Policy & Socio-Economics
The Financial Results of Energy Sector Companies in Europe and Their Involvement in Hydrogen Production
Jun 2025
Publication
In response to growing environmental concerns hydrogen production has emerged as a critical element in the transition to a sustainable global economy. We evaluate the impact of hydrogen production on both the financial performance and market value of energy sector companies using balanced panel data from 288 European-listed firms over the period of 2018 to 2022. The findings reveal a paradox. While hydrogen production imposes significant financial constraints it is positively recognized by market participants. Despite short-term financial challenges companies engaged in hydrogen production experience higher market value as investors view these activities as a long-term growth opportunity aligned with global sustainability goals. We contribute to the literature by offering empirical evidence on the financial outcomes and market valuation of hydrogen engagement distinguishing between production and storage activities and further categorizing production into green blue and gray hydrogen. By examining these nuances we highlight the complex relationship between financial market results. While hydrogen production may negatively impact short-term financial performance its potential for long-term value creation driven by decarbonization efforts and sustainability targets makes it attractive to investors. Ultimately this study provides valuable insights into how hydrogen engagement shapes corporate strategies within the evolving European energy landscape.
From Grey to "Green": Modelling the Non-energy Uses of Hydrogen for the EU Energy Transition
Jun 2025
Publication
Hydrogen (H2) used as feedstock (i.e. as raw material) in chemicals refineries and steel is currently produced from fossil fuels thus leading to significant carbon dioxide (CO2) emissions. As these hard-to-abate sectors have limited electrification alternatives H2 produced by electrolysis offers a potential option for decarbonising them. Existing modelling analyses to date provide limited insights due to their predominant use of sector-specific static non-recursive and non-open models. This paper advances research by presenting a dynamic recursive open-access energy model using System Dynamics to study long-term systemic and environmental impacts of transitioning from fossil-based methods to electrolytic H2 production for industrial feedstock. The regional model adopts a bottom-up approach and is applied to the EU across five innovative decarbonisation scenarios including varying technological transition speeds and a paradigm-shift scenario (Degrowth). Our results indicate that assuming continued H2 demand trends and large-scale electrolytic H2 deployment by 2030 grid decarbonisation in the EU must accelerate to ensure green H2 for industrial feedstock emits less CO2 than fossil fuel methods doubling the current pace. Otherwise electrolytic H2 won’t offer clear CO2 reduction benefits until 2040. The most effective CO2 emission mitigation occurs in growth-oriented ambitious decarbonisation (− 91 %) and Degrowth (− 97 %) scenarios. From a sectoral perspective H2 use in steel industry achieves significantly greater decarbonisation (− 97 %). However meeting electricity demand for electrolytic H2 (700–1180 TWh in 2050 for 14–22.5 Mtons) in growth-oriented scenarios would require 25 %–42 % of the EU’s current electricity generation exceeding current renewable capacity and placing significant pressure on future power system development.
An Expert Opinion-based Perspective on Emerging Policy and Economic Research Priorities for Advancing the Low-carbon Hydrogen Sector
Jun 2025
Publication
This perspective sheds light on emerging research priorities crucial for advancing the low-carbon hydrogen sector considered critical for achieving net zero greenhouse gas emissions targets especially for hard-to-abate sectors. Our analysis follows a five-step process including drawing from news media academic discourse and expert consultations. We identify twenty-one major research challenges. Among the top priorities highlighted by experts are: (i) Evaluating the trade-offs of hydrogen-fueled power generation compared to hydrocarbon fuels and renewables with alternative storage solutions and the feasibility of co-firing hydrogen and ammonia with hydrocarbon fuels for backup or independent power generation; (ii) Exploring how global hydrogen trade could be shaped by market forces such as price volatility geopolitical dynamics and international collaborations; (iii) Examining the financial considerations for investors from developed nations pursuing hydrogen projects in resource-rich developing countries balancing costs investment risks and expected returns. We find statistically significant differences in opinions on hydrogen/ammonia co-firing for power generation between experts from China and those from the U.S. and Germany.
