Policy & Socio-Economics
Hydrogen for a Sustainable Europe
Nov 2024
Publication
This brochure provides a detailed overview of the EU’s funding mechanisms and an inspiring look at real projects managed by CINEA. These examples illustrate how diverse stakeholders from industry leaders to research institutions are translating hydrogen ambitions into impactful on-the-ground solutions that address both technological and societal needs.
Designing Effective Hydrogen Markets: Policy Recommendations from Electricity and Gas Market Reform
Aug 2025
Publication
For low-carbon hydrogen to become a viable decarbonization solution the creation of a robust and effective market is essential. This paper examines the applicability of market reforms from the renewable energy natural gas and liquefied natural gas (LNG) sectors with a focus on pricing mechanisms business models and infrastructure access to facilitate hydrogen market development. Applying the Structure-Conduct-PerformanceRegulation (SCP-R) framework and informed by stakeholder insights we identify critical enablers for advancing the hydrogen market formation. Our analysis highlights the importance of innovative pricing strategies and regulatory measures incentivizing investment and managing risks. Establishing a market reference price for low-carbon hydrogen — akin to benchmarks in the natural gas and LNG sectors—is critical for ensuring transparency predictability and regional adaptability in trade. Additionally customized business models are also needed to mitigate volume risks for producers. Government interventions such as offtake agreements and the development of hydrogen hubs are indispensable for fostering competition and driving decarbonization.
The Global Yet Local Nature of Energy Imaginaries: The Cases of Dutch and Spanish Hydrogen Valleys
Mar 2025
Publication
Hydrogen valleys are envisaged (imagined) integrated industrial systems where hydrogen is produced stored and utilized. Here we show how hydrogen valleys as sociotechnical imaginaries are differentiated in terms of their specific configurations but homogenous in terms of reflecting the interests of large industrial fossil fuel suppliers and consumers. This path dependence is anticipated in sociotechnical transitions theory which emphasises the power of incumbents with vested interests to maintain basic templates or regimes of production and consumption. The simultaneously heterogeneous and homogenous nature of hydrogen valley imaginaries can be thought of as a form of glocalisation for which we draw on Roudometof's theory of glocalisation as involving the local refraction of diffusing global tendencies. To illustrate this we compare two hydrogen valleys one in the north of the Netherlands and one in southern Spain. In the north Netherlands the hydrogen valley imaginary comprises use of offshore windpower to electrolyse hydrogen for transport fuel and as feedstock to heavy industry in proximate regions including northern Germany and Belgium. This is consistent with existing gas distribution networks connecting industrial consumers. In the southern Spanish case the imaginary positions Spain as a major exporter of green hydrogen to the rest of Europe via onshore renewable electrolysis with export including via ocean tankers and chemical refining in existing infrastructure in Rotterdam. Overall the study explores empirically theoretically-informed themes concerning the interrelationship of mutually supportive local and global imaginaries – hence our term glocalised imaginaries.
Pieces of a Jigsaw: Opportunities and Challenges in the Nascent Australian Hydrogen Mobility Market
Mar 2023
Publication
Mobility has been a prominent target for proponents of the hydrogen economy. Given the complexities involved in the mobility value chain actors hoping to participate in this nascent market must overcome a range of challenges relating to the availability of vehicles the co-procurement of supporting infrastructure a favourable regulatory environment and a supportive community among others. In this paper we present a state-of-play account of the nascent hydrogen mobility market in Victoria Australia drawing on data from a workshop (N ¼ 15) and follow-up interviews (n ¼ 10). We interpret findings through a socio-technical framework to understand the ways in which fuel cell electric vehicles (FCEVs)dand hydrogen technologies more generallydare conceptualised by different stakeholder groups and how these conceptualisations mediate engagement in this unfolding market. Findings reveal prevailing efforts to make sense of the FCEV market during a period of considerable institutional ambiguity. Discourses embed particular worldviews of FCEV technologies themselves in addition to the envisioned roles the resultant products and services will play in broader environmental and energy transition narratives. Efforts to bring together stakeholders representing different areas of the FCEV market should be seen as important enablers of success for market participants.
