Production & Supply Chain
Autonomous Hydrogen Production for Proton Exchange Membrane Fuel Cells PEMFC
Apr 2020
Publication
This paper focuses on hydrogen production for green mobility applications (other applications are currently under investigation). Firstly a brief state of the art of hydrogen generation by hydrolysis with magnesium is shown. The hydrolysis performance of Magnesium powder ball–milled along with different additives (graphite and transition metals TM = Ni Fe and Al) is taken for comparison. The best performance was observed with Mg–10 wt.% g mixtures (95% of theoretical hydrogen generation yield in about 3 min). An efficient solution to control this hydrolysis reaction is proposed to produce hydrogen on demand and to feed a PEM fuel cell. Tests on a bench fitted with a 100 W Proton Exchange Membrane (PEM) fuel cell have demonstrated the technological potential of this solution for electric assistance applications in the field of light mobility.
How Green is Blue Hydrogen?
Jul 2021
Publication
Hydrogen is often viewed as an important energy carrier in a future decarbonized world. Currently most hydrogen is produced by steam reforming of methane in natural gas (“gray hydrogen”) with high carbon dioxide emissions. Increasingly many propose using carbon capture and storage to reduce these emissions producing so-called “blue hydrogen” frequently promoted as low emissions. We undertake the first effort in a peer-reviewed paper to examine the lifecycle greenhouse gas emissions of blue hydrogen accounting for emissions of both carbon dioxide and unburned fugitive methane. Far from being low carbon greenhouse gas emissions from the production of blue hydrogen are quite high particularly due to the release of fugitive methane. For our default assumptions (3.5% emission rate of methane from natural gas and a 20-year global warming potential) total carbon dioxide equivalent emissions for blue hydrogen are only 9%-12% less than for gray hydrogen. While carbon dioxide emissions are lower fugitive methane emissions for blue hydrogen are higher than for gray hydrogen because of an increased use of natural gas to power the carbon capture. Perhaps surprisingly the greenhouse gas footprint of blue hydrogen is more than 20% greater than burning natural gas or coal for heat and some 60% greater than burning diesel oil for heat again with our default assumptions. In a sensitivity analysis in which the methane emission rate from natural gas is reduced to a low value of 1.54% greenhouse gas emissions from blue hydrogen are still greater than from simply burning natural gas and are only 18%-25% less than for gray hydrogen. Our analysis assumes that captured carbon dioxide can be stored indefinitely an optimistic and unproven assumption. Even if true though the use of blue hydrogen appears difficult to justify on climate ground
Onshore, Offshore or In-turbine Electrolysis? Techno-economic Overview of Alternative Integration Designs for Green Hydrogen Production into Offshore Wind Power Hubs
Aug 2021
Publication
Massive investments in offshore wind power generate significant challenges on how this electricity will be integrated into the incumbent energy systems. In this context green hydrogen produced by offshore wind emerges as a promising solution to remove barriers towards a carbon-free economy in Europe and beyond. Motivated by the recent developments in Denmark with the decision to construct the world’s first artificial Offshore Energy Hub this paper investigates how the lowest cost for green hydrogen can be achieved. A model proposing an integrated design of the hydrogen and offshore electric power infrastructure determining the levelised costs of both hydrogen and electricity is proposed. The economic feasibility of hydrogen production from 2 Offshore Wind Power Hubs is evaluated considering the combination of different electrolyser placements technologies and modes of operations. The results show that costs down to 2.4 €/kg can be achieved for green hydrogen production offshore competitive with the hydrogen costs currently produced by natural gas. Moreover a reduction of up to 13% of the cost of wind electricity is registered when an electrolyser is installed offshore shaving the peak loads.
