Production & Supply Chain
Advances in Reforming and Partial Oxidation of Hydrocarbons for Hydrogen Production and Fuel Cell Applications
May 2019
Publication
One of the most attractive routes for the production of hydrogen or syngas for use in fuel cell applications is the reforming and partial oxidation of hydrocarbons. The use of hydrocarbons in high temperature fuel cells is achieved through either external or internal reforming. Reforming and partial oxidation catalysis to convert hydrocarbons to hydrogen rich syngas plays an important role in fuel processing technology. The current research in the area of reforming and partial oxidation of methane methanol and ethanol includes catalysts for reforming and oxidation methods of catalyst synthesis and the effective utilization of fuel for both external and internal reforming processes. In this paper the recent progress in these areas of research is reviewed along with the reforming of liquid hydrocarbons from this an overview of the current best performing catalysts for the reforming and partial oxidizing of hydrocarbons for hydrogen production is summarized.
The ‘Green’ Ni-UGSO Catalyst for Hydrogen Production under Various Reforming Regimes
Jun 2021
Publication
A new spinelized Ni catalyst (Ni-UGSO) using Ni(NO3)2·6H2O as the Ni precursor was prepared according to a less material intensive protocol. The support of this catalyst is a negative-value mining residue UpGraded Slag Oxide (UGSO) produced from a TiO2 slag production unit. Applied to dry reforming of methane (DRM) at atmospheric pressure T = 810 °C space velocity of 3400 mL/(h·g) and molar CO2/CH4 = 1.2 Ni-UGSO gives a stable over 168 h time-on-stream methane conversion of 92%. In this DRM reaction optimization study: (1) the best performance is obtained with the 10–13 wt% Ni load; (2) the Ni-UGSO catalysts obtained from two different batches of UGSO demonstrated equivalent performances despite their slight differences in composition; (3) the sulfur-poisoning resistance study shows that at up to 5.5 ppm no Ni-UGSO deactivation is observed. In steam reforming of methane (SRM) Ni-UGSO was tested at 900 °C and a molar ratio of H2O/CH4 = 1.7. In this experimental range CH4 conversion rapidly reached 98% and remained stable over 168 h time-on-stream (TOS). The same stability is observed for H2 and CO yields at around 92% and 91% respectively while H2/CO was close to 3. In mixed (dry and steam) methane reforming using a ratio of H2O/CH4 = 0.15 and CO2/CH4 = 0.97 for 74 h and three reaction temperature levels (828 °C 847 °C and 896 °C) CH4 conversion remains stable; 80% at 828 °C (26 h) 85% at 847 °C (24 h) and 95% at 896 °C (24 h). All gaseous streams have been analyzed by gas chromatography. Both fresh and used catalysts are analyzed by scanning electron microscopy-electron dispersive X-ray spectroscopy (SEM-EDXS) X-ray diffraction (XRD) and thermogravimetric analysis (TGA) coupled with mass spectroscopy (MS) and BET Specific surface. In the reducing environment of reforming such catalytic activity is mainly attributed to (a) alloys such as FeNi FeNi3 and Fe3Ni2 (reduction of NiFe2O4 FeNiAlO4) and (b) to the solid solution NiO-MgO. The latter is characterized by a molecular distribution of the catalytically active Ni phase while offering an environment that prevents C deposition due to its alkalinity.
The Global Status of CCS 2020: Vital to Achieve Net Zero
Dec 2020
Publication
The Global Status of CCS Report 2020 demonstrates the vital role of carbon capture and storage technologies (CCS) in reducing emissions to net-zero by 2050 as well as documenting the current status and important milestones for the technology over the past 12 months.<br/>The report provides detailed information on and analyses of the global CCS facility pipeline international policy perspectives CO2 storage and the CCS legal and regulatory environment.<br/>In addition four regional updates provide further detail about CCS progress across the Americas Europe Asia Pacific and the Gulf Cooperation Council States and a Technology section provides updates on key innovations and applications of CCS.
