Production & Supply Chain
Hydrogen Production Technologies: Current State and Future Developments
Mar 2013
Publication
Hydrogen (H2) is currently used mainly in the chemical industry for the production of ammonia and methanol. Nevertheless in the near future hydrogen is expected to become a significant fuel that will largely contribute to the quality of atmospheric air. Hydrogen as a chemical element (H) is the most widespread one on the earth and as molecular dihydrogen (H2) can be obtained from a number of sources both renewable and nonrenewable by various processes. Hydrogen global production has so far been dominated by fossil fuels with the most significant contemporary technologies being the steam reforming of hydrocarbons (e.g. natural gas). Pure hydrogen is also produced by electrolysis of water an energy demanding process. This work reviews the current technologies used for hydrogen (H2) production from both fossil and renewable biomass resources including reforming (steam partial oxidation autothermal plasma and aqueous phase) and pyrolysis. In addition other methods for generating hydrogen (e.g. electrolysis of water) and purification methods such as desulfurization and water-gas shift reactions are discussed.
Oxygen Carriers for Chemical-looping Water Splitting to Hydrogen Production: A Critical Review
Oct 2021
Publication
Chemical looping water splitting (CLWS) process using metal oxides or perovskites as oxygen carriers (OCs) is capable of producing pure H2 in an efficient simple and flexible way. The OCs are first reduced by hydrocarbon fuels and then oxidized by steam in a cyclic way. After the condensation of the gaseous mixture of steam and H2 from the oxidation step pure H2 is obtained. In recent years great efforts for CLWS have been made to improve the redox activity and stability of OCs. In this paper the development of the OCs for hydrogen production from CLWS were discussed. Effects of supports and additives on the performances of OCs were compared based on redox reactions in CLWS. Fe-based OCs with CeO2 Al2O3 ZrO2 CuO MoO3 Rh etc. are very attractive for the CLWS process. Issues and challenges for the development of OCs were analyzed.
Transitioning Remote Arctic Settlements to Renewable Energy Systems – A Modelling Study of Longyearbyen, Svalbard
Nov 2019
Publication
As transitioning away from fossil fuels to renewable energy sources comes on the agenda for a range of energy systems energy modelling tools can provide useful insights. If large parts of the energy system turns out to be based on variable renewables an accurate representation of their short-term variability in such models is crucial. In this paper we have developed a stochastic long-term energy model and applied it to an isolated Arctic settlement as a challenging and realistic test case. Our findings suggest that the stochastic modelling approach is critical in particular for studies of remote Arctic energy systems. Furthermore the results from a case study of the Norwegian settlement of Longyearbyen suggest that transitioning to a system based on renewable energy sources is feasible. We recommend that a solution based mainly on renewable power generation but also including energy storage import of hydrogen and adequate back-up capacity is taken into consideration when planning the future of remote Arctic settlements.
Optimal Day-ahead Dispatch of an Alkaline Electrolyser System Concerning Thermal–electric Properties and State-transitional Dynamics
Oct 2021
Publication
Green hydrogen is viewed as a promising energy carrier for sustainable development goals. However it has suffered from high costs hindering its implementation. For a stakeholder who considers both renewable energy and electrolysis units it is important to exploit the flexibility of such portfolios to maximize system operational revenues. To this end an electrolyser model that can characterize its dynamic behavior is required in both electric and thermal aspects. In this paper we develop a comprehensive alkaline electrolyser model that is capable of describing its hydrogen production properties temperature variations and state transitions (among production stand-by and off states). This model is further used to study the optimal dispatch of an electrolyser based on a real-world hybrid wind/electrolyser system. The results show the model can effectively capture the coupling between thermal–electric dynamics and on–off performance of an electrolyser. The flexible operation strategy based on this model is proven to significantly increase daily revenues under different spot price conditions for electricity. Comparing the model with the ones derived from conventional modeling methods reveals this model offers more operating details and highlights several operational features such as the preference for working at partial load conditions although at the expense of more computing resources. It is suggested to use this model in studies related to energy integration operation planning and control scheme development in which the multi-domain dynamic properties of electrolysers in electricity/gas/heat need to be properly characterized. A sensitivity analysis on key parameters of such electrolyser system is also introduced to connect the daily operation with long-term planning.