Fuel Cells and Hydrogen Observatory Hydrogen Molecule Market Report
Sep 2021
Publication
The purpose of the hydrogen molecule market analysis is to track changes in the structure of hydrogen supply and demand in Europe. This report is mainly focused on presenting the current landscape - that will allow for future year-on-year comparisons in order to assess the progress Europe is making with regards to deployment of clean hydrogen production capacities as well as development of demand for clean hydrogen from emerging new hydrogen applications in the mobility sector or in industry. The following report summarizes the hydrogen molecule market landscape and contains data about hydrogen production and consumption in the EEA countries (EU countries together with Switzerland Norway Iceland and Liechtenstein). Hydrogen production capacity is presented by country and by technology whereas the hydrogen consumption data is presented by country and by end-use sector. The analysis undertaken for this report was completed using data available at the end of 2019. Hydrogen market (on both the demand and supply side) is dominated by ammonia and refining industries with three countries (DE NL PL) responsible for almost half hydrogen consumption. Today hydrogen is overwhelmingly produced by reforming of fossil fuels (mostly natural gas). Clean hydrogen production capacities are insignificant with blue hydrogen capacities at below 1% and green hydrogen production capacity below 0.1% of total.
Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe
Sep 2021
Publication
The power-to-methane technology is promising for long-term high-capacity energy storage. Currently there are two different industrial-scale methanation methods: the chemical one (based on the Sabatier reaction) and the biological one (using microorganisms for the conversion). The second method can be used not only to methanize the mixture of pure hydrogen and carbon dioxide but also to methanize the hydrogen and carbon dioxide content of low-quality gases such as biogas or deponia gas enriching them to natural gas quality; therefore the applicability of biomethanation is very wide. In this paper we present an overview of the existing and planned industrial-scale biomethanation facilities in Europe as well as review the facilities closed in recent years after successful operation in the light of the scientific and socioeconomic context. To outline key directions for further developments this paper interconnects biomethanation projects with the competitiveness of the energy sector in Europe for the first time in the literature. The results show that future projects should have an integrative view of electrolysis and biomethanation as well as hydrogen storage and utilization with carbon capture and utilization (HSU&CCU) to increase sectoral competitiveness by enhanced decarbonization.
Modeling of a High Temperature Heat Exchanger to Supply Hydrogen Required by Fuel Cells Through Reforming Process
Sep 2021
Publication
Hydrogen as a clean fuel and a new energy source can be produced by various methods. One of these common and economical methods of hydrogen production is hydrocarbon vapor modification. This research studies hydrogen production using a propane steam reforming process inside a high temperature heat exchanger. The application of this high temperature heat exchanger in the path of the power supply line is a fuel cell stack unit to supply the required hydrogen of the device. The heat exchanger consists of a set of cylindrical tubes housed inside a packed-bed called a reformer. The energy required to perform the reaction is supplied through these tubes in which high temperature gas is injected and the heat exchanger is insulated to prevent energy loss. The results show that at maximum temperature and velocity of hot gases (900 K and 1.5 m s−1 ) complete consumption of propane can be observed before the outlet of the reformer. Also in the mentioned conditions the maximum hydrogen production (above 92%) is obtained. The best permeability under which the system can perform best is 1×10−9 m2.
Computational Intelligence Approach for Modeling Hydrogen Production: A Review
Mar 2018
Publication
Hydrogen is a clean energy source with a relatively low pollution footprint. However hydrogen does not exist in nature as a separate element but only in compound forms. Hydrogen is produced through a process that dissociates it from its compounds. Several methods are used for hydrogen production which first of all differ in the energy used in this process. Investigating the viability and exact applicability of a method in a specific context requires accurate knowledge of the parameters involved in the method and the interaction between these parameters. This can be done using top-down models relying on complex mathematically driven equations. However with the raise of computational intelligence (CI) and machine learning techniques researchers in hydrology have increasingly been using these methods for this complex task and report promising results. The contribution of this study is to investigate the state of the art CI methods employed in hydrogen production and to identify the CI method(s) that perform better in the prediction assessment and optimization tasks related to different types of Hydrogen production methods. The resulting analysis provides in-depth insight into the different hydrogen production methods modeling technique and the obtained results from various scenarios integrating them within the framework of a common discussion and evaluation paper. The identified methods were benchmarked by a qualitative analysis of the accuracy of CI in modeling hydrogen production providing extensive overview of its usage to empower renewable energy utilization.
Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review
Nov 2020
Publication
Hydrogen (H2) has attained significant benefits as an energy carrier due to its gross calorific value (GCV) and inherently clean operation. Thus hydrogen as a fuel can lead to global sustainability. Conventional H2 production is predominantly through fossil fuels and electrolysis is now identified to be most promising for H2 generation. This review describes the recent state of the art and challenges on ultra-pure H2 production through methanol electrolysis that incorporate polymer electrolyte membrane (PEM). It also discusses about the methanol electrochemical reforming catalysts as well as the impact of this process via PEM. The efficiency of H2 production depends on the different components of the PEM fuel cells which are bipolar plates current collector and membrane electrode assembly. The efficiency also changes with the nature and type of the fuel fuel/oxygen ratio pressure temperature humidity cell potential and interfacial electronic level interaction between the redox levels of electrolyte and band gap edges of the semiconductor membranes. Diverse operating conditions such as concentration of methanol cell temperature catalyst loading membrane thickness and cell voltage that affect the performance are critically addressed. Comparison of various methanol electrolyzer systems are performed to validate the significance of methanol economy to match the future sustainable energy demands.
Hydrogen Gas Quality for Gas Network Injection: State of the Art of Three Hydrogen Production Methods
Jun 2021
Publication
The widescale distribution of hydrogen through gas networks is promoted as a viable and cost-efficient option for optimising its application in heat industry and transport. It is a key step towards achieving decarbonisation targets in the UK. A key consideration before the injection of hydrogen into the UK gas networks is an assessment of the difference in hydrogen contaminants presence from different production methods. This information is essential for gas regulation and for further purification requirements. This study investigates the level of ISO 14687 Grade D contaminants in hydrogen from steam methane reforming proton exchange membrane water electrolysis and alkaline electrolysis. Sampling and analysis of hydrogen were carried out by the National Physical Laboratory following ISO 21087 guidance. The results of analysis indicated the presence of nitrogen in hydrogen from electrolysis and water carbon dioxide and particles in all samples analysed. The contaminants were at levels below or at the threshold limits set by ISO 14687 Grade D. This indicates that the investigated production methods are not a source of contaminants for the eventual utilisation of hydrogen in different applications including fuel cell electric vehicles (FCEV’s). The gas network infrastructure will require a similar analysis to determine the likelihood of contamination to hydrogen gas.
Durability of Anion Exchange Membrane Water Electrolyzers
Apr 2021
Publication
Interest in the low-cost production of clean hydrogen is growing. Anion exchange membrane water electrolyzers (AEMWEs) are considered one of the most promising sustainable hydrogen production technologies because of their ability to split water using platinum group metal-free catalysts less expensive anode flow fields and bipolar plates. Critical to the realization of AEMWEs is understanding the durability-limiting factors that restrict the long-term use of these devices. This article presents both durability-limiting factors and mitigation strategies for AEMWEs under three operation modes i.e. pure water-fed (no liquid electrolyte) concentrated KOH-fed and 1 wt% K2CO3-fed operating at a differential pressure of 100 psi. We examine extended-term behaviors of AEMWEs at the single-cell level and connect their behavior with the electrochemical chemical and mechanical instability of single-cell components. Finally we discuss the pros and cons of AEMWEs under these operation modes and provide direction for long-lasting AEMWEs with highly efficient hydrogen production capabilities.
Microalgal Hydrogen Production in Relation to Other Biomass‐Based Technologies—A Review
Sep 2021
Publication
Hydrogen is an environmentally friendly biofuel which if widely used could reduce atmospheric carbon dioxide emissions. The main barrier to the widespread use of hydrogen for power generation is the lack of technologically feasible and—more importantly—cost‐effective methods of production and storage. So far hydrogen has been produced using thermochemical methods (such as gasification pyrolysis or water electrolysis) and biological methods (most of which involve anaerobic digestion and photofermentation) with conventional fuels waste or dedicated crop biomass used as a feedstock. Microalgae possess very high photosynthetic efficiency can rapidly build biomass and possess other beneficial properties which is why they are considered to be one of the strongest contenders among biohydrogen production technologies. This review gives an account of present knowledge on microalgal hydrogen production and compares it with the other available biofuel production technologies.