Power-to-fuels Via Solid-oxide Electrolyzer: Operating Window and Techno-economics
May 2019
Publication
Power-to-fuel systems via solid-oxide electrolysis are promising for storing excess renewable electricity by efficient electrolysis of steam (or co-electrolysis of steam and CO2) into hydrogen (or syngas) which can be further converted into synthetic fuels with plant-wise thermal integration. Electrolysis stack performance and durability determine the system design performance and long-term operating strategy; thus solid-oxide electrolyzer based power-to-fuels were investigated from the stack to system levels. At the stack level the data from a 6000-h stack testing under laboratory isothermal conditions were used to calibrate a quasi-2D model which enables to predict practical isothermal stack performance with reasonable accuracy. Feasible stack operating windows meeting various design specifications (e.g. specific syngas composition) were further generated to support the selection of operating points. At the system level with the chosen similar stack operating points various power-to-fuel systems including power-to-hydrogen power-to-methane power-to-methanol (dimethyl ether) and power-to-gasoline were compared techno-economically considering system-level heat integration. Several operating strategies of the stack were compared to address the increase in stack temperature due to degradation. The modeling results show that the system efficiency for producing H2 methane methanol/dimethyl ether and gasoline decreases sequentially from 94% (power-to-H2) to 64% (power-to-gasoline) based on a higher heating value. Co-electrolysis which allows better heat integration can improve the efficiency of the systems with less exothermic fuel-synthesis processes (e.g. methanol/dimethyl ether) but offers limited advantages for power-to-methane and power-to-gasoline systems. In a likely future scenario where the growing amount of electricity from renewable sources results in increasing periods of a negative electricity price solid oxide electrolyser based power-to-fuel systems are highly suitable for levelling the price fluctuations in an economic way.
Interfacial Confinement of Ni-V2O3 in Molten Salts for Enhanced Electrocatalytic Hydrogen Evolution
Apr 2020
Publication
Implementation of non-precious electrocatalysts is key-enabling for water electrolysis to relieve challenges in energy and environmental sustainability. Self-supporting Ni-V2O3.electrodes consisting of nanostrip-like V2O3.perpendicularly anchored on Ni meshes are herein constructed via the electrochemical reduction of soluble NaVO3 in molten salts for enhanced electrocatalytic hydrogen evolution. Such a special configuration in morphology and composition creates a well confined interface between Ni and V2O3. Experimental and Density-Functional-Theory results confirm that the synergy between Ni and V2O3.accelerates the dissociation of H2O for forming hydrogen intermediates and enhances the combination of H* for generating H2.
Hybrid Hydrogen PEM Fuel Cell and Batteries Without DC–DC Converter
Sep 2013
Publication
Concerns about greenhouse gases as well as the price and security of oil supply have acted as a spur to sustainable automobile development. The hydrogen fuel cells electric vehicle (HFCEV) is generally recognised by leading automobile manufacturers and scientists as one of the optimum technologies for long-term future low carbon vehicle. In a typical HFCEV power train a DC–DC converter is required to balance the voltage difference between the fuel cells (FCs) stack and batteries. However research shows that a considerable amount of energy generated by the hydrogen FCs stack is deplete during this conversion process as heat. This experiment aims to improve the power train efficiency by eliminating the DC–DC converter by finding the best combination of FC stack and batteries matching the size and capacity of the electrical components.
Hydrogen Production by Steam Reforming of Ethanol on Rh-Pt Catalysts: Influence of CeO2, ZrO2, and La2O3 as Supports
Nov 2015
Publication
CeO2- ZrO2- and La2O3-supported Rh-Pt catalysts were tested to assess their ability to catalyze the steam reforming of ethanol (SRE) for H2 production. SRE activity tests were performed using EtOH:H2O:N2 (molar ratio 1:3:51) at a gaseous space velocity of 70600 h−1 between 400 and 700 °C at atmospheric pressure. The SRE stability of the catalysts was tested at 700 °C for 27 h time on stream under the same conditions. RhPt/CeO2 which showed the best performance in the stability test also produced the highest H2 yield above 600 °C followed by RhPt/La2O3 and RhPt/ZrO2. The fresh and aged catalysts were characterized by TEM XPS and TGA. The higher H2 selectivity of RhPt/CeO2 was ascribed to the formation of small (~5 nm) and stable particles probably consistent of Rh-Pt alloys with a Pt surface enrichment. Both metals were oxidized and acted as an almost constant active phase during the stability test owing to strong metal-support interactions as well as the superior oxygen mobility of the support. The TGA results confirmed the absence of carbonaceous residues in all the aged catalysts.