Spatial Planning Policies for Export-oriented Green-hydrogen Projects in Chile, Namibia, and South Africa
Jun 2025
Publication
Export-oriented green-hydrogen projects (EOGH2P) are being developed in regions with optimal renewableenergy resources. Their reliance on economies of scale makes them land-intensive and object of spatial planning policies. However the impact of spatial planning on the development of EOGH2P remains underexplored. Drawing on the spatial planning and megaproject literatures the analysis of planning documents and expert interviews this paper analyzes how spatial planning influences the development of EOGH2P in Chile Namibia and South Africa. The three countries have developed different spatial planning approaches for EOGH2Ps and are analyzed by employing a comparative case-study design. Our findings reveal that Namibia pursues a restrictive approach South Africa a facilitative approach whereas Chile is shifting from a market-based to a restrictive approach. The respective approaches reflect different political priorities and stakeholder interests and imply diverse effects on the development of EOGH2Ps in terms of their number size shared infrastructure socioenvironmental impact and acceptance. This study underscores the need for well-designed spatial planning frameworks and provides insights for planners and stakeholders on their potential effects.
Increasing Public Acceptance of Fuel Cell Vehicles in Germany: A Perspective on Pioneer Users
Jun 2025
Publication
Fuel cell vehicles (FCVs) represent an intriguing alternative to battery electric vehicles (BEVs). While the acceptance of BEVs has been widely discussed acceptance-based recommendations for promoting adoption of FCVs remain ambiguous. This paper aims to improve our understanding by reporting results from a pioneer study based on the standardized Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). The sample consists of n1 = 258 registered customers of H2mobility in Germany. For effect control another n2 = 294 participant sample was drawn from the baseline population. Data were analyzed using SmartPLS 4 and importance-performance mapping (IPMA). Results demonstrate that FCV acceptance primarily relies on Perceived Usefulness Perceived Conditions and Normative Influence while surprisingly hypotheses involving Perceived Risk and Green Attitude are rejected. Finally a discussion reveals ways to increase the level of public acceptance. Three practical strategies emerge. For future acceptance analyses the authors suggest incorporating the young concept of ‘societal readiness’.
The Role of Financial Mechanisms in Advancing Renewable Energy and Green Hydrogen
Jun 2025
Publication
Europe’s transition toward a low-carbon energy system relies on the deployment of hydrogen produced with minimized carbon emissions; however regulatory requirements increase system costs and create financial barriers. This study investigates the financial implications of enforcing European Commission rules for renewable hydrogen production from 2024 to 2048. Using a scenario-based modeling approach that draws on European power system investments in renewable energy the results show that immediate compliance leads to an additional cost of approximately eighty billion euros over twenty-four years corresponding to a 3.6 percent increase in total system costs. To address this investment gap the study employs a segmentation analysis of support mechanisms based on existing policies and market practices identifying seven categories that range from investment incentives and production subsidies to infrastructure and financial instruments. Among these hydrogen offtake support and infrastructure funding are identified as the most effective measures for reducing risk and enabling private investment. These findings provide strategic insights for policymakers seeking to align their regulatory ambitions with financially viable pathways for integrating renewable energy.
Green Hydrogen Supply Chain Decision-Making and Contract Optimization Under Uncertainty: A Pessimistic-Based Perspective
Jul 2025
Publication
To address the issue of excessive pessimism caused by demand and supply uncertainties in the green hydrogen supply chain this study develops a two-tier green hydrogen supply chain model comprising upstream hydrogen production stations and downstream hydrogen refueling stations. This research work investigates optimal ordering and production strategies under stochastic demand and supply conditions. Additionally option contracts are introduced to share the risks associated with the stochastic output of green hydrogen. This study shows the following: (1) Under decentralized decision-making the optimal ordering quantity when the hydrogen refueling station is excessively pessimistic is not necessarily lower than the optimal ordering quantity when it is in a rational state and hydrogen production stations will only operate when the degree of excessive pessimism is relatively low. (2) The initial option ordering quantity is always larger than the minimum execution quantity under the option contract; higher first-order option prices and lower second-order option prices can help to increase the initial option ordering quantity. (3) The option contract is effective in circumventing the negative impact of excessive pessimism at hydrogen production stations on planned production quantities. This study addresses the gap in the existing research regarding excessively pessimistic behaviors and the application of option contracts within the green hydrogen supply chain providing both theoretical insights and practical guidance for decision-making optimization. This advancement further promotes the sustainable development of the green hydrogen industry.