Renewable Hydrogen Implementations for Combined Energy Storage, Transportation and Stationary Applications
Dec 2019
Publication
The purpose of this paper is to discuss the potential of hydrogen obtained from renewable sources for energy generation and storage systems. The first part of analysis will address such issues as various methods of green hydrogen production storage and transportation. The review of hydrogen generation methods will be followed by the critical analysis and the selection of production method. This selection is justified by the results of the comparative research on alternative green hydrogen generation technologies with focus on their environmental impacts and costs. The comparative analysis includes the biomass-based methods as well as water splitting and photo-catalysis methods while water electrolysis is taken as a benchmark. Hydrogen storage and transportation issues will be further discussed in purpose to form the list of recommended solutions. In the second part of the paper the technology readiness and technical feasibility for joint hydrogen applications will be analysed. This will include the energy storage and production systems based on renewable hydrogen in combination with hydrogen usage in mobility systems as well as the stationary applications in buildings such as combined heat and power (CHP) plants or fuel cell electric generators. Based on the analysis of the selected case studies the author will discuss the role of hydrogen for the carbon emission reduction with the stress on the real value of carbon footprint of hydrogen depending on the gas source storage transportation and applications.
A Hybrid Intelligent Model to Predict the Hydrogen Concentration in the Producer Gas from a Downdraft Gasifier
Apr 2022
Publication
This research work presents an artificial intelligence approach to predicting the hydrogen concentration in the producer gas from biomass gasification. An experimental gasification plant consisting of an air-blown downdraft fixed-bed gasifier fueled with exhausted olive pomace pellets and a producer gas conditioning unit was used to collect the whole dataset. During an extensive experimental campaign the producer gas volumetric composition was measured and recorded with a portable syngas analyzer at a constant time step of 10 seconds. The resulting dataset comprises nearly 75 hours of plant operation in total. A hybrid intelligent model was developed with the aim of performing fault detection in measuring the hydrogen concentration in the producer gas and still provide reliable values in the event of malfunction. The best performing hybrid model comprises six local internal submodels that combine artificial neural networks and support vector machines for regression. The results are remarkably satisfactory with a mean absolute prediction error of only 0.134% by volume. Accordingly the developed model could be used as a virtual sensor to support or even avoid the need for a real sensor that is specific for measuring the hydrogen concentration in the producer gas.
Research Requirements to Move the Bar Forward Using Aqueous Formate Salts as H2 Carriers for Energy Storage Applications
Nov 2020
Publication
In this perspective on hydrogen carriers we focus on the needs for the development of robust active catalysts for the release of H2 from aqueous formate solutions which are non-flammable non-toxic thermally stable and readily available at large scales at reasonable cost. Formate salts can be stockpiled in the solid state or dissolved in water for long term storage and transport using existing infrastructure. Furthermore formate salts are readily regenerated at moderate pressures using the same catalyst as for the H2 release. There have been several studies focused on increasing the activity of catalysts to release H2 at moderate temperatures i.e. < 80 °C below the operating temperature of a proton exchange membrane (PEM) fuel cell. One significant challenge to enable the use of aqueous formate salts as hydrogen carriers is the deactivation of the catalyst under operating conditions. In this work we provide a review of the most efficient heterogeneous catalysts that have been described in the literature their proposed modes of deactivation and the strategies reported to reactivate them. We discuss potential pathways that may lead to deactivation and strategies to mitigate it in a variety of H2 carrier applications. We also provide an example of a potential use case employing formate salts solutions using a fixed bed reactor for seasonal storage of energy for a microgrid application.
Techno-Economic Analysis of Hydrogen and Electricity Production by Biomass Calcium Looping Gasification
Feb 2022
Publication
Combined cycle biomass calcium looping gasification is proposed for a hydrogen and electricity production (CLGCC–H) system. The process simulation Aspen Plus is used to conduct techno-economic analysis of the CLGCC–H system. The appropriate detailed models are set up for the proposed system. Furthermore a dual fluidized bed is optimized for hydrogen production at 700 °C and 12 bar. For comparison calcium looping gasification with the combined cycle for electricity (CLGCC) is selected with the same parameters. The system exergy and energy efficiency of CLGCC–H reached as high as 60.79% and 64.75% while the CLGCC system had 51.22% and 54.19%. The IRR and payback period of the CLGCC–H system based on economic data are calculated as 17.43% and 7.35 years respectively. However the CLGCC system has an IRR of 11.45% and a payback period of 9.99 years respectively. The results show that the calcium looping gasification-based hydrogen and electricity coproduction system has a promising market prospect in the near future.
