Policy & Socio-Economics
The European Hydrogen Policy Landscape - Extensive Update of the April 2024 Report
Jan 2025
Publication
This report aims to summarise the status of the European hydrogen policy landscape. It is based on the information available at the European Hydrogen Observatory (EHO) website the leading source of data on hydrogen in Europe. The data presented in this report is based on research conducted by Hydrogen Europe until the end of July 2024 but also goes beyond this timeline for major policies legislations or standards implemented recently. This report builds upon the previous version published in April 2024 which reflected data as of August 2023 providing updated insights on European policies and legislation national strategies national policies and legislation and codes and standards. Interactive data dashboards can be accessed on the website: https://observatory.cleanhydrogen.europa.eu/ The EU policies and legislation section provides insights into the main European policies and legislation relevant to the hydrogen sector which are briefly summarized on content and their potential impact to the sector. The national hydrogen strategies chapter offers a comprehensive examination of the hydrogen strategies adopted in Europe. It summarizes the quantitative indicators that have been published (targets and estimates) and provides brief summaries of the different national strategies that have been adopted. The section referring to national policies and legislation focuses on the policy framework measures incentives and targets in place that have an impact on the development of the respective national hydrogen markets within Europe. The codes and standards section provides information on current European standards and initiatives developed by the standardisation bodies including CEN CENELEC ISO IEC OIML The standards are categorised according to the different stages of the hydrogen value chain: production distribution and storage and end-use applications.
Potential Vulnerability of US Green Hydrogen in a World of Interdependent Networks
Jul 2025
Publication
Green hydrogen is viewed as a promising pathway to future decarbonized energy systems. However hydrogen production depends on a few critical minerals particularly platinum and iridium. Here we examine how the supply of these minerals is subject to vulnerabilities hidden in interdependent global networks of trade and investment. We develop an index to quantify these vulnerabilities for a combination of a target country an investing country an intermediary country and a commodity. Focusing on the US as the target country for the import of platinum and iridium we show how vulnerability-inducing investing countries changed between 2010 and 2019. We find that the UK is consistently among investing countries that can potentially induce US vulnerabilities via intermediary exporters of platinum and iridium with South Africa being the primary intermediary country. Future research includes incorporating geopolitical factors and technological innovations to move the index closer from potential to real-world vulnerabilities.
The Hydrogen Challenge: Addressing Storage, Safety, and Environmental Concerns in the Hydrogen Economy
Aug 2025
Publication
As part of global decarbonization efforts hydrogen has emerged as a key energy carrier that can achieve deep emission reductions in various sectors. This review critically assesses the role of hydrogen in the low-carbon energy transition and highlights the interlinked challenges within the Techno-Enviro-Socio-Political (TESP) framework. It examines key aspects of deployment including production storage safety environmental impacts and socio-political factors to present an integrated view of the opportunities and barriers to large-scale adoption. Despite growing global interest over 90 % of the current global hydrogen production originated from fossilbased processes resulting in around 920 Mt of CO2 emissions two-thirds of which were attributable to fossil fuels. The Life Cycle Assessment (LCA) shows that coal-based electrolysis resulted in the highest GHG emission (144 - 1033 g CO2-eq/MJ) and an energy consumption (1.55–10.33 MJ/MJ H2). Without a switch to low-carbon electricity electrolysis cannot deliver significant climate benefits. Conversely methanol steam reforming based on renewable feedstock offered the lowest GHG intensity (23.17 g CO2-eq/MJ) and energy demand (0.23 MJ/ MJ) while biogas reforming proved to be a practical short-term option with moderate emissions (51.5 g CO2-eq/ MJ) and favourable energy figures. Catalytic ammonia cracking which is suitable for long-distance transport represents a compromise between low energy consumption (2.93 MJ/MJ) and high water intensity (8.34 L/km). The thermophysical properties of hydrogen including its low molecular weight high diffusivity and easy flammability lead to significant safety risks during storage and distribution which are exacerbated by its sensitivity to ignition and jet pulse effects. The findings show that a viable hydrogen economy requires integrated strategies that combine decarbonised production scalable storage harmonised safety protocols and cross-sector stakeholder engagement for better public acceptance. This review sets out a multi-dimensional approach to guide technological innovation policy adaptation and infrastructure readiness to support a scalable and environmentally sustainable hydrogen economy.