Comparative Life cycle Greenhouse Gas Emission and Cost Assessment of Hydrogen Fuel and Power for Singapore
Feb 2025
Publication
To identify lower-carbon and cost-effective hydrogen supplies for fuel and power generation in Singapore we assessed the cradle-to-gate greenhouse gas (GHG) emissions and the landed costs of over fifty supply chains from Malaysia and Australia with current and emerging blue turquoise and green hydrogen production and carrier technologies. We found that with current technologies the total life cycle global warming potential of local H2 production using steam methane reforming with carbon capture (4.47 kg CO2e/kg H2) is lower than importing solar-generated green H2 from Australia transported as NH3 (6.48 kg CO2e/kg H2) due to large emissions from conversion and transportation processes in the latter supply chain. When also considering emerging technologies turquoise H2 produced with the thermal decomposition of methane locally or in Malaysia is the most economical solution while wind-generated H2 from Australia transported as liquefied H2 or NH3 produce the least GHG emissions. In addition we projected the impacts of the Singapore carbon tax methane abatement in NG production and reduction of renewable energy embodied emissions and costs on the supply chains in the year 2030. We estimated that with the expected renewable energy improvements the emissions and costs of power generated from imported solar-powered H2 could drop by as much as 74% and 70% respectively.
Blue Hydrogen in the United Kingdom - A Policy & Environmental Case Study
Feb 2025
Publication
Blue hydrogen is one of the energy carriers to be adopted by the United Kingdom to reduce emissions to net Zero by 2050 and its use is majorly influenced by policy and technological innovations. With more than 10 blue hydrogen facilities planning productive offtake from 2025 there is an urgent need to confirm the viability of these proposed facilities to aid decarbonisation and the path to conformity to policy regulation. This study discovers that the Acorn blue hydrogen facility can produce blue hydrogen within the low carbon hydrogen standard set by the United Kingdom’s government. In this study a detailed examination of hydrogen production techniques is conducted using lifecycle assessment (LCA) approach aimed to understand the environmental impact of producing 144 tons of hydrogen per day using Acorn hydrogen facility as a case study. This was followed on with sensitive analysis embracing steam and oxygen consumption and methane leakages the ability of the facility meeting the low carbon hydrogen standard economics and the externality-priced production costs that embody the environmental impact. A gate-to-gate LCA shows that the Acorn hydrogen plant must aim at carbon capture rates of >90% to meet the set UK target of 20 gCO2e/MJLHV. The study further identifies from literature that the autothermal reforming (ATR) system with integrated carbon capture and storage (CCS) production technology as the most environmentally sustainable technology at present in comparison to commercially available options studied. This assessment helps to appraise potentially unintended causes and effects of the production of blue hydrogen that should aid future policy guidance and investments.
Developing Hydrogen Strategies for Fossil Fuel Exporting Countries Under Uncertainty: The Case of Qatar
Mar 2025
Publication
The economies of fossil fuel exporters are threatened by global efforts to transition away from using unabated fossil fuels. Producing clean hydrogen for export or domestic use in manufacturing provides a potentially major opportunity to continue exploiting their fossil fuel resources. However the substantial uncertainties affecting the future of clean hydrogen make developing hydrogen strategies complex. This paper characterizes such uncertainties and conducts an initial assessment of possible investment risks and critical decisions associated with different strategies in the case of Qatar a leading exporter of natural gas. We find that strategies mostly focused on using clean hydrogen domestically to produce clean commodities are relatively low risk; inversely becoming a leading exporter of clean hydrogen substantially increases investment risks. Also irrespective of the strategy higher investment is required in the early years suggesting that once a strategy is chosen changing path may prove difficult.
Modeling Critical Enablers of Hydrogen Supply Chains for Decarbonization: Insights from Emerging Economies
Mar 2025
Publication
The current global energy environment is experiencing a substantial shift towards minimizing carbon emissions and enhancing sustainability due to persistent problems. Demand for sustainable end-to-end energy solutions has boosted green hydrogen as the solution to decarbonize the world. The current study has identified and evaluated 7 main criteria of 27 sub-criteria for enabling the hydrogen supply Chains for decarbonization using the Fuzzy DEMATEL technique. The results show that the most prominent enablers criteria under causal factors are: cluster-based approach for developing a green hub Cost and investment decisions Hydrogen trade policy and regulatory actions and Technology. The effect group factors include: Assessment of ecological concerns- Ecology effect Availability of Energy sources and Awareness and public outreach. This study offers insights to understand the dynamics of the hydrogen supply chains and its way ahead towards decarbonization and transition towards a low-carbon economy. This research helps various academic and industrial stakeholders to give pace to green hydrogen uptake as a vital decarbonization tool and act as a base for strategic and collaborative decisions for a resilient and responsible energy landscape.