Hydrogen and Oxygen Production via Water Splitting in a Solar-Powered Membrane Reactor—A Conceptual Study
Jan 2021
Publication
Among the processes for producing hydrogen and oxygen from water via the use of solar energy water splitting has the advantage of being carried out in onestep. According to thermodynamics this process exhibits conversions of practical interest at very high temperatures and needs efficient separation systems in order to separate the reaction products hydrogen and oxygen. In this conceptual work the behaviour of a membrane reactor that uses two membranes perm-selective to hydrogen and oxygen is investigated in the temperature range 2000–2500 °C of interest for coupling this device with solar receivers. The effect of the reaction pressure has been evaluated at 0.5 and 1 bar while the permeate pressure has been fixed at 100 Pa. As a first result the use of the membrane perm-selective to oxygen in addition to the hydrogen one has improved significantly the reaction conversion that for instance at 0.5 bar and 2000 °C moves from 9.8% up to 18.8%. Based on these critical data a preliminary design of a membrane reactor consisting of a Ta tubular membrane separating the hydrogen and a hafnia camera separating the oxygen is presented: optimaloperating temperature of the reactor results in being around 2500 °C a value making impracticable its coupling with solar receivers even in view of an optimistic development of this technology. The study has verified that at 2000 °C with a water feed flow rate of 1000 kg h−1 about 200 and 100 m3 h−1 of hydrogen and oxygen are produced. In this case a surface of the hafnia membrane of the order of hundreds m2 is required: the design of such a membrane device may be feasible when considering special reactor configurations.
Solar Thermochemical Hydrogen Production in the USA
Jul 2021
Publication
Hydrogen produced from renewable energy has the potential to decarbonize parts of the transport sector and many other industries. For a sustainable replacement of fossil energy carriers both the environmental and economic performance of its production are important. Here the solar thermochemical hydrogen pathway is characterized with a techno-economic and life-cycle analysis. Assuming a further increase of conversion efficiency and a reduction of investment costs it is found that hydrogen can be produced in the United States of America at costs of 2.1–3.2 EUR/kg (2.4–3.6 USD/kg) at specific greenhouse gas emissions of 1.4 kg CO2-eq/kg. A geographical potential analysis shows that a maximum of 8.4 × 1011 kg per year can be produced which corresponds to about twelve times the current global and about 80 times the current US hydrogen production. The best locations are found in the Southwest of the US which have a high solar irradiation and short distances to the sea which is beneficial for access to desalinated water. Unlike for petrochemical products the transport of hydrogen could potentially present an obstacle in terms of cost and emissions under unfavorable circumstances. Given a large-scale deployment low-cost transport seems however feasible.
Hydrogen for Australia’s Future
Aug 2018
Publication
The Hydrogen Strategy Group chaired by Australia’s Chief Scientist Dr Alan Finkel has today released a briefing paper on the potential domestic and export opportunities of a hydrogen industry in Australia.
Like natural gas hydrogen can be used to heat buildings and power vehicles. Unlike natural gas or petrol when hydrogen is burned there are no CO2 emissions. The only by-products are water vapour and heat.
Hydrogen is the most abundant element in the universe not freely available as a gas on Earth but bound into many common substances including water and fossil fuels.
Hydrogen was first formally presented as a credible alternative energy source in the early 1970s but never proved competitive at scale as an energy source – until now. We find that the worldwide demand for hydrogen is set to increase substantially over coming decades driven by Japan’s decision to put imported hydrogen at the heart of its economy. Production costs are falling technologies are progressing and the push for non-nuclear low-emissions fuels is building momentum. We conclude that Australia is remarkably well-positioned to benefit from the growth of hydrogen industries and markets.
Like natural gas hydrogen can be used to heat buildings and power vehicles. Unlike natural gas or petrol when hydrogen is burned there are no CO2 emissions. The only by-products are water vapour and heat.
Hydrogen is the most abundant element in the universe not freely available as a gas on Earth but bound into many common substances including water and fossil fuels.
Hydrogen was first formally presented as a credible alternative energy source in the early 1970s but never proved competitive at scale as an energy source – until now. We find that the worldwide demand for hydrogen is set to increase substantially over coming decades driven by Japan’s decision to put imported hydrogen at the heart of its economy. Production costs are falling technologies are progressing and the push for non-nuclear low-emissions fuels is building momentum. We conclude that Australia is remarkably well-positioned to benefit from the growth of hydrogen industries and markets.
