Production & Supply Chain
Energy, Exergy, and Environmental Analyses of Renewable Hydrogen Production Through Plasma Gasification of Microalgal Biomass
Feb 2021
Publication
In this study an energy exergy and environmental (3E) analyses of a plasma-assisted hydrogen production process from microalgae is investigated. Four different microalgal biomass fuels namely raw microalgae (RM) and three torrefied microalgal fuels (TM200 TM250 and TM300) are used as the feedstock for steam plasma gasification to generate syngas and hydrogen. The effects of steam-tobiomass (S/B) ratio on the syngas and hydrogen yields and energy and exergy efficiencies of plasma gasification (hEn;PG hEx;PG) and hydrogen production(hEn;H2 hEx;H2 ) are taken into account. Results show that the optimal S/B ratios of RM TM200 TM250 and TM300 are 0.354 0.443 0.593 and 0.760 respectively occurring at the carbon boundary points (CBPs) where the maximum values of hEn;PG hEx;PG hEn;H2 and hEx;H2 are also achieved. At CBPs torrefied microalgae as feedstock lower thehEn;PG hEx;PG hEn;H2 and hEx;H2 because of their improved calorific value after undergoing torrefaction and the increased plasma energy demand compared to the RM. However beyond CBPs the torrefied feedstock displays better performance. A comparative life cycle analysis indicates that TM300 exhibits the highest greenhouse gases (GHG) emissions and the lowest net energy ratio (NER) due to the indirect emissions associated with electricity consumption.
Green Hydrogen: A New Flexibility Source for Security Constrained Scheduling of Power Systems with Renewable Energies
Apr 2021
Publication
Green hydrogen i.e. the hydrogen generated from renewable energy sources (RES) will significantly contribute to a successful energy transition. Besides to facilitate the integration and storage of RES this promising energy carrier is well capable to efficiently link various energy sectors. By introduction of green hydrogen as a new flexibility source to power systems it is necessary to investigate its possible impacts on the generation scheduling and power system security. In this paper a security-constrained multi-period optimal power flow (SC-MPOPF) model is developed aiming to determine the optimal hourly dispatch of generators as well as power to hydrogen (P2H) units in the presence of large-scale renewable energy sources (RES). The proposed model characterizes the P2H demand flexibility in the proposed SC-MPOPF model taking into account the electrolyzer behavior reactive power support of P2H demands and hydrogen storage capability. The developed SC-MPOPF model is applied to IEEE 39-bus system and the obtained numerical results demonstrate the role of P2H flexibility on cost as well as RES's power curtailment reduction.
Insights into the Principles, Design Methodology and Applications of Electrocatalysts Towards Hydrogen Evolution Reaction
Apr 2021
Publication
The electrolysis of water for sustainable hydrogen producing is a crucial segment of various emerging clean-energy technologies. However pursuing an efficient and cheap alternative catalyst to substitute state-of-the-art platinum-group electrocatalysts remains a prerequisite for the commercialization of this technology. Typically precious-metal-free catalysts have always much lower activities towards hydrogen production than that of Pt-group catalysts. To explore high-performance catalysts maximally exposed active sites rapid charge transfer ability and desirable electronic configuration are essentially demanded. Herein the fundamentals of hydrogen evolution reaction will be briefly described and the main focus will be on the interfacial engineering strategies by means of constructing defect structure creating heterojunction phase engineering lattice strain control designing hierarchical architecture and doping heteroatoms to effectively proliferate the catalytic active sites facilitate the electron diffusion and regulate the electronic configuration of numerous transition metals and their nitrides carbides sulfides phosphides as well as oxides achieving a benchmark performance of platinum-free electrocatalysts for the hydrogen evolution reaction. This review unambiguously offers proof that the conventional cheap and earth-abundant transition metal-based substances can be translated into an active water splitting catalyst by the rational and controllable interfacial designing.
Techno-economic Modelling of Water Electrolysers in the Range of Several MW to Provide Grid Services While Generating Hydrogen for Different Applications: A Case Study in Spain Applied to Mobility with FCEVs
Jun 2019
Publication
The use of hydrogen as energy carrier is a promising option to decarbonize both energy and transport sectors. This paper presents an advanced techno-economic model for calculation of optimal dispatch of large-scale multi MW electrolysis plants in order to obtain a more accurate evaluation of the feasibility of business cases related to the supply of this fuel for different end uses combined with grid services' provision. The model is applied to the Spanish case using different scenarios to determine the minimum demand required from the FCEV market so that electrolysis facilities featuring several MW result in profitable business cases. The results show that grid services contribute to the profitability of hydrogen production for mobility given a minimum but considerable demand from FCEV fleets.