Understanding the Framing of Hydrogen Technology: A Cross-national Content Analysis of Newspaper Coverage in Germany, Saudi Arabia, UAE, and Egypt
Jul 2025
Publication
Introduction: The implementation of national hydrogen strategies targeting zero-emission goals has sparked public discussions regarding energy and environmental communication. However gaining societal acceptance for hydrogen technology poses a significant challenge in numerous countries. Hence this research investigates the framing of hydrogen technology through a comparative analysis of opinion-leading newspapers in Germany Saudi Arabia the United Arab Emirates and Egypt. Methods: Utilizing a quantitative framing analysis based on Entman’s framing approach this research systematically identifies media frames and comprehend their development through specific frame characteristics. A factor analysis identified six distinct frames: Hydrogen as a Sustainable Energy Solution Benefits of Economic and Political Collaboration Technological and Scientific Challenges Governance Issues and Energy Security Industrial and Climate Solutions and Economic Risk. Results: The findings reveal that newspapers frames vary significantly due to contextual factors such as national hydrogen strategies media systems political ideologies article types and focusing events. Specifically German newspapers display diverse and balanced framing in line with its pluralistic media environment and national emphasis on green hydrogen and energy security while newspapers from MENA countries primarily highlight economic and geopolitical benefits aligned with their national strategies and state-controlled media environments. Additionally the political orientation of newspapers affects the diversity of frames particularly in Germany. Moreover non-opinion articles in Germany exhibit greater framing diversity compared to opinion pieces while in the MENA region the framing remains uniform regardless of article type due to centralized media governance. A notable shift in media framing in Germany was found after a significant geopolitical event which changed the frame from climate mitigation to energy security. Discussion: This study underscores the necessity for theoretical and methodological thoroughness in identifying frames as well as the considerable impact of contextual factors on the media representation of emerging sustainable technologies.
An Expert Opinion-based Perspective on Emerging Policy and Economic Research Priorities for Advancing the Low-carbon Hydrogen Sector
Jun 2025
Publication
This perspective sheds light on emerging research priorities crucial for advancing the low-carbon hydrogen sector considered critical for achieving net zero greenhouse gas emissions targets especially for hard-to-abate sectors. Our analysis follows a five-step process including drawing from news media academic discourse and expert consultations. We identify twenty-one major research challenges. Among the top priorities highlighted by experts are: (i) Evaluating the trade-offs of hydrogen-fueled power generation compared to hydrocarbon fuels and renewables with alternative storage solutions and the feasibility of co-firing hydrogen and ammonia with hydrocarbon fuels for backup or independent power generation; (ii) Exploring how global hydrogen trade could be shaped by market forces such as price volatility geopolitical dynamics and international collaborations; (iii) Examining the financial considerations for investors from developed nations pursuing hydrogen projects in resource-rich developing countries balancing costs investment risks and expected returns. We find statistically significant differences in opinions on hydrogen/ammonia co-firing for power generation between experts from China and those from the U.S. and Germany.