Platinum Single-atom Catalyst Coupled with Transition Metal/Metal Oxide Heterostructure for Accelerating Alkaline Hydrogen Evolution Reaction
Jun 2021
Publication
Single-atom catalysts provide an effective approach to reduce the amount of precious metals meanwhile maintain their catalytic activity. However the sluggish activity of the catalysts for alkaline water dissociation has hampered advances in highly efficient hydrogen production. Herein we develop a single-atom platinum immobilized NiO/Ni heterostructure (PtSA-NiO/Ni) as an alkaline hydrogen evolution catalyst. It is found that Pt single atom coupled with NiO/Ni heterostructure enables the tunable binding abilities of hydroxyl ions (OH*) and hydrogen (H*) which efficiently tailors the water dissociation energy and promotes the H* conversion for accelerating alkaline hydrogen evolution reaction. A further enhancement is achieved by constructing PtSA-NiO/Ni nanosheets on Ag nanowires to form a hierarchical three-dimensional morphology. Consequently the fabricated PtSA-NiO/Ni catalyst displays high alkaline hydrogen evolution performances with a quite high mass activity of 20.6 A mg−1 for Pt at the overpotential of 100 mV significantly outperforming the reported catalysts.
Introducing Power-to-H3: Combining Renewable Electricity with Heat, Water and Hydrogen Production and Storage in a Neighbourhood
Oct 2019
Publication
In the transition from fossil to renewable energy the energy system should become clean while remaining reliable and affordable. Because of the intermittent nature of both renewable energy production and energy demand an integrated system approach is required that includes energy conversion and storage. We propose a concept for a neighbourhood where locally produced renewable energy is partly converted and stored in the form of heat and hydrogen accompanied by rainwater collection storage purification and use (Power-to-H3). A model is developed to create an energy balance and perform a techno-economic analysis including an analysis of the avoided costs within the concept. The results show that a solar park of 8.7 MWp combined with rainwater collection and solar panels on roofs can supply 900 houses over the year with heat (20 TJ) via an underground heat storage system as well as with almost half of their water demand (36000m3) and 540 hydrogen electric vehicles can be supplied with hydrogen (90 tonnes). The production costs for both hydrogen (8.7 €/kg) and heat (26 €/GJ) are below the current end user selling price in the Netherlands (10 €/kg and 34 €/GJ) making the system affordable. When taking avoided costs into account the prices could decrease with 20–26% while at the same time avoiding 3600 tonnes of CO2 a year. These results make clear that it is possible to provide a neighbourhood with all these different utilities completely based on solar power and rainwater in a reliable affordable and clean way.
Enhanced Performance and Durability of Low Catalyst Loading PEM Water Electrolyser Based on a Short-side Chain Perfluorosulfonic Ionomer
Sep 2016
Publication
Water electrolysis supplied by renewable energy is the foremost technology for producing ‘‘green” hydrogen for fuel cell vehicles. In addition the ability to rapidly follow an intermittent load makes electrolysis an ideal solution for grid-balancing caused by differences in supply and demand for energy generation and consumption. Membrane-electrode assemblies (MEAs) designed for polymer electrolyte membrane (PEM) water electrolysis based on a novel short-side chain (SSC) perfluorosulfonic acid (PFSA) membrane Aquivion with various cathode and anode noble metal loadings were investigated in terms of both performance and durability. Utilizing a nanosized Ir0.7Ru0.3O solid solution anode catalyst and a supported Pt/C cathode catalyst in combination with the Aquivion membrane gave excellent electrolysis performances exceeding 3.2 A cm-2 at 1.8 V terminal cell voltage ( 80% efficiency) at 90 ºC in the presence of a total catalyst loading of 1.6 mg cm−2. A very small loss of efficiency corresponding to 30 mV voltage increase was recorded at 3 A cm 2 using a total noble metal catalyst loading of less than 0.5 mg cm−2 (compared to the industry standard of 2 mg cm−2). Steady-state durability tests carried out for 1000 h at 1 A cm -2 showed excellent stability for the MEA with total noble metal catalyst loading of 1.6 mg cm−2 (cell voltage increase 5 lV/h). Moderate degradation rate (cell voltage increase 15 lV/h) was recorded for the low loading 0.5 mg cm-2 MEA. Similar stability characteristics were observed in durability tests at 3 A cm−2. These high performance and stability characteristics were attributed to the enhanced proton conductivity and good stability of the novel membrane the optimized structural properties of the the enhanced proton conductivity and good stability of the novel membrane the optimized structural properties of the the enhanced proton conductivity and good stability of the novel membrane the optimized structural properties of the Ir and Ru oxide solid solution and the enrichment of Ir species on the surface for the anodic catalyst.