Hydrogen's Potential and Policy Pathways for Indonesia's Energy Transition: The Actor-network Analysis
Mar 2025
Publication
This research examines potential uses of hydrogen as an alternative energy source in Indonesia. Hydrogen presents a more environmentally friendly energy alternative with markedly reduced greenhouse gas emissions leading the Indonesian government to align its interests with the worldwide excitement for hydrogen-based energy transitions within the sustainable development context. Nevertheless despite its intriguing potential as an alternative fuel for transportation industry and power generation pilot programs have demonstrated that hydrogen energy remains expensive and demands substantial advancements in technology. This study used a qualitative methodology incorporating documentary analysis semi-structured interviews and focus group discussions within the actor-network theory framework aimed to investigate the current positioning of hydrogen energy in Indonesia’s policy pathways and to examine its potential and challenge. The findings indicate two primary insights: firstly Indonesia’s energy transformation is presently centered on formulating action plans and regulatory frameworks with hydrogen seen as one of the proposed alternatives. The investigation of hydrogen’s current progress through the actor-network theory framework has yielded two separate actor networks: the proponent network consisting of the national government and the national oil company and the opposing network which encompasses academics businesses and industries.
Green Hydrogen Revolution: Advancing Electrolysis, Market Integration, and Sustainable Energy Transitions Towards a Net Zero Future
Apr 2025
Publication
Green hydrogen is emerging as a key driver in global decarbonization efforts particularly in hard-to-abate sectors such as steel manufacturing ammonia production and long-distance transportation. This study evaluates the techno-economic and environmental aspects of green hydrogen production storage and integration with renewable energy systems. Electrolysis remains the dominant production method with efficiency rates ranging from 70–80% for Alkaline Electrolyzers (AEL) 75–85% for Proton Exchange Membrane Electrolyzers (PEMEL) and up to 90% for Solid Oxide Electrolyzers (SOEL). Capital costs are steadily decreasing with AEL costs falling from $1200/kW in 2018 to $800/kW in 2024 while PEMEL costs are projected to decline to $600/kW by 2030. Green hydrogen significantly reduces carbon emissions with a footprint of 0.5–1 kg CO₂ per kg of H₂ compared to 10–12 kg for gray hydrogen and 1–3 kg for blue hydrogen. Its potential to cut global CO₂ emissions by 6 gigatons annually by 2050 underscores its role in climate action. However its high water demand—approximately 9 liters per kilogram of hydrogen—necessitates efficient management strategies such as desalination and recycling. Economically green hydrogen is becoming more competitive with its levelized cost decreasing from $6/kg in 2018 to $3–4/kg in 2024 and projections indicating a further drop to $1.50/kg by 2030. Global investments exceeding $500 billion in 2024 along with major projects like Saudi Arabia's NEOM Green Hydrogen Project and Australia's Asian Renewable Energy Hub are accelerating adoption. Policy frameworks such as the EU Hydrogen Strategy and the U.S. Inflation Reduction Act further support deployment. Despite progress challenges remain in infrastructure storage and regulatory frameworks necessitating continued innovation and international collaboration. Green hydrogen aligns with key Sustainable Development Goals (SDGs) including SDG 7 (Affordable and Clean Energy) SDG 9 (Industry Innovation and Infrastructure) and SDG 13 (Climate Action). As the world transitions to a low-carbon economy green hydrogen presents a transformative opportunity contingent on sustained technological advancements investment and policy support.