Water Electrolysis and Hydrogen in the European Union - Status Report on Technology Development, Trends, Value Chains & Markets
Jan 2024
Publication
This report is an output of the Clean Energy Technology Observatory (CETO) and is an update of the “Water electrolysis and hydrogen in the European Union” 2023 CETO report. CETO’s objective is to provide an evidencebased analysis feeding the policy making process and hence increasing the effectiveness of R&I policies for clean energy technologies and solutions. It monitors EU research and innovation activities on clean energy technologies needed for the delivery of the European Green Deal; and assesses the competitiveness of the EU clean energy sector and its positioning in the global energy market. CETO is being implemented by the Joint Research Centre for DG Research and Innovation Energy in coordination with DG Energy.
Sustainability Analysis of the Global Hydrogen Trade Network from a Resilience Perspective: A Risk Propagation Model Based on Complex Networks
Jul 2025
Publication
Hydrogen is being increasingly integrated into the international trade system as a clean and flexible energy carrier motivated by the global energy transition and carbon neutrality objectives. The rapid expansion of the global hydrogen trade network has simultaneously exposed several sustainability challenges including a centralized structure overdependence on key countries and limited resilience to external disruptions. Based on this we develop a risk propagation model that incorporates the absorption capacity of nodes to simulate the propagation of supply shortage risks within the global hydrogen trade network. Furthermore we propose a composite sustainability index constructed from structural economic and environmental resilience indicators enabling a systematic assessment of the network’s sustainable development capacity under external shock scenarios. Findings indicate the following: (1) The global hydrogen trade network is undergoing a structural shift from a Western Europe-dominated unipolar configuration to a more polycentric pattern. Countries such as China and Singapore are emerging as key hubs linking Eurasian regions with trade relationships among nations becoming increasingly dense and diversified. (2) Although supply shortage shocks trigger structural disturbances economic losses and risks of carbon rebound their impacts are largely concentrated in a limited number of hub countries with relatively limited disruption to the overall sustainability of the system. (3) Countries exhibit significant heterogeneity in structural economic and environmental resilience. Risk propagation demonstrates an uneven pattern characterized by hub-induced disruptions chain-like transmission and localized clustering. Accordingly policy recommendations are proposed including the establishment of a polycentric coordination mechanism the enhancement of regional emergency coordination mechanisms and the advancement of differentiated capacity-building efforts.
Distributed Waste-to-hydrogen Refuelling Station Implementation in South Africa: Techno-economic-socio-political and Environmental Indications
Feb 2025
Publication
The combustion of liquid fossil fuels in the transportation sector disposal and incineration of municipal solid waste (MSW) are the main sources of greenhouse gas emissions in cities across the world. In an effort to decarbonize the transportation sector the South African government is dedicated to advancing green trans portation through the hydrogen economy. Waste-to-hydrogen production can simultaneously achieve the goals of green transportation and waste management through widespread availability of hydrogen refuelling stations. This study assesses the techno-economic and environmental viability of waste-to-hydrogen refuelling stations in five selected South Africa cities. The refuelling stations’ capacity was determined based on assumption that a 5 kg hydrogen-fuel-cell vehicle is refuelled per day. The economic feasibility was premised on net present value (NPV) payback period (PBP) internal rate of return (IRR) and levelized cost of hydrogen refuelling (LCOHr). The environmental analysis was based on ecological efficiency and carbon emission reduction potential. Some of the main findings indicate that the City of Tshwane and City of Johannesburg have refuelling station capacities of 356 thousand kg/day H2 and 395 thousand kg/day H2 respectively. Economically the project is viable with positive NPV between 1.099 and 8.0563 Billion $ LCOHr in the range of 3.99 $/kg - 5.63 $/kg PBP of 9.03–13.74 years and IRR of 18.16 %–39.88 %. An ecological efficiency of 99.982 % was obtained which in dicates an environmentally friendly system with the potential to save 1439 million litres and 1563 million litres of diesel fuel and gasoline respectively capable of preventing about 4 kilo-tons of CO2 into the atmosphere annually. Sensitivity analysis indicates that reforming efficiency selling price of hydrogen and station capacity are crucial parameters with great influence on the economic profitability of waste-to-hydrogen refuelling station.
