating photovoltaics redox flow batteries hydrogen energy for grid balancing hydrogen fuel cell electric vehicles and smart sustainable energy houses are analyzed. This is guided by an extensively researched and literature-based model that visualizes and describes these technologies’ experimentation and demonstration stages. This research identifies where these technologies are located in their breakthrough trajectory in terms of the development phase (prototyping production process and organization and niche market creation and sales) experiment and demonstration stage (technical organizational and market) the form of collaboration (public–private private–public and private) physical location (university and company laboratories production sites and marketplaces) and scale-up type (demonstrative and first-order and second-order transformative). For scientists this research offers the opportunity to further refine the features of sustainable energy technologies’ developmental positions and trajectories at a detailed level. For practitioners it provides insights that help to determine investments in various sustainable energy technologies.
Little to Lose: The Case for a Robust European Green Hydrogen Strategy
Jul 2025
Publication
The EU targets 10 Mt of green hydrogen production by 2030 but has not committed to targets for 2040. Green hydrogen competes with carbon capture and storage biomass and imports as well as direct electrification in reaching emissions reductions; earlier studies have demonstrated the great uncertainty in future costoptimal development of green hydrogen. In spite of this we show that Europe risks little by setting green hydrogen production targets at around 25 Mt by 2040. Employing an extensive scenario analysis combined with novel near-optimal techniques we find that this target results in systems that are within 10% of cost-optimal in all considered scenarios with current-day biomass availability and baseline transportation electrification. Setting concrete targets is important in order to resolve significant uncertainty that hampers investments. Targeting green hydrogen reduces the dependence on carbon capture and storage and green fuel imports making for a more robust European climate strategy.
Overcoming Hurdles and Harnessing the Potential of the Hydrogen Transition in Germany
Jun 2025
Publication
Green hydrogen has become a core element of Europe’s energy transition to assist in lowering carbon emissions. However the transition to green hydrogen faces challenges including the cost of production availability of renewable energy sources public opposition and the need for supportive government policies and financial initiatives. While there are other alternatives for producing low-carbon hydrogen for example blue hydrogen German funding favours projects that involve hydrogen production via electrolysis. Beyond climate goals it is anticipated that a green hydrogen industry will create economic benefits and a wide-range of collaborative opportunities with key international partnerships increasing energy security if done appropriately. Germany a leader in green hydrogen technology will need to rely on imports to meet long-term demand due to limited renewable energy capacity. Despite the current obstacles to transitioning to green hydrogen it is felt that ultimately the benefits of this industry and reducing emissions will outweigh the associated costs of production. This study analyses the hydrogen transition in Germany by interviewing 37 European experts guided by the research question: What are the key perceived barriers and opportunities influencing the successful adoption and integration of hydrogen technologies in Germany’s hydrogen transition?
Global Warming Impacts of the Transition from Fossil Fuel Conversion and Infrastructure to Hydrogen
Jul 2025
Publication
Emissions from fossil fuel extraction conveyance and combustion are among the most significant causes of air pollution and climate change leading to arguably the most acute crises mankind has ever faced. The transition from fossil fuel-based energy systems to hydrogen is essential for meeting a portion of global decarbonization goals. Hydrogen offers certain features such as high gravimetric energy density that is required for heavy-duty shipping and freight applications and chemical properties such as high temperature combustion and reducing capabilities that are required for steel chemicals and fertilizer industries. However hydrogen that leaks has indirect climate implications stemming from atmospheric interactions that are emerging as a critical area of research. This study reviews recent literature on hydrogen’s global warming potential (GWP) highlighting its indirect contributions to radiative forcing via methane’s extended atmospheric lifetime tropospheric ozone formation and stratospheric water vapor formation. The 100-year GWP (GWP100) of hydrogen estimated to range between 8 and 12.8 underscores the need to minimize leakage throughout the hydrogen supply chain to maximize the climate benefits of using hydrogen instead of fossil fuels. Comparisons with methane reveal hydrogen’s shorter atmospheric lifetime and reduced long-term warming effects establishing it as a viable substitute for fossil fuels in sectors such as steel cement and heavy-duty transport. The analysis emphasizes the importance of accurate leakage assessments robust policy frameworks and advanced infrastructure to ensure hydrogen realizes its potential as a sustainable energy carrier that displaces the use of fossil fuels. Future research is recommended to refine climate models better understand atmospheric sinks and hydrogen leakage phenomena and develop effective strategies to minimize hydrogen emissions paving the way for environmentally sound use of hydrogen.
Analysis of Hydrogen Network Tariffs in Relation to an Initially Reduced and Delayed Expansion of the German Hydrogen Network
Jun 2025
Publication
This study examines the economic and regulatory implications of the development of Germany’s hydrogen core network. Using a mathematical-economic model of the amortization account and a reproduction of the network topology based on the German transmission system operators’ draft proposals the analysis evaluates the impact of delaying the network expansion with completion postponed from 2032 to 2037. The proposed phased approach prioritizes geographically clustered regions and ensures sufficient demand alignment during each expansion stage. The results demonstrate that strategic adjustments to the network size and timing significantly enhance cost-efficiency. In the initially reduced and delayed scenario uncapped network tariffs remain below €15/ kWh/h/a suggesting that under specific conditions the amortization account may become redundant while maintaining supply security and supporting the market ramp-up of hydrogen. These findings highlight the potential for demand-driven phased hydrogen infrastructure development to reduce financial burdens and foster a sustainable transition to a hydrogen-based energy system.
No more items...