The Financial Results of Energy Sector Companies in Europe and Their Involvement in Hydrogen Production
Jun 2025
Publication
In response to growing environmental concerns hydrogen production has emerged as a critical element in the transition to a sustainable global economy. We evaluate the impact of hydrogen production on both the financial performance and market value of energy sector companies using balanced panel data from 288 European-listed firms over the period of 2018 to 2022. The findings reveal a paradox. While hydrogen production imposes significant financial constraints it is positively recognized by market participants. Despite short-term financial challenges companies engaged in hydrogen production experience higher market value as investors view these activities as a long-term growth opportunity aligned with global sustainability goals. We contribute to the literature by offering empirical evidence on the financial outcomes and market valuation of hydrogen engagement distinguishing between production and storage activities and further categorizing production into green blue and gray hydrogen. By examining these nuances we highlight the complex relationship between financial market results. While hydrogen production may negatively impact short-term financial performance its potential for long-term value creation driven by decarbonization efforts and sustainability targets makes it attractive to investors. Ultimately this study provides valuable insights into how hydrogen engagement shapes corporate strategies within the evolving European energy landscape.
Towards Net-Zero: Comparative Analysis of Hydrogen Infrastructure Development in USA, Canada, Singapore, and Sri Lanka
Sep 2025
Publication
This paper compares national hydrogen (H2) infrastructure plans in Canada the United States (the USA) Singapore and Sri Lanka four countries with varying geographic and economic outlooks but shared targets for reaching net-zero emissions by 2050. It examines how each country approaches hydrogen production pipeline infrastructure policy incentives and international collaboration. Canada focuses on large-scale hydrogen production utilizing natural resources and retrofitted natural gas pipelines supplemented by carbon capture technology. The USA promotes regional hydrogen hubs with federal investment and intersectoral collaboration. Singapore suggests an innovation-based import-dominant strategy featuring hydrogen-compatible infrastructure in a land-constrained region. Sri Lanka maintains an import-facilitated pilot-scale model facilitated by donor funding and foreign collaboration. This study identifies common challenges such as hydrogen embrittlement leakages and infrastructure scalability as well as fundamental differences based on local conditions. Based on these findings strategic frameworks are proposed including scalability adaptability partnership policy architecture digitalization and equity. The findings highlight the importance of localized hydrogen solutions supported by strong international cooperation and international partnerships.
An Overview of the Hydrogen Value Chain in Energy Transitioning Economies: A Focus on India
Oct 2025
Publication
India’s energy sector is undergoing a major transformation as the nation targets energy independence by 2047 and net-zero emissions by 2070. With a high dependency on energy imports a strategic shift toward renewable energy and decarbonisation is crucial. Hydrogen has emerged as a promising solution to address energy storage and sustainability challenges prompting emerging countries to develop strong hydrogen infrastructures. This paper examines various methods involved in the hydrogen value chain from production to utilisation from the perspective of transitioning economies. By identifying key parameters and existing gaps this paper aims to support policymakers and stakeholders in designing effective strategies to accelerate the development of a sustainable and secure hydrogen economy. India currently relies on carbon-intensive hydrogen from fossil fuels. Green hydrogen faces high costs and infrastructure gaps. Despite storage and safety concerns hydrogen shows strong potential for clean energy and industry transformation.
Assessing Hydrogen Supply and Demand in the Liverpool City Region: A Regional Development Review from Stakeholders' Perspective
Oct 2025
Publication
Under the UK’s carbon neutrality goals for 2050 the Liverpool City Region’s (LCR) strategic positioning with its rich industrial heritage and infrastructure assets such as extensive port facilities and proximity to vast renewable energy resources positions it as a potential leader in the UK’s shift towards a hydrogen economy. Given this the regional hydrogen industry and stakeholders in decarbonisation initiatives intend to undertake a critical review of the opportunities challenges and uncertainties to local hydrogen supply and demand systems to assist in their decision-making. To achieve this goal this study reviews the readiness of the hydrogen supply chain infrastructure within the LCR which highlights four sectors in the hydrogen economy i.e. production storage transportation and utilisation. Subsequently to offer the first-hand data in practice a multi-faceted approach that incorporates a broad array of stakeholders through the Triple Helix (TH) model is adopted. Special attention is given to hydrogen’s role in transforming heavy industry transportation and heating sectors supported by significant local projects like HyNet North West. During a roundtable discussion industry-academia-government stakeholders identify challenges in scaling up infrastructure and assess the economic and technological landscape for hydrogen adoption. To the best of our knowledge this will be the first regional academic endeavour to comprehensively examine the alignment between hydrogen supply and demand theory and practice. Based on a detailed SWOT analysis this study outlines the region’s strengths including established industrial clusters and technological capabilities in manufacturing. It also highlights weaknesses such as the high costs associated with emerging hydrogen technologies technological immaturity and gaps in necessary infrastructure. The opportunities presented by national policy incentives and growing global demand for sustainable energy solutions are considered alongside threats including regulatory complexities and the slow pace of public acceptance. This comprehensive examination not only maps the current landscape but also sets the stage for strategic interventions needed to realise hydrogen’s full potential within the LCR aiming to guide policymakers industry leaders and researchers in their efforts to foster a viable hydrogen economy. Moreover the findings offer valuable insights that can inform the development of hydrogen strategies in other regions and cities.