Green Hydrogen Supply Chain Decision-Making and Contract Optimization Under Uncertainty: A Pessimistic-Based Perspective
Jul 2025
Publication
To address the issue of excessive pessimism caused by demand and supply uncertainties in the green hydrogen supply chain this study develops a two-tier green hydrogen supply chain model comprising upstream hydrogen production stations and downstream hydrogen refueling stations. This research work investigates optimal ordering and production strategies under stochastic demand and supply conditions. Additionally option contracts are introduced to share the risks associated with the stochastic output of green hydrogen. This study shows the following: (1) Under decentralized decision-making the optimal ordering quantity when the hydrogen refueling station is excessively pessimistic is not necessarily lower than the optimal ordering quantity when it is in a rational state and hydrogen production stations will only operate when the degree of excessive pessimism is relatively low. (2) The initial option ordering quantity is always larger than the minimum execution quantity under the option contract; higher first-order option prices and lower second-order option prices can help to increase the initial option ordering quantity. (3) The option contract is effective in circumventing the negative impact of excessive pessimism at hydrogen production stations on planned production quantities. This study addresses the gap in the existing research regarding excessively pessimistic behaviors and the application of option contracts within the green hydrogen supply chain providing both theoretical insights and practical guidance for decision-making optimization. This advancement further promotes the sustainable development of the green hydrogen industry.
Breakthrough Position and Trajectory of Sustainable Energy Technology
Jan 2025
Publication
This research aims to determine the position and the breakthrough trajectory of sustainable energy technologies. Fine-grained insights into these breakthrough positions and trajectories are limited. This research seeks to fill this gap by analyzing sustainable energy technologies’ breakthrough positions and trajectories in terms of development application and upscaling. To this end the breakthrough positions and trajectories of seven sustainable energy technologies i.e. hydrogen from seawater electrolysis hydrogen airplanes inland floating photovoltaics redox flow batteries hydrogen energy for grid balancing hydrogen fuel cell electric vehicles and smart sustainable energy houses are analyzed. This is guided by an extensively researched and literature-based model that visualizes and describes these technologies’ experimentation and demonstration stages. This research identifies where these technologies are located in their breakthrough trajectory in terms of the development phase (prototyping production process and organization and niche market creation and sales) experiment and demonstration stage (technical organizational and market) the form of collaboration (public–private private–public and private) physical location (university and company laboratories production sites and marketplaces) and scale-up type (demonstrative and first-order and second-order transformative). For scientists this research offers the opportunity to further refine the features of sustainable energy technologies’ developmental positions and trajectories at a detailed level. For practitioners it provides insights that help to determine investments in various sustainable energy technologies.
Mapping China's Hydrogen Energy City Clusters: Old and New Synergistic Effects
Feb 2025
Publication
Hydrogen is a pivotal driver of the green economy and clean energy transition and global efforts are underway to scale up hydrogen technology and its adoption. This study explores China’s hydrogen fuel cell vehicle (HFCV) city clusters policy launched in 2021 involving five clusters consisting of 44 cities to boost the country’s hydrogen economy. Drawing on cluster theory collaborative network literature and evolutionary economic geography we investigate the connections between hydrogen city clusters and historical geographically based and industrial-based clusters as well as the formation of collaborative networks among cities. By comparing these heterogeneous city networks our findings highlight the competitive edge of HFCV city clusters that capitalize on resource and innovation complementarity instead of relying solely on geographical positioning or pre-existing collaborations. The results of the Exponential Random Graph Analysis reveal that existing clusters economic strength of cities and their strategic positions within the hydrogen industrial chain significantly shape collaborative networks. This study contributes to cluster policy research by examining how China’s HFCV city clusters integrate historical advantages while fostering synergies with less connected cities offering valuable insights into inter-city collaboration and strategies for sustainable industrial development.