Techno-economic Assessment of Electrolytic Hydrogen in China Considering Wind-solar-load Characteristic
Jan 2023
Publication
Hydrogen production by electrolysis is considered an essential means of consuming renewable energy in the future. However the current assessment of the potential of renewable energy electrolysis for hydrogen production is relatively simple and the perspective is not comprehensive. Here we established a Combined Wind and Solar Electrolytic Hydrogen system considering the influence of regional wind-solar-load characteristics and transmission costs to evaluate the hydrogen production potential of 31 provincial-level regions in China in 2050. The results show that in 2050 the levelized cost of hydrogen (LCOH) in China’s provincial regions will still be higher than 10 ¥/kg which is not cost-competitive compared to the current hydrogen production from fossil fuels. It is more cost-effective to deploy wind turbines than photovoltaic in areas with similar wind and solar resources or rich in wind resources. Wind-solar differences impact LCOH equipment capacity configuration and transmission cost composition while load fluctuation significantly impacts LCOH and electricity storage configuration. In addition the sensitivity analysis of 11 technical and economic parameters showed differences in the response performance of LCOH changes to different parameters and the electrolyzer conversion efficiency had the most severe impact. The analysis of subsidy policy shows that for most regions (except Chongqing and Xizang) subsidizing the unit investment cost of wind turbines can minimize LCOH. Nevertheless from the perspective of comprehensive subsidy effect subsidy cost and hydrogen energy development it is more cost-effective to take subsidies for electrolysis equipment with the popularization of hydrogen
Delivering Clean Growth: CCUS Cost Challenge Taskforce Report
Jul 2018
Publication
An independent report by the CCUS Cost Challenge Taskforce setting out the industry’s view on how best to progress carbon capture usage and storage (CCUS) in the UK in order to enable the UK to have the option of deploying CCUS at scale during the 2030s subject to costs coming down sufficiently.
Facile Synthesis of Palladium Phosphide Electrocatalysts and their Activity for the Hydrogen Oxidation, Hydrogen Evolutions, Oxygen Reduction and Formic Acid Oxidation Reactions
Nov 2015
Publication
We demonstrate a new approach for producing highly dispersed supported metal phosphide powders with small particle size improved stability and increased electrocatalytic activity towards some useful reactions. The approach involves a one-step conversion of metal supported on high surface area carbon to the metal phosphide utilising a very simple and scalable synthetic process. We use this approach to produce PdP2 and Pd5P2 particles dispersed on carbon with a particle size of 4.5–5.5 nm by converting a commercially available Pd/C powder. The metal phosphide catalysts were tested for the oxygen reduction hydrogen oxidation and evolution and formic acid oxidation reactions. Compared to the unconverted Pd/C material we find that alloying the P at different levels shifts oxide formation on the Pd to higher potentials leading to greater stability during cycling studies (20% more ECSA retained 5k cycles) and in thermal treatment under air. Hydrogen absorption within the PdP2 and Pd5P2 particles is enhanced. The phosphides compare favourably to the most active catalysts reported to date for formic acid oxidation especially PdP2 and there is a significant decrease in poisoning of the surface compared to Pd alone. The mechanistic changes in the reactions studied are rationalised in terms of increased water activation on the surface phosphorus atoms of the catalyst. One of the catalysts PdP2/C is tested in a fuel cell as anode and cathode catalyst and shows good performance.
High Purity, Self-sustained, Pressurized Hydrogen Production from Ammonia in a Catalytic Membrane Reactor
Dec 2021
Publication
The combination of catalytic decomposition of ammonia and in situ separation of hydrogen holds great promise for the use of ammonia as a clean energy carrier. However finding the optimal catalyst – membrane pair and operation conditions have proved challenging. Here we demonstrate that cobalt-based catalysts for ammonia decomposition can be efficiently 2 used together with a Pd-Au based membrane to produce high purity hydrogen at elevated pressure. Compared to a conventional packed bed reactor the membrane reactor offers several operational advantages that result in energetic and economic benefits. The robustness and durability of the combined system has been demonstrated for more than 1000 h on stream yielding a very pure hydrogen stream (>99.97 % H2) and recovery (>90 %). When considering the required hydrogen compression for storage/utilization and environmental issues the combined system offers the additional advantage of production of hydrogen at moderate pressures along with full ammonia conversion. Altogether our results demonstrate the possibility of deploying high pressure (350 bar) hydrogen generators from ammonia with H2 efficiencies of circa 75% without any external energy input and/or derived CO2 emissions.