Hydrogen Production from Winery Wastewater Through a Dual-Chamber Microbial Electrolysis Cell
Jun 2025
Publication
This study explores the feasibility of producing biohydrogen from winery wastewater using a dual-chamber microbial electrolysis cell (MEC). A mixed microbial consortium pre-adapted to heavy-metal environments and enriched with Geobacter sulfurreducens was anaerobically cultivated from diverse waste streams. Over 5000 h of development the MEC system was progressively adapted to winery wastewater enabling long-term electrochemical stability and high organic matter degradation. Upon winery wastewater addition (5% v/v) the system achieved a sustained hydrogen production rate of (0.7 ± 0.3) L H2 L −1 d −1 with an average current density of (60 ± 4) A m−3 and COD removal efficiency exceeding 55% highlighting the system’s resilience despite the presence of inhibitory compounds. Coulombic efficiency and cathodic hydrogen recovery reached (75 ± 4)% and (87 ± 5)% respectively. Electrochemical impedance spectroscopy provided mechanistic insight into charge transfer and biofilm development correlating resistive parameters with biological adaptation. These findings demonstrate the potential of MECs to simultaneously treat agro-industrial wastewaters and recover energy in the form of hydrogen supporting circular resource management strategies.
Spatial Planning Policies for Export-oriented Green-hydrogen Projects in Chile, Namibia, and South Africa
Jun 2025
Publication
Export-oriented green-hydrogen projects (EOGH2P) are being developed in regions with optimal renewableenergy resources. Their reliance on economies of scale makes them land-intensive and object of spatial planning policies. However the impact of spatial planning on the development of EOGH2P remains underexplored. Drawing on the spatial planning and megaproject literatures the analysis of planning documents and expert interviews this paper analyzes how spatial planning influences the development of EOGH2P in Chile Namibia and South Africa. The three countries have developed different spatial planning approaches for EOGH2Ps and are analyzed by employing a comparative case-study design. Our findings reveal that Namibia pursues a restrictive approach South Africa a facilitative approach whereas Chile is shifting from a market-based to a restrictive approach. The respective approaches reflect different political priorities and stakeholder interests and imply diverse effects on the development of EOGH2Ps in terms of their number size shared infrastructure socioenvironmental impact and acceptance. This study underscores the need for well-designed spatial planning frameworks and provides insights for planners and stakeholders on their potential effects.
Europe's Environment 2025 - Main Report, Europe's Environment and Climate: Knowledge for Resilience, Prosperity and Sustainability
Jan 2025
Publication
Every five years as mandated in its founding regulation the European Environment Agency (EEA) publishes a state of the environment report. Europe's environment 2025 provides decision makers at European and national levels as well as the general public with a comprehensive and cross-cutting assessment on environment climate and sustainability in Europe. Europe's environment 2025 is the 7th state of the environment report published by the EEA since 1995. Europe's environment 2025 has been prepared in close collaboration with the EEA’s European Environment Information and Observation Network (Eionet). The report draws on the Eionet’s vast expertise of leading experts and scientists in the environmental field across the EEA’s 32 member countries and six cooperating countries.