Flare Gas Monetization and Greener Hydrogen Production via Combination with Crypto Currency Mining and Carbon Dioxide Capture
Jan 2022
Publication
In view of the continuous debates on the environmental impact of blockchain technologies in particular crypto currency mining accompanied by severe carbon dioxide emissions a technical solution has been considered assuming direct monetization of associated petroleum gas currently being flared. The proposed approach is based on the technology of low-temperature steam reforming of hydrocarbons which allows flare gas conditioning towards the requirements for fuel for gas piston and gas turbine power plants. The generation of electricity directly at the oil field and its use for on-site crypto currency mining transforms the process of wasteful flaring of valuable hydrocarbons into an economically attractive integrated processing of natural resources. The process is not carbon neutral and is not intended to compete zero-emission technologies but its combination with technologies for carbon dioxide capture and re-injection into the oil reservoir can both enhance the oil recovery and reduce carbon dioxide emissions into the atmosphere. The produced gas can be used for local transport needs while the generated heat and electricity can be utilized for on-site food production and biological carbon dioxide capture in vertical greenhouse farms. The suggested approach allows significant decrease in the carbon dioxide emissions at oil fields and although it may seem paradoxically on-site cryptocurrency mining actually may lead to a decrease in the carbon footprint. The amount of captured CO2 could be transformed into CO2 emission quotas which can be spent for the production of virtually “blue” hydrogen by steam reforming of natural gas in locations where the CO2 capture is technically impossible and/or unprofitable.
Rational Design and Application of Covalent Organic Frameworks for Solar Fuel Production
Jul 2021
Publication
Harnessing solar energy and converting it into renewable fuels by chemical processes such as water splitting and carbon dioxide (CO2 ) reduction is a highly promising yet challenging strategy to mitigate the effects arising from the global energy crisis and serious environmental concerns. In recent years covalent organic framework (COF)-based materials have gained substantial research interest because of their diversified architecture tunable composition large surface area and high thermal and chemical stability. Their tunable band structure and significant light absorption with higher charge separation efficiency of photoinduced carriers make them suitable candidates for photocatalytic applications in hydrogen (H2) generation CO2 conversion and various organic transformation reactions. In this article we describe the recent progress in the topology design and synthesis method of COF-based nanomaterials by elucidating the structure-property correlations for photocatalytic hydrogen generation and CO2 reduction applications. The effect of using various kinds of 2D and 3D COFs and strategies to control the morphology and enhance the photocatalytic activity is also summarized. Finally the key challenges and perspectives in the field are highlighted for the future development of highly efficient COF-based photocatalysts.
Efficient Renewable-to-Hydrogen Conversion via Decoupled Electrochemical Water Splitting
Aug 2020
Publication
Water electrolysis powered by renewables provides a green approach to hydrogen production to support the ‘‘hydrogen economy.’’ However the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are tightly coupled in both time and space in traditional water electrolysis which brings inherent operational challenges such as the mixture of H2/O2 and the limited HER rate caused by the sluggish kinetics of OER. Against this background decoupling H2 and O2 production in water electrolysis by using the auxiliary redox mediator was first proposed in 2013 in which O2 and H2 are produced at different times rates and/or locations. The decoupling strategy offers not only a new way to facilitate renewables to H2 but it can also be applied in other chemical or electrochemical processes. This review describes recent efforts to develop high-performance redox mediators optimized strategies in decoupled water electrolysis the design of electrolyzer configuration the challenges faced and the prospective directions.
Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy
Jan 2021
Publication
Climate change is one of the major problems that people face in this century with fossil fuel combustion engines being huge contributors. Currently the battery powered electric vehicle is considered the predecessor while hydrogen vehicles only have an insignificant market share. To evaluate if this is justified different hydrogen power train technologies are analyzed and compared to the battery powered electric vehicle. Even though most research focuses on the hydrogen fuel cells it is shown that despite the lower efficiency the often-neglected hydrogen combustion engine could be the right solution for transitioning away from fossil fuels. This is mainly due to the lower costs and possibility of the use of existing manufacturing infrastructure. To achieve a similar level of refueling comfort as with the battery powered electric vehicle the economic and technological aspects of the local small-scale hydrogen production are being investigated. Due to the low efficiency and high prices for the required components this domestically produced hydrogen cannot compete with hydrogen produced from fossil fuels on a larger scale
Blue Hydrogen
Apr 2021
Publication
The urgency of reaching net-zero emissions requires a rapid acceleration in the deployment of all emissions reducing technologies. Near-zero emissions hydrogen (clean hydrogen) has the potential to make a significant contribution to emissions reduction in the power generation transportation and industrial sectors.
As part of the Circular Carbon Economy: Keystone to Global Sustainability series with the Center on Global Energy Policy at Columbia University SIPA this report explores the potential contribution of blue hydrogen to climate mitigation.
The report looks at:
As part of the Circular Carbon Economy: Keystone to Global Sustainability series with the Center on Global Energy Policy at Columbia University SIPA this report explores the potential contribution of blue hydrogen to climate mitigation.
The report looks at:
- Cost drivers for renewable hydrogen and hydrogen produced with fossil fuels and CCS;
- Resource requirements and cost reduction opportunities for clean hydrogen; and
- Policy recommendations to drive investment in clean hydrogen production.
- Blue hydrogen is well placed to kickstart the rapid increase in the utilisation of clean hydrogen for climate mitigation purposes but requires strong and sustained policy to incentivise investment at the rate necessary to meet global climate goals.
Synergetic Effect of Multiple Phases on Hydrogen Desorption Kinetics and Cycle Durability in Ball Milled MgH2–PrF3–Al–Ni Composite
Jan 2021
Publication
A new MgH2–PrF3–Al–Ni composite was prepared by ball milling under hydrogen atmosphere. After initial dehydrogenation and rehydrogenation Pr3Al11 MgF2 PrH3 and Mg2NiH4 nanoparticles formed accompanying the main phase MgH2. The hydrogen absorption-desorption properties were measured by using a Sieverts-type apparatus. The results showed that the MgH2–PrF3–Al–Ni composite improved cycle stability and enhanced hydrogen desorption kinetics. The improvement of hydrogen absorption-desorption properties is ascribed to the synergetic effect of the in situ formed Pr3Al11 MgF2 PrH3 and Mg2NiH4 nanoparticles. This work provides an important inspiration for the improvement of hydrogen storage properties in Mg-based materials.
Control of Electrons’ Spin Eliminates Hydrogen Peroxide Formation During Water Splitting
Jul 2017
Publication
The production of hydrogen through water splitting in a photoelectrochemical cell suffers from an overpotential that limits the efficiencies. In addition hydrogen-peroxide formation is identified as a competing process affecting the oxidative stability of photoelectrodes. We impose spin-selectivity by coating the anode with chiral organic semiconductors from helically aggregated dyes as sensitizers; Zn-porphyrins and triarylamines. Hydrogen peroxide formation is dramatically suppressed while the overall current through the cell correlating with the water splitting process is enhanced. Evidence for a strong spin-selection in the chiral semiconductors is presented by magnetic conducting (mc-)AFM measurements in which chiral and achiral Zn-porphyrins are compared. These findings contribute to our understanding of the underlying mechanism of spin selectivity in multiple electron-transfer reactions and pave the way toward better chiral dye-sensitized photoelectrochemical cells.
H2 Green Hydrogen Discussion Paper: Victorian Hydrogen Investment Program
Nov 2019
Publication
This discussion paper is for stakeholders who would like to shape the development of Victoria’s emerging green hydrogen sector identifying competitive advantages and priority focus areas for industry and the Victorian Government.<br/>The Victorian Government is using this paper to focus on the economic growth and sector development opportunities emerging for a Victorian hydrogen industry powered by renewable energy also known as ‘green’ hydrogen. In addition this paper seeks input from all stakeholders on how where and when the Victorian Government can act to establish a thriving green hydrogen economy.<br/>Although green hydrogen is the only type of hydrogen production within the scope of this discussion paper the development of the VHIP aligns with the policies projects and initiatives which support these other forms of hydrogen production. The VHIP is considering the broad policy landscape and actively coordinating with related hydrogen programs policies and strategies under development including the Council of Australian Governments (COAG) Energy Council’s National Hydrogen Strategy to ensure a complementary approach. In Victoria there are several programs and strategies in development and underway that have linkages with hydrogen and the VHIP.