Life Cycle Assessment of Natural Gas-based Chemical Looping for Hydrogen Production
Dec 2014
Publication
Hydrogen production from natural gas combined with advanced CO2 capture technologies such as iron-based chemical looping (CL) is considered in the present work. The processes are compared to the conventional base case i.e. hydrogen production via natural gas steam reforming (SR) without CO2 capture. The processes are simulated using commercial software (ChemCAD) and evaluated from a technical point of view considering important key performance indicators such as hydrogen thermal output net electric power carbon capture rate and specific CO2 emissions. The environmental evaluation is performed using Life Cycle Analysis (LCA) with the following system boundaries considered: i) hydrogen production from natural gas coupled to CO2 capture technologies based on CL ii) upstream processes such as: extraction and processing of natural gas ilmenite and catalyst production and iii) downstream processes such as: H2 and CO2 compression transport and storage. The LCA assessment was carried out using the GaBi6 software. Different environmental impact categories following here the CML 2001 impact assessment method were calculated and used to determine the most suitable technology. Sensitivity analyses of the CO2 compression transport and storage stages were performed in order to examine their effect on the environmental impact categories.
Aqueous Phase Reforming of the Residual Waters Derived from Lignin-rich Hydrothermal Liquefaction: Investigation of Representative Organic Compounds and Actual Biorefinery Streams
Sep 2019
Publication
Secondary streams in biorefineries need to be valorized to improve the economic and environmental sustainability of the plants. Representative model compounds of the water fraction from the hydrothermal liquefaction (HTL) of biomass were subjected to aqueous phase reforming (APR) to produce hydrogen. Carboxylic and bicarboxylic acids hydroxyacids alcohols cycloketones and aromatics were identified as model compounds and tested for APR. The tests were performed with a Pt/C catalyst and the influence of the carbon concentration (0.3–1.8 wt. C%) was investigated. Typically the increase of the concentration negatively affected the conversion of the feed toward gaseous products without influencing the selectivity toward hydrogen production. A synthetic ternary mixture (glycolic acid acetic acid lactic acid) was subjected to APR to evaluate any differences in performance compared to the tests with single compounds. Indeed glycolic acid reacted faster in the mixture than in the corresponding single compound test while acetic acid remained almost unconverted. The influence of the reaction time temperature and carbon concentration was also evaluated. Finally residual water resulting from the HTL of a lignin-rich stream originating from an industrial-scale lignocellulosic ethanol process was tested for the first time after a thorough characterization. In this framework the stability of the catalyst was studied and found to be correlated to the presence of aromatics in the aqueous feedstock. For this reason the influence of an extraction procedure for the selective removal of these compounds was explored leading to an improvement in the APR performance.
Modeling of Thermal Performance of a Commercial Alkaline Electrolyzer Supplied with Various Electrical Currents
Nov 2021
Publication
Hydrogen produced by solar and other clean energy sources is an essential alternative to fossil fuels. In this study a commercial alkaline electrolyzer with different cell numbers and electrode areas are simulated for different pressure temperature thermal resistance and electrical current. This alkaline electrolyzer is considered unsteady in simulations and different parameters such as temperature are obtained in terms of time. The obtained results are compared with similar results in the literature and good agreement is observed. Various characteristics of this alkaline electrolyzer as thermoneutral voltage faraday efficiency and cell voltage are calculated and displayed. The outlet heat rate and generated heat rate are obtained as well. The pressure and the temperature in the simulations are between 1 and 100 bar and between 300 and 360 Kelvin respectively. The results show that the equilibrium temperature is reached 2-3 hours after the time when the Alkaline electrolyzer starts to work.
Electrolyzers Enhancing Flexibility in Electric Grids
Nov 2017
Publication
This paper presents a real-time simulation with a hardware-in-the-loop (HIL)-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC) is proposed which enables an optimal operation of the load on the basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility greater economic revenue and grid support for hydrogen producers under dynamic conditions. The FEC proposed in this paper is tested with electrolyzers however it is proposed as a generic control topology that is applicable to any load.