Development of the Hydrogen Market and Local Green Hydrogen Offtake in Africa
Jun 2025
Publication
Creating a hydrogen market in Africa is a great opportunity to assist in the promotion of sustainable energy solutions and economic growth. This article addresses the legislation and regulations that need to be developed to facilitate growth in the hydrogen market and allow local green hydrogen offtake across the continent. By reviewing current policy and strategy within particular African countries and best practices globally from key hydrogen economies the review establishes compelling issues challenges and opportunities unique to Africa. The study identifies the immense potential in Africa for renewable energy and in particular for solar and wind as the foundation for the production of green hydrogen. It examines how effective policy frameworks can establish a vibrant hydrogen economy by bridging infrastructural gaps cost hurdles and regulatory barriers. The paper also addresses how local offtake contracts for green hydrogen can be used to stimulate economic diversification energy security and sustainable development. Policy advice is provided to assist African authorities and stakeholders in the deployment of enabling regulatory frameworks and the mobilization of funds. The paper contributes to global hydrogen energy discussions by introducing Africa as an eligible stakeholder in the emerging hydrogen economy and outlining prospects for its inclusion into regional and global energy supply chains.
Opportunities and Challenges of Latent Thermal Energy Usage in the Hydrogen Economy
Aug 2025
Publication
Hydrogen plays a key role in decarbonising hard-to-abate sectors like aviation steel and shipping. However producing pure hydrogen requires significant energy to break chemical bonds from its sources such as gas and water. Ideally the energy used for this process should match the energy output from hydrogen but in reality energy losses occur at various stages of the hydrogen economy—production packaging delivery and use. This results in needing more energy to operate the hydrogen economy than it can ultimately provide. To address this passive power sources like latent thermal energy storage systems can help reduce costs and improve efficiency. These systems can enable passive cooling or electricity generation from waste heat cutting down on the extra energy needed for compression liquefaction and distribution. This study explores integrating latent thermal energy storage into all stages of the hydrogen economy offering a cost and sizing approach for such systems. The integration could reduce costs close the waste-heat recycling loop and support green hydrogen production for achieving NetZero by 2050.
Solar Enabled Pathway to Large-scale Green Hydrogen Production and Storage: A Framework for Oman's Advancing Renewable Energy Goals
Aug 2025
Publication
The utilisation of renewable energy sources for hydrogen production is increasingly vital for ensuring the long-term sustainability of global energy systems. Currently the Sultanate of Oman is actively integrating renewable energy particularly through the deployment of solar photovoltaic (PV) systems as part of its ambitious targets for the forthcoming decades. Also Oman has target to achieve 1 million tonnes of green-H2 production annually. Leveraging Oman's abundant solar resources to produce green hydrogen and promote the clean transportation industry could significantly boost the country's sustainable energy sector. This paper outlines a standalone bifacial solar-powered system designed for large-scale green hydrogen (H2) production and storage to operate both a hydrogen refuelling station and an electric vehicle charging station in Sohar Oman. Using HOMER software three scenarios: PV/Hydrogen/Battery PV/Hydrogen PV/Battery systems were compared from a techno-economic perspective. Also the night-time operation (Battery/Hydrogen) was investigated. Varying cost of electricity were obtained depending on the system from $3.91/kWh to $0.0000565kWh while the bifacial PV/Hydrogen/Battery system emerged as the most efficient option boasting a unit cost of electricity (COE) of $3.91/kWh and a levelized cost of hydrogen (LCOH) value of $6.63/kg with net present cost 199M. This system aligns well with Oman's 2030 objectives with the capacity to generate 1 million tonnes of green-H2 annually. Additionally the findings show that the surplus electricity from the system could potentially cover over 30% of Oman's total energy consumption with zero harmful emissions. The implementation of this system promises to enhance Oman's economic and transportation industries by promoting the adoption of electric and fuel cell vehicles while reducing reliance on traditional energy sources.