Spillovers Between Hydrogen, Nuclear and AI Sectors: The Impact of Climate Policy Uncertainty and Geopolitical Risks
Mar 2025
Publication
This study investigates the spillover effects between hydrogen energy nuclear energy and artificial intelligence (AI) sectors in the context of the global clean energy transition with a particular focus on the impact of climate policy uncertainty (CPU) and geopolitical risks (GPR). Employing the TVP-VAR extended joint connectedness approach the findings show a high connectedness that indicates significant spillovers among these sectors. Hydrogen energy emerges as a dominant transmitter of shocks reflecting its sensitivity to regulatory changes and fluctuating demand. However nuclear energy acts as a stabilising force that offers hedging opportunities and resilience against market turbulence. The AI sector exhibits strong connectedness primarily as a net receiver of shocks driven by its dependency on clean energy sources and vulnerability to energy market volatility. Using the GARCHMIDAS framework the study identifies a temporal asymmetry in market responses to CPU and GPR. CPU triggers immediate but short-lived disruptions while GPR induces delayed yet persistent effects that intensify cross-sector spillovers over time. These results underline the vulnerabilities of sectors reliant on regulatory clarity and geopolitical stability. This study provides practical insights for investors policymakers technology and energy companies to better manage systemic risks at the crossroads of clean energy technological innovation and uncertainty.
Paving the Way for Renewable Energy and Hydrogen Adoption in Southern Africa
Jun 2025
Publication
Rising population and rapid development in Africa have led to growing energy demands that exceed current supply underscoring the urgent need for expanded and reliable energy access. As the global agenda shifts toward sustainability integrating renewable energy sources presents a viable pathway to address these shortages. This study explores the energy landscape policies and transition strategies of five Southern African countries using Multi-Level Perspective theory and energy systems analysis to examine the dynamics of their energy transitions. Findings highlight the significant potential of green hydrogen solar wind and hydropower to supplement conventional fuels especially in energy-intensive sectors while reducing reliance on fossil fuels and mitigating climate impacts. The application of Multi-Level Perspective theory underscores the importance of managing interactions between niche innovations existing socio-technical regimes and broader landscape pressures to support systemic transformation. The transition to renewable energy will also impact the future of coal mining shaped by policy frameworks resource distribution technological developments and market trends. However several persistent barriers must be overcome these include limited access to energy high capital costs poverty political and economic instability regulatory inefficiencies and gaps in technical expertise. Achieving a successful and inclusive energy transition in Southern Africa will require strategic planning policy alignment stakeholder engagement and targeted support for vulnerable sectors. Ensuring that the process is sustainable equitable and just is essential to realizing long-term regional energy security and economic resilience.
Development of Effective Hydrogen Production and Process Electrification Systems to Reduce the Environmental Impacts of the Methanol Production Process
Jun 2025
Publication
The methanol industry responsible for around 10% of GHG emissions in the chemical sector faces growing challenges due to its environmental impacts. This article aims to reduce the lifecycle environmental impacts of the CO2-to-methanol process by exploring advanced electrification methods for hydrogen production and CO2 conversion. The process analysis and comprehensive life cycle assessment (LCA) are conducted on four different methanol production pathways: conventional natural gas CO2 hydrogenation trireforming of methane (TRM) and the novel electrified combined reforming (ECRM) by including two hydrogen production routes: PEM electrolysis and the innovative plasma-assisted methane pyrolysis. The LCA was performed using the ReCiPe method covering midpoint and endpoint categories across four Canadian provinces—British Columbia Alberta Ontario and Quebec. The efficient plasma technology improves environmental performance for all pathways. The plasma-assisted CO2 hydrogenation pathway in British Columbia and Quebec shows the lowest GHG emissions achieving -2.01 and -1.72 kg CO2/kg MeOH respectively. In Alberta the conventional pathway has the lowest impact followed by plasmaassisted TRM. The CO2 hydrogenation with the PEM pathway shows the highest GHG emissions at 8.00 kg CO2/kg MeOH highlighting the challenges of using hydrogen from PEM electrolysis in regions with carbon-intensive electricity grids. However the inclusion of carbon black as a byproduct further reduces the environmental impact making these plasma-assisted pathways more viable. This LCA study underscores the influence of regional factors and technology choices on the sustainability of methanol production with an example of a 107% reduction in GHG emissions when plasma-assisted ECRM is shifting from Alberta to Quebec.