Cotton Stalk Activated Carbon-supported Co–Ce–B Nanoparticles as Efficient Catalysts for Hydrogen Generation Through Hydrolysis of Sodium Borohydride
Nov 2019
Publication
Porous cotton stalk activated carbons (CSAC) were prepared by phosphoric acid activation of cotton stalks in a fluidized bed. The CSAC-supported Co–B and Co–Ce–B catalysts were prepared by the impregnation-chemical reduction method. The samples were characterized by the nitrogen adsorption XRD FTIR and TEM measurements. The effects of the sodium borohydride (NaBH4) and sodium hydroxide (NaOH) concentrations reaction temperature and recyclability on the rate of NaBH4 hydrolysis over the CSAC-supported Co–Ce–B catalysts were systematically investigated. The results showed that the agglomeration of the Co–Ce–B nanoclusters on the CSAC support surface was significantly reduced with the introduction of cerium. The CSAC-supported Co–Ce–B catalyst exhibited superior catalytic activity and the average hydrogen generation rate was 16.42 L min−1 g−1 Co at 25°C which is higher than the most reported cobalt-based catalysts. The catalytic hydrolysis of NaBH4 was zero order with respect to the NaBH4 concentration and the hydrogen generation rate decreased with the increase in the NaOH concentration. The activation energy of the hydrogen generation reaction on the prepared catalyst was estimated to be 48.22 kJ mol−1. A kinetic rate equation was also proposed.
An Investigation of a (Vinylbenzyl) Trimethylammonium and N-Vinylimidazole-Substituted Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) Copolymer as an Anion-Exchange Membrane in a Lignin-Oxidising Electrolyser
Jun 2021
Publication
Electrolysis is seen as a promising route for the production of hydrogen from water as part of a move to a wider “hydrogen economy”. The electro-oxidation of renewable feedstocks offers an alternative anode couple to the (high-overpotential) electrochemical oxygen evolution reaction for developing low-voltage electrolysers. Meanwhile the exploration of new membrane materials is also important in order to try and reduce the capital costs of electrolysers. In this work we synthesise and characterise a previously unreported anion-exchange membrane consisting of a fluorinated polymer backbone grafted with imidazole and trimethylammonium units as the ion-conducting moieties. We then investigate the use of this membrane in a lignin-oxidising electrolyser. The new membrane performs comparably to a commercially-available anion-exchange membrane (Fumapem) for this purpose over short timescales (delivering current densities of 4.4 mA cm−2 for lignin oxidation at a cell potential of 1.2 V at 70 °C during linear sweep voltammetry) but membrane durability was found to be a significant issue over extended testing durations. This work therefore suggests that membranes of the sort described herein might be usefully employed for lignin electrolysis applications if their robustness can be improved.
A Multiobjective Optimization of a Catalyst Distribution in a Methane/Steam Reforming Reactor Using a Genetic Algorithm
May 2020
Publication
The presented research focuses on an optimization design of a catalyst distribution inside a small-scale methane/steam reforming reactor. A genetic algorithm was used for the multiobjective optimization which included the search for an optimum of methane conversion rate and a minimum of the difference between highest and lowest temperatures in the reactor. For the sake of computational time the maximal number of the segment with different catalyst densities was set to be thirty in this study. During the entire optimization process every part of the reactor could be filled either with a catalyst material or non-catalytic metallic foam. In both cases the porosity and pore size was also specified. The impact of the porosity and pore size on the active reaction surface and permeability was incorporated using graph theory and three-dimensional digital material representation. Calculations start with the generation of a random set of possible reactors each with a different catalyst distribution. The algorithm calls reforming simulation over each of the reactors and after obtaining concentration and temperature fields the algorithms calculated fitness function. The properties of the best reactors are combined to generate a new population of solutions. The procedure is repeated and after meeting the coverage criteria the optimal catalyst distribution was proposed. The paper is summarized with the optimal catalyst distribution for the given size and working conditions of the system.
Towards Computer-Aided Graphene Covered TiO2-Cu(CuxOy) Composite Design for the Purpose of Photoinduced Hydrogen Evolution
May 2021
Publication
In search a hydrogen source we synthesized TiO2-Cu-graphene composite photocatalyst for hydrogen evolution. The catalyst is a new and unique material as it consists of copper-decorated TiO2 particles covered tightly in graphene and obtained in a fluidized bed reactor. Both reduction of copper from Cu(CH3COO) at the surface of TiO2 particles and covering of TiO2-Cu in graphene thin layer by Chemical Vapour Deposition (CVD) were performed subsequently in the flow reactor by manipulating the gas composition. Obtained photocatalysts were tested in regard to hydrogen generation from photo-induced water conversion with methanol as sacrificial agent. The hydrogen generation rate for the most active sample reached 2296.27 µmol H2 h−1 gcat−1. Combining experimental and computational approaches enabled to define the optimum combination of the synthesis parameters resulting in the highest photocatalytic activity for water splitting for green hydrogen production. The results indicate that the major factor affecting hydrogen production is temperature of the TiO2-Cu-graphene composite synthesis which in turn is inversely correlated to photoactivity.