Techno-economic Optimization of Renewable Hydrogen Infrastructure via AI-based Dynamic Pricing
Aug 2025
Publication
This study presents a techno-economic optimization of hydrogen production using hybrid wind-solar systems across six Australian cities highlighting Australia’s green hydrogen potential. A hybrid PVwind-electrolyzer-hydrogen tank (PV-WT-EL-HT) system demonstrated superior performance with Perth achieving the lowest Levelized Cost of Hydrogen (LCOH) at $0.582/kg Net Present Cost (NPC) of $27.5k and Levelized Cost of Electricity (LCOE) of $0.0166/kWh. Perth also showed the highest return on investment present worth and annual worth making it the preferred project site. All locations maintained a 100% renewable fraction proving the viability of fully decarbonized hydrogen production. Metaheuristic validation using nine algorithms showed the Mayfly Algorithm improved techno-economic metrics by 3–8% over HOMER Pro models. The Gray Wolf and Whale Optimization Algorithms enhanced system stability under wind-dominant conditions. Sensitivity analysis revealed that blockchain-based dynamic pricing and reinforcement learning-driven demand response yielded 8–10% cost savings under ±15% demand variability. Nevertheless regional disparities persist; southern cities such as Hobart and Melbourne exhibited 20–30% higher LCOH due to reduced renewable resource availability while densely urbanized cities like Sydney presented optimization ceilings with minimal LCOH improvements despite algorithmic refinements. Investment in advanced materials (e.g. perovskite-VAWTs) and offshore platforms targeting hydrogen export markets is essential. Perth emerged as the optimal hub with hybrid PV/WT/B systems producing 200–250 MWh/ month of electricity and 200–250 kg/month of hydrogen supported by policy incentives. This work offers a blueprint for region-specific AI-augmented hydrogen systems to drive Australia’s hydrogen economy toward $2.10/kg by 2030.
Green Hydrogen in the Alps: Mapping Local Stakeholders Perspectives and Identifying Opportunities for Decarbonization
Jun 2025
Publication
The effects of climate change and reliance on fossil fuels in the Alps highlight the need for energy sufficiency improved efficiency and renewable energy deployment to support decarbonization goals. Hydrogen has gained attention as a versatile zero-emission energy carrier with the potential to drive cleaner energy solutions and sustainable tourism in Alpine regions. This study shares findings from a hydrogen survey conducted within the Interreg Alpine Space AMETHyST project which included questionnaires and roundtable discussions across Alpine territories. The survey explored hydrogen’s role in decarbonizing the Alps gathering insights from local stakeholders about their knowledge expertise needs and targets for hydrogen solutions. It also mapped existing hydrogen initiatives. Results revealed strong interest in hydrogen implementation with many territories eager to launch projects. However high investment and operational costs along with associated risks are key barriers. The absence of clear local hydrogen strategies and of a comprehensive regulatory framework also poses significant challenges. Incentivization schemes could facilitate initiatives and foster local hydrogen economies. The most promising application areas for hydrogen in the Alps are private and public mobility sectors. The residential sector particularly in tourist accommodations also presents potential. Regardless of specific uses developing renewable energy capacity and infrastructure is essential to create green hydrogen ecosystems that can store excess renewable energy from intermittent sources for later use.