Environmental Life-cycle Analysis of Hydrogen Technology in the United States
Oct 2024
Publication
Hydrogen is a zero-carbon energy carrier with potential to decarbonize industrial and transportation sectors but its life-cycle greenhouse gas (GHG) emissions depend on its energy supply chain and carbon management measures (e.g. carbon capture and storage). Global support for clean hydrogen production and use has recently intensified. In the United States Congress passed several laws that incentivize the production and use of renewable and low-carbon hydrogen such as the Bipartisan Infrastructure Law (BIL) in 2021 and the Inflation Reduction Act (IRA) in 2022 which provides tax credits of up to $3/kg depending on the carbon intensity of the produced hydrogen. A comprehensive life-cycle accounting of GHG emissions associated with hydrogen production is needed to determine the carbon intensity of hydrogen throughout its value chain. In the United States Argonne’s R&D GREET® (Greenhouse Gases Regulated emissions and Energy use in Technologies) model has been widely used for hydrogen carbon intensity calculations. This paper describes the major hydrogen technology pathways considered in the United States and provides data sources and carbon intensity results for each of the hydrogen production and delivery pathways using consistent system boundaries and most recent technology performance and supply chain data.
Advanced Biofuels in the European Union - Status Report on Technology Development, Trends, Value Chains & Markets
Jan 2024
Publication
The report provides a detailed examination of the biofuel sector and advanced biofuel sector within the European Union (EU) focusing on its economic environmental and technological dimensions. The report is an update of the CETO 2023 report. The EU is highlighted as the central point of view with specific references to EU Member States showcasing their roles in the sector. The report is essential for understanding the multifaceted role of advanced biofuels in the EU's strategy to reduce greenhouse gas emissions and enhance energy security. The report underscores the EU's commitment through various policies and directives such as the Renewable Energy Directive and its amendment which set sustainability criteria and define advanced biofuels. The report details the EU's leadership in scientific publications and high-value patents in the advanced biofuel sector. It gives insights into the current state of innovation and the areas where the EU is leading. The report delves into technological advancements and challenges in the biofuel sector. It discusses various advanced biofuel technologies currently being developed and commercialised. The report covers the trends in installed capacity and production of biofuels within the EU providing a comparative analysis with other regions. It details the production capacities and operational plants for bioethanol and biodiesel. The report provides comprehensive data on the economic contributions of the advanced biofuel sector to the EU's economy. The report details the sector's impact on GDP and employment highlighting the significant contributions from operation and maintenance feedstock supply construction and equipment manufacturing. The report emphasises the importance of continued investment technological development and international collaboration to ensure the advanced biofuel sector's growth and sustainability.
Bridging the Gap: Public Perception and Acceptance of Hydrogen Technology in the Philippines
Jan 2025
Publication
This study examines the effects of transitioning to hydrogen production in the National Capital Region (NCR) and Palawan Province Philippines focusing on technology environment and stakeholder impact. This research conducted through a July 2022 survey aimed to assess public awareness knowledge risk perception and acceptance of hydrogen and its environmentally friendly variant green hydrogen infrastructure. Disparities were found between urban NCR and rural Palawan with lower awareness in Palawan. Safety concerns were highlighted with NCR respondents generally considering hydrogen production safe while Palawan respondents had mixed feelings particularly regarding nuclear-based hydrogen generation. This report emphasizes the potential ecological advantages of hydrogen technology but highlights potential issues concerning water usage and land impacts. It suggests targeted public awareness campaigns robust safety assurance programs regional pilot projects and integrated environmental plans to facilitate the seamless integration of hydrogen technology into the Philippines’ energy portfolio. This collective effort aims to help the country meet climate action obligations foster sustainable development and enhance energy resilience.