Experimental Characterization of an Alkaline Electrolyser and a Compression System for Hydrogen Production and Storage
Aug 2021
Publication
Storing renewable energy in chemicals like hydrogen can bring various benefits like high energy density seasonal storability possible cost reduction of the final product and the potential to let renewable power penetrate other markets and to overcome their intermittent availability. In the last year’s production of this gas from renewable energy sources via electrolysis has grown its reputation as one feasible solution to satisfy future zero-emission energy demand. To extend the exploitation of Renewable Energy Source (RES) small-scale conversion plants seem to be an interesting option. In view of a possible widespread adoption of these types of plants the authors intend to present the experimental characterization of a small-scale hydrogen production and storage plant. The considered experimental plant is based on an alkaline electrolyser and an air-driven hydrogen compression and storage system. The results show that the hydrogen production-specific consumption is on average 77 kWh/kgH2 . The hydrogen compressor energy requirement is on average 15 kWh/kgH2 (data referred to the driving compressed air). The value is higher than data found in literature (4.4–9.3 kWh/kgH2 ) but the difference can be attributed to the small size of the considered compressor and the choice to limit the compression stages.
Numerical Study on Optics and Heat Transfer of Solar Reactor for Methane Thermal Decomposition
Oct 2021
Publication
This study aims to reduce greenhouse gas emissions to the atmosphere and effectively utilize wasted resources by converting methane the main component of biogas into hydrogen. Therefore a reactor was developed to decompose methane into carbon and hydrogen using solar thermal sources instead of traditional energy sources such as coal and petroleum. The optical distributions were analyzed using TracePro a Monte Carlo ray-tracing-based program. In addition Fluent a computational fluid dynamics program was used for the heat and mass transfer and chemical reaction. The cylindrical indirect heating reactor rotates at a constant speed to prevent damage by the heat source concentrated at the solar furnace. The inside of the reactor was filled with a porous catalyst for methane decomposition and the outside was surrounded by insulation to reduce heat loss. The performance of the reactor according to the cavity model was calculated when solar heat was concentrated on the reactor surface and methane was supplied into the reactor in an environment with a solar irradiance of 700 W/m2 wind speed of 1 m/s and outdoor temperature of 25 °C. As a result temperature methane mass fraction distribution and heat loss amounts for the two cavities were obtained and it was found that the effect on the conversion rate was largely dependent on a temperature over 1000 °C in the reactor. Moreover the heat loss of the full-cavity model decreased by 12.5% and the methane conversion rate increased by 33.5% compared to the semi-cavity model. In conclusion the high-temperature environment of the reactor has a significant effect on the increase in conversion rate with an additional effect of reducing heat loss.
Highly Selective Porous Separator with Thin Skin Layer for Alkaline Water Electrolysis
Feb 2022
Publication
Advanced porous separators with thin selective skin layers to reduce the hydrogen permeation are developed for applications in alkaline water electrolysis. A thin skin layer based on crosslinked polyvinyl alcohol (cPVA) is fabricated on a porous substrate by a facile and scalable ultrasonic spray coating process. As the number of ultrasonic spraying cycles increases the resulting separator demonstrates a decrease in the large-diameter pore fraction an increase in the bubble-point pressure and a reduction in the hydrogen permeability without a significant increase in the areal resistance. As a result the optimized separator with a cPVA skin layer combines a low ionic resistance of 0.267 Ω cm2 a high bubble point pressure of 2.71 bar and a low hydrogen permeability of 1.12 × 10− 11 mol cm− 2 s − 1 bar− 1 . The electrolytic cell assembled with cPVAZ-30 achieves current densities of 861 mA cm− 2 and 1890 mA cm− 2 at 2.0 V and 2.6 V respectively in a 30 wt% KOH electrolyte solution at 80 ◦C.
No more items...