Microwaves in Clean Energy Technologies
Mar 2025
Publication
Energy in the microwave spectrum is increasingly applied in clean energy technologies. This review discusses recent innovations using microwave fields in hydrogen production and synthesis of new battery materials highlighting the unique properties of microwave heating. Key innovations include microwave-assisted hydrogen generation from water hydrocarbons and ammonia and the synthesis of high-performance anode and cathode materials. Microwave-assisted catalytic water splitting using Gd-doped ceria achieves efficient hydrogen production below 250°C. For hydrocarbons advanced microwave-active catalysts Fe–Ni alloys and ruthenium nanoparticles enable high conversion rates and hydrogen yields. In ammonia synthesis microwaves reduce the energy demands of the Haber–Bosch process and enhance hydrogen production efficiency using catalysts such as ruthenium and Co2Mo3N. In battery technology microwave-assisted synthesis of cathode materials like LiFePO4 and LiNi0.5Mn1.5O4 yields high-purity materials with superior electrochemical performance. Developing nanostructured and composite materials including graphene-based anodes significantly improves battery capacities and cycling stability. The ability of microwave technology to provide rapid selective heating and enhance reaction rates offers significant advancements in clean energy technologies. Ongoing research continues to bridge theoretical understanding and practical applications driving further innovations in this field. This review aims to highlight recent advances in clean energy technologies based upon the novel use of microwave energy. The potential impact of these emerging applications is now being fully understood in areas that are critical to achieving net zero and can contribute to the decarbonization of key sectors. Notable in this landscape are the sectors of hydrogen fuel and battery technologies. This review examines the role of microwaves in these areas.
From Grey to "Green": Modelling the Non-energy Uses of Hydrogen for the EU Energy Transition
Jun 2025
Publication
Hydrogen (H2) used as feedstock (i.e. as raw material) in chemicals refineries and steel is currently produced from fossil fuels thus leading to significant carbon dioxide (CO2) emissions. As these hard-to-abate sectors have limited electrification alternatives H2 produced by electrolysis offers a potential option for decarbonising them. Existing modelling analyses to date provide limited insights due to their predominant use of sector-specific static non-recursive and non-open models. This paper advances research by presenting a dynamic recursive open-access energy model using System Dynamics to study long-term systemic and environmental impacts of transitioning from fossil-based methods to electrolytic H2 production for industrial feedstock. The regional model adopts a bottom-up approach and is applied to the EU across five innovative decarbonisation scenarios including varying technological transition speeds and a paradigm-shift scenario (Degrowth). Our results indicate that assuming continued H2 demand trends and large-scale electrolytic H2 deployment by 2030 grid decarbonisation in the EU must accelerate to ensure green H2 for industrial feedstock emits less CO2 than fossil fuel methods doubling the current pace. Otherwise electrolytic H2 won’t offer clear CO2 reduction benefits until 2040. The most effective CO2 emission mitigation occurs in growth-oriented ambitious decarbonisation (− 91 %) and Degrowth (− 97 %) scenarios. From a sectoral perspective H2 use in steel industry achieves significantly greater decarbonisation (− 97 %). However meeting electricity demand for electrolytic H2 (700–1180 TWh in 2050 for 14–22.5 Mtons) in growth-oriented scenarios would require 25 %–42 % of the EU’s current electricity generation exceeding current renewable capacity and placing significant pressure on future power system development.
A Comprehensive Review of Sustainable Energy Systems in the Context of the German Energy Transition Part 2: Renewable Energy and Storage Technologies
Sep 2025
Publication
As a continuation of part 1 which examined the development status and system foundations of sustainable energy systems (SES) in the context of German energy transition this paper provides a comprehensive review of the core technologies enabling the development of SES. It covers recent advances in photovoltaic (PV) wind energy geo‑ thermal energy hydrogen and energy storage. Key trends include the evolution of high-efficiency solar and wind technologies intelligent control systems sector coupling through hydrogen integration and the diversification of electrochemical and mechanical storage solutions. Together these innovations are fostering a more flexible resil‑ ient and low-carbon energy infrastructure. The review further highlights the importance of system-level integration by linking generation conversion and storage to address the intermittency of renewable energy and support longterm decarbonization goals.
No more items...