Modelling of a "Hydrogen Valley" to Investigate the Impact of a Regional Pipeline for Hydrogen Supply
Jul 2024
Publication
Introduction: The transition towards electrolysis-produced hydrogen in refineries and chemical industries is expected to have a potent impact on the local energy system of which these industries are part. In this study three urban areas with hydrogen-intense industries are studied regarding how the energy system configuration is affected if the expected future hydrogen demand is met in each node individually as compared to forming a “Hydrogen Valley” in which a pipeline can be used to trade hydrogen between the nodes.<br/>Method: A technoeconomic mixed-integer linear optimization model is used to study the investments in and dispatch of the included technologies with an hourly time resolution while minimizing the total system cost. Four cases are investigated based on the availability of offshore wind power and the possibility to invest in a pipeline.<br/>Results: The results show that investments in a pipeline reduces by 4%–7% the total system cost of meeting the demands for electricity heating and hydrogen in the cases investigated. Furthermore investments in a pipeline result in greater utilization of local variable renewable electricity resources as compared to the cases without the possibility to invest in a pipeline.<br/>Discussion: The different characteristics of the local energy systems of the three nodes in local availability of variable renewable electricity grid capacity and available storage options compared to local demands of electricity heating and hydrogen are found to be the driving forces for forming a Hydrogen Valley.
Geotechnical Properties of Carbonate Sands on the Coast of Ceará: Implications for Offshore Wind Foundations and Green Hydrogen Initiatives
May 2025
Publication
The coastal region of Ceará Brazil is expected to host offshore wind farms aimed at producing green hydrogen (GH2) through electrolysis. However the viability and cost of these developments may be affected by the mechanical behaviour of the marine subsoil which is largely composed of carbonate sands. These sediments are known for their complex and variable geotechnical properties which can influence the foundation performance. This study investigates the geotechnical characteristics of carbonate sands in comparison with quartz sands to support the design of offshore wind turbine foundations. Field testing using the Ménard pressuremeter and laboratory analyses including particle size distribution microscopy X-ray fluorescence calcimetry direct shear and triaxial testing were performed to determine the key strength and stiffness parameters. The results show substantial differences between carbonate and quartz sands particularly in terms of the stiffness and friction angle with notable variability even within the same material type. These findings highlight the need for site-specific characterisation in offshore foundation design. This study contributes data that can improve geotechnical risk assessments and assist in selecting appropriate foundation solutions under local conditions supporting the planned offshore wind energy infrastructure essential to Ceará’s green hydrogen strategy.
Decarbonizing Rural Off-Grid Areas Through Hybrid Renewable Hydrogen Systems: A Case Study from Turkey
Sep 2025
Publication
Access to renewable energy is vital for rural development and climate change mitigation. The intermittency of renewable sources necessitates efficient energy storage especially in off-grid applications. This study evaluates the technical economic and environmental performance of an off-grid hybrid system for the rural settlement of Soma Turkey. Using HOMER Pro 3.14.2 software a system consisting of solar wind battery and hydrogen components was modeled under four scenarios with Cyclic Charging (CC) and Load Following (LF) control strategies for optimization. Life cycle assessment (LCA) and hydrogen leakage impacts were calculated separately through MATLAB R2019b analysis in accordance with ISO 14040 and ISO 14044 standards. Scenario 1 (PV + wind + battery + H2) offered the most balanced solution with a net present cost (NPC) of USD 297419 with a cost of electricity (COE) of USD 0.340/kWh. Scenario 2 without batteries increased hydrogen consumption despite a similar COE. Scenario 3 with wind only achieved the lowest hydrogen consumption and the highest efficiency. In Scenario 4 hydrogen consumption decreased with battery reintegration but COE increased. Specific CO2 emissions ranged between 36–45 gCO2-eq/kWh across scenarios. Results indicate that the control strategy and component selection strongly influence performance and that hydrogen-based hybrid systems offer a sustainable solution in rural areas.