Assessing the Affordability and Independence of Building-integrated Household Green Hydrogen Systems in Canadian Urban Households under Climate Change
Aug 2025
Publication
Climate change will impact the affordability and independence of household green hydrogen systems due to shifting climate patterns and more frequent extreme events. However quantifying these impacts remains challenging because of the complex interactions among climate building characteristics and energy systems in urban environments. This study presents an integrated modeling platform that couples regional climate projections building energy performance simulations and energy system optimization to assess long-term climate impacts across four representative Canadian cities from 2010 to 2090. The results indicate that cooling-dominated cities may face up to a 50 % increase in energy costs and an 20 % rise in grid dependency whereas heating-dominated cities may experience cost reductions of up to 20 % and a 35 % decrease in grid reliance. Although climatealigned system designs cannot fully mitigate climate-induced performance variations they influence levelized cost of energy increasing it by up to 60 % in cooling-dominated cities but improving it by over 5 % in heatingdominated ones. These findings suggest that enhancing grid connectivity may be a more effective strategy than modifying system designs in cooling-dominated regions whereas adaptive design strategies offer greater benefits in heating-dominated areas.
Strategic Dynamics in Hydrogen Deployment: A Game-theoretical Review of Competition, Cooperation, and Coopetition
Sep 2025
Publication
As hydrogen products emerge as a promising energy alternative in multiple sectors low carbon hydrogen supply chains require concerted efforts among a diverse array of stakeholders. Within an evolving energy transition landscape stakeholders’ competition and cooperation play a critical role in expediting the deployment of the hydrogen economy. In this review different strategies referred to as Hydrogen Competition Cooperation and Coopetition (H2CCC) dynamics are analyzed from the lenses of game theory. The study employs hybrid literature review methodology integrating both bibliometric and structured review approaches. The study reveals that competition and cooperation represent a contrasting but interconnected dynamics that drive the energy transition. Coopetition models are less common. Furthermore it is observed that Integrated Energy Systems are mainly used in cooperative and coopetitive approaches while H2 technologies and Hydrogen Supply Chains are more explored in competitive approaches. Industrial and mobility sectors are present in H2CCC dynamics with technological players more present than institutional entities. Maps definitions gaps and perspectives are developed. These insights may be valuable for policymakers industry stakeholders modelers and researchers. There remains a need for further empirical H2CCC case studies and applications of pure coopetitive games.
Comparative Socio-economic Analysis and Green Transition Perspectives in the Green Hydrogen Economy of Sub-Saharan Africa and South America Countries
Sep 2025
Publication
The global shift toward a green hydrogen economy requires diversifying production beyond the Middle East and North Africa where political logistical and water constraints limit long-term supply. This study provides a comparative socio-economic assessment of Sub-Saharan African and South American countries focusing on their readiness for large-scale green hydrogen development. A Green Economy Index (GEI) was developed integrating political/regulatory efficiency socio-economic status infrastructure and sustainability indicators. In addition public perception was examined through a survey conducted in Nigeria. Results show GEI scores ranging from 0.328 to 0.744 with Germany as the benchmark. Brazil Uruguay and Namibia emerge as the most promising cases due to strong renewable energy potential socio-economic stability and supportive policies though each faces specific challenges such as transport logistics (Brazil and Uruguay) or water scarcity (Namibia). Nigeria demonstrates significant potential but is constrained by weak infrastructure and public safety concerns. Cameroon Angola and Gabon display moderate performance but require policy and investment reforms. By combining macro-level readiness analysis with social acceptance insights the study highlights opportunities and barriers for diversifying global hydrogen supply chains and advancing sustainable energy transitions in emerging regions.
Advancement in Hydrogen Production, Application and Strategy Towards Sustainable Energy: Malaysian Case Study
Aug 2025
Publication
Biohydrogen is known for its clean fuel properties with zero emissions. It serves as a reliable alternative to fossil fuel. This paper analyses the status of bio-hydrogen production in Malaysia and the on-going efforts on its advancement. Critical discussions were put forward on biohydrogen production from thermochemical and biological technologies governing associated technological issues and development. Moreover a comprehensive and vital overview has been made on Malaysian and global polices with road maps for the development of biohydrogen and its application in different sectors. This review article provides a framework for researchers on bio-hydrogen production technologies investors and the government to align policies for the biohydrogen based economy. Current biohydrogen energy outlook for production installation units and storage capacity are the key points to be highlighted from global and Malaysia’s perspectives. This critical and comprehensive review provides a strategic route for the researcher to research towards sustainable technology. Current policies related to hydrogen as fuel infrastructure in Malaysia and commercialization are highlighted. Malaysia is also gearing towards clean and decarbonization planning.
No more items...