Improvement in Hydrogen Production with Plasma Reformer System
Jun 2016
Publication
In our previous studies of a plasma reformer system the effects of temperature of the reactants and input voltage have not been considered. In the present investigation the plasma reformer system has been modified to study the influence of the reactants’ temperature and input voltage on hydrogen production experimentally. The plasma reformer system includes a supersonic atomizer a plasma generator and a controlling device. In the experiment the operating parameters include the temperature of the reactants and the input voltage. The temperature of the reactants varies from 25 °C to 50 °C and the input voltage ranges from 12.5 V to 14.5 V. Results show that the increase in temperature of the reactants and input voltage will improve the production of hydrogen. In addition the improvement of heating on the reactants shows significant influence on hydrogen production.
Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach
Aug 2010
Publication
Due to energy and environmental issues hydrogen has become a more attractive clean fuel. Furthermore there is high interest in producing hydrogen from biomass with a view to sustainability. The thermochemical process for hydrogen production i.e. gasification is the focus of this work. This paper discusses the mathematical modeling of hydrogen production process via biomass steam gasification with calcium oxide as sorbent in a gasifier. A modelling framework consisting of kinetics models for char gasification methanation Boudouard methane reforming water gas shift and carbonation reactions to represent the gasification and CO2 adsorption in the gasifier is developed and implemented in MATLAB. The scope of the work includes an investigation of the influence of the temperature steam/biomass ratio and sorbent/biomass ratio on the amount of hydrogen produced product gas compositions and carbon conversion. The importance of different reactions involved in the process is also discussed. It is observed that hydrogen production and carbon conversion increase with increasing temperature and steam/biomass ratio. The model predicts a maximum hydrogen mole fraction in the product gas of 0.81 occurring at 950 K steam/biomass ratio of 3.0 and sorbent/biomass ratio of 1.0. In addition at sorbent/biomass ratio of 1.52 purity of H2 can be increased to 0.98 mole fraction with all CO2 present in the system adsorbed.
The Role of Hydrogen in the Transition from a Petroleum Economy to a Low-carbon Society
Jun 2021
Publication
A radical decarbonization pathway for the Norwegian society towards 2050 is presented. The paper focuses on the role of hydrogen in the transition when present Norwegian petroleum export is gradually phased out. The study is in line with EU initiatives to secure cooperation opportunities with neighbouring countries to establish an international hydrogen market. Three analytical perspectives are combined. The first uses energy models to investigate the role of hydrogen in an energy and power market perspective without considering hydrogen export. The second uses an economic equilibrium model to examine the potential role of hydrogen export in value creation. The third analysis is a socio-technical case study on the drivers and barriers for hydrogen production in Norway. Main conclusions are that access to renewable power and hydrogen are prerequisites for decarbonization of transport and industrial sectors in Norway and that hydrogen is a key to maintain a high level of economic activity. Structural changes in the economy impacts of new technologies and key enablers and barriers in this transition are discussed.
Selected Aspects of Hydrogen Production via Catalytic Decomposition of Hydrocarbons
Feb 2021
Publication
Owing to the high hydrogen content hydrocarbons are considered as an alternative source for hydrogen energy purposes. Complete decomposition of hydrocarbons results in the formation of gaseous hydrogen and solid carbonaceous by-product. The process is complicated by the methane formation reaction when the released hydrogen interacts with the formed carbon deposits. The present study is focused on the effects of the reaction mixture composition. Variations in the inlet hydrogen and methane concentrations were found to influence the carbon product’s morphology and the hydrogen production efficiency. The catalyst containing NiO (82 wt%) CuO (13 wt%) and Al2O3 (5 wt%) was prepared via a mechanochemical activating procedure. Kinetics of the catalytic process of hydrocarbons decomposition was studied using a reactor equipped with McBain balances. The effects of the process parameters were explored in a tubular quartz reactor with chromatographic analysis of the outlet gaseous products. In the latter case the catalyst was loaded piecemeal. The texture and morphology of the produced carbon deposits were investigated by nitrogen adsorption and electron microscopy techniques.
No more items...