Assessing the Feasibility of a Green Hydrogen Economy in Selected African Regions with Composite Indicators
Jan 2025
Publication
This study offers a comprehensive analysis of the feasibility of green hydrogen economies in Western and Southern African regions focusing on the ECOWAS and SADC countries. Utilizing a novel approach based on composite indicators the research evaluates the potential readiness and overall feasibility of green hydrogen production and export across these regions. The study incorporates various factors including the technical potential of renewable energy sources water resource availability energy security and existing infrastructure for transport and export. Country-specific analyses reveal unique insights into the diverse potential of nations like South Africa Lesotho Ghana Nigeria Angola and Namibia each with its unique strengths and challenges in the context of green hydrogen. The research findings underscore the complexity of developing green hydrogen economies highlighting the need for nuanced region-specific approaches that consider technical socioeconomic geopolitical and environmental factors. The paper concludes that cooperation and integration between countries in the regions may be crucial for the success of a future green hydrogen economy
Carbon Neutrality in Malaysia and Kuala Lumpur: Insights from Stakeholder-driven Integrated Assessment Modelling
Apr 2024
Publication
Introduction: Several cities in Malaysia have established plans to reduce their CO2 emissions in addition to Malaysia submitting a Nationally Determined Contribution to reduce its carbon intensity (against GDP) by 45% in 2030 compared to 2005. Meeting these emissions reduction goals will require ajoint effort between governments industries and corporations at different scales and across sectors.<br/>Methods: In collaboration with national and sub-national stakeholders we developed and used a global integrated assessment model to explore emissions mitigation pathways in Malaysia and Kuala Lumpur. Guided by current climate action plans we created a suite of scenarios to reflect uncertainties in policy ambition level of adoption and implementation for reaching carbon neutrality. Through iterative engagement with all parties we refined the scenarios and focus of the analysis to best meet the stakeholders’ needs.<br/>Results: We found that Malaysia can reduce its carbon intensity and reach carbon neutrality by 2050 and that action in Kuala Lumpur can play a significant role. Decarbonization of the power sector paired with extensive electrification energy efficiency improvements in buildings transportation and industry and the use of advanced technologies such as hydrogen and carbon capture and storage will be Major drivers to mitigate emissions with carbon dioxide removal strategies being key to eliminate residual emissions.<br/>Discussion: Our results suggest a hopeful future for Malaysia’s ability to meet its climate goals recognizing that there may be technological social and financial challenges along the way. This study highlights the participatory process in which stakeholders contributed to the development of the model and guided the analysis as well as insights into Malaysia’s decarbonization potential and the role of multilevel governance.
Investigating Wind Energy Curtailment to Enable Constraint Analysis and Green Hydrogen Potential in Scotland’s Energy Infrastructure
May 2025
Publication
Curtailment of renewable energy is a growing issue in global energy infrastructure. A case study is carried out to investigate wind energy curtailment occurring in Scotland which presents a growing issue with an increasing amount of renewable energy going to waste. Complex relationships between grid constraints and wind farm operations must be explored to maximise utilisation of low-carbon electricity and to avoid the “turnup” of non-renewable sources. Transmission zones and boundaries are considered and mapped and a novel method of direct measurement of curtailment for transmission-level assets is proposed with an intuitive reproducible approach utilising balancing mechanism data. Curtailment data is examined and combined to find national trends explore the viability of distributed hydrogen electrolysis and compare curtailment and constraint directly across transmission boundaries. The weaknesses of the data collection methods are considered solutions for a future iteration are proposed and further uses of the outputs are discovered.
Prospects for the Development of Hydrogen Technologies: A Study of Projects in Europe and Australia
Jun 2025
Publication
This study examines the development of hydrogen energy technologies across continents focusing on the concentration of expertise in hydrogen production within specific cross-border alliances and individual countries. The evolution of green hydrogen is assessed through an analysis of 297 hydrogen projects in Europe and Australia. The implementation of projects is constrained by high production costs limiting the price competitiveness of the final product. The analysis reveals that electrolysis is the predominant technology employed in hydrogen production with mobility being the primary area of application. The study includes a forecast indicating a significant decrease in auction prices for green hydrogen products due to economies of scale. Learning curve modeling confirms an expected reduction in auction prices by a factor of 2.5–3.7 over the next decade. However delays in project implementation and the relocation of 49 projects across Australia. The results obtained indicate the existence of barriers implementation of hydrogen technologies. Although green hydrogen demonstrates strong potential for growth and scalability realizing all announced projects will require enhanced policy support.
No more items...