Development of Visible-Light-Driven Rh–TiO2-CeO2 Hybrid Photocatalysts for Hydrogen Production
Jul 2021
Publication
Visible-light-driven hydrogen production through photocatalysis has attracted enormous interest owing to its great potential to address energy and environmental issues. However photocatalysis possesses several limitations to overcome for practical applications such as low light absorption efficiency rapid charge recombination and poor stability of photocatalysts. Here the preparation of efficient noble metal–semiconductor hybrid photocatalysts for photocatalytic hydrogen production is presented. The prepared ternary Rh–TiO2–CeO2 hybrid photocatalysts exhibited excellent photocatalytic performance toward the hydrogen production reaction compared with their counterparts ascribed to the synergistic combination of Rh TiO2 and CeO2.
Heat to Hydrogen by RED—Reviewing Membranes and Salts for the RED Heat Engine Concept
Dec 2021
Publication
The Reverse electrodialysis heat engine (REDHE) combines a reverse electrodialysis stack for power generation with a thermal regeneration unit to restore the concentration difference of the salt solutions. Current approaches for converting low-temperature waste heat to electricity with REDHE have not yielded conversion efficiencies and profits that would allow for the industrialization of the technology. This review explores the concept of Heat-to-Hydrogen with REDHEs and maps crucial developments toward industrialization. We discuss current advances in membrane development that are vital for the breakthrough of the RED Heat Engine. In addition the choice of salt is a crucial factor that has not received enough attention in the field. Based on ion properties relevant for both the transport through IEMs and the feasibility for regeneration we pinpoint the most promising salts for use in REDHE which we find to be KNO3 LiNO3 LiBr and LiCl. To further validate these results and compare the system performance with different salts there is a demand for a comprehensive thermodynamic model of the REDHE that considers all its units. Guided by such a model experimental studies can be designed to utilize the most favorable process conditions (e.g. salt solutions).
On the Climate Impacts of Blue Hydrogen Production
Nov 2021
Publication
Natural gas based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored such hydrogen could be a low-carbon energy carrier. However recent research raises questions about the effective climate impacts of blue hydrogen from a life cycle perspective. Our analysis sheds light on the relevant issues and provides a balanced perspective on the impacts on climate change associated with blue hydrogen. We show that such impacts may indeed vary over large ranges and depend on only a few key parameters: the methane emission rate of the natural gas supply chain the CO2 removal rate at the hydrogen production plant and the global warming metric applied. State-of-the-art reforming with high CO2 capture rates combined with natural gas supply featuring low methane emissions does indeed allow for substantial reduction of greenhouse gas emissions compared to both conventional natural gas reforming and direct combustion of natural gas. Under such conditions blue hydrogen is compatible with low-carbon economies and exhibits climate change impacts at the upper end of the range of those caused by hydrogen production from renewable-based electricity. However neither current blue nor green hydrogen production pathways render fully “net-zero” hydrogen without additional CO2 removal.
SNG Generation via Power to Gas Technology: Plant Design and Annual Performance Assessment
Nov 2020
Publication
Power to gas (PtG) is an emerging technology that allows to overcome the issues due to the increasingly widespread use of intermittent renewable energy sources (IRES). Via water electrolysis power surplus on the electric grid is converted into hydrogen or into synthetic natural gas (SNG) that can be directly injected in the natural gas network for long-term energy storage. The core units of the Power to synthetic natural gas (PtSNG) plant are the electrolyzer and the methanation reactors where the renewable electrolytic hydrogen is converted to synthetic natural gas by adding carbon dioxide. A technical issue of the PtSNG plant is the different dynamics of the electrolysis unit and the methanation unit. The use of a hydrogen storage system can help to decouple these two subsystems and to manage the methanation unit for assuring long operation time and reducing the number of shutdowns. The purpose of this paper is to evaluate the energy storage potential and the technical feasibility of the PtSNG concept to store intermittent renewable sources. Therefore different plant sizes (1 3 and 6 MW) have been defined and investigated by varying the ratio between the renewable electric energy sent to the plant and the total electric energy generated by the renewable energy source (RES) facility based on a 12 MW wind farm. The analysis has been carried out by developing a thermochemical and electrochemical model and a dynamic model. The first allows to predict the plant performance in steady state. The second allows to forecast the annual performance and the operation time of the plant by implementing the control strategy of the storage unit. The annual overall efficiencies are in the range of 42–44% low heating value (LHV basis). The plant load factor i.e. the ratio between the annual chemical energy of the produced SNG and the plant capacity results equal to 60.0% 46.5% and 35.4% for 1 3 and 6 MW PtSNG sizes respectively.
No more items...