The Role of Hydrogen in Achieving Net Zero: Parliamentary Inquiry
Mar 2021
Publication
A key component of the Government's recently announced ‘Ten Point Plan for a Green Industrial Revolution’ is 'Driving the Growth of Low Carbon Hydrogen'. The plan outlined a range of measures to support the development and adoption of hydrogen including a £240 million 'Net Zero Hydrogen Fund'. Noting this and the further £81 million allocated for hydrogen heating trials in the 2020 Spending Review the House of Commons Science and Technology Committee is today launching a new inquiry into the role of hydrogen in achieving Net Zero.
Following recommendations from the Committee on Climate Change that the Government develop a strategy for hydrogen use and should aim for largescale hydrogen trials to begin in the early 2020s the Committee seeks to ensure that the Government's intended plan will be suitable and effective. The Committee will also assess the infrastructure required for hydrogen as a Net Zero fuel and examine progress made so far internationally to determine the viability of hydrogen as a significant contributor to achieving Net Zero.
All documents are in the Supplements tab above.
Following recommendations from the Committee on Climate Change that the Government develop a strategy for hydrogen use and should aim for largescale hydrogen trials to begin in the early 2020s the Committee seeks to ensure that the Government's intended plan will be suitable and effective. The Committee will also assess the infrastructure required for hydrogen as a Net Zero fuel and examine progress made so far internationally to determine the viability of hydrogen as a significant contributor to achieving Net Zero.
All documents are in the Supplements tab above.
Resource Assessment for Hydrogen Production
Jul 2020
Publication
This analysis was conducted in support of the U.S. Department of Energy's H2@Scale initiative and this report examines the resources required to meet demand for an additional 10 million metric tonnes (MMT) of hydrogen in 2040. The technical potential of hydrogen production from fossil nuclear and renewable energy resources is presented. Updated maps describe the geographical distribution of hydrogen production potential from renewable energy resources. The results conclude that the technical resource availability of domestic energy resources is sufficient to meet an additional 10 MMT of hydrogen demand in 2040 without placing significant pressure on existing resources. While this level of hydrogen demand could result in a significant increase in renewable energy consumption in particular the technical potential of each resource is estimated to be sufficient to meet the demand. Future research to enable the large-scale integration of hydrogen in the U.S. energy and other sectors will include analyzing the geographic distribution of resources in relation to hydrogen demand for a variety of applications. Additional techno-economic analysis is also needed to understand the economic potential of hydrogen in other industries beyond transportation; such analysis is currently being undertaken by a multi-lab project initiated by DOE in 2016. Finally information from techno-economic analyses should be used to continually update and inform R&D targets for energy production hydrogen production and hydrogen utilization technologies.
Numerical Analysis of VPSA Technology Retrofitted to Steam Reforming Hydrogen Plants to Capture CO2 and Produce Blue H2
Feb 2022
Publication
The increasing demand for energy and commodities has led to escalating greenhouse gas emissions the chief of which is represented by carbon dioxide (CO2). Blue hydrogen (H2) a lowcarbon hydrogen produced from natural gas with carbon capture technologies applied has been suggested as a possible alternative to fossil fuels in processes with hard-to-abate emission sources including refining chemical petrochemical and transport sectors. Due to the recent international directives aimed to combat climate change even existing hydrogen plants should be retrofitted with carbon capture units. To optimize the process economics of such retrofit it has been proposed to remove CO2 from the pressure swing adsorption (PSA) tail gas to exploit the relatively high CO2 concentration. This study aimed to design and numerically investigate a vacuum pressure swing adsorption (VPSA) process capable of capturing CO2 from the PSA tail gas of an industrial steam methane reforming (SMR)-based hydrogen plant using NaX zeolite adsorbent. The effect of operating conditions such as purge-to-feed ratio and desorption pressure were evaluated in relation to CO2 purity CO2 recovery bed productivity and specific energy consumption. We found that conventional cycle configurations namely a 2-bed 4-step Skarstrom cycle and a 2-bed 6-step modified Skarstrom cycle with pressure equalization were able to concentrate CO2 to a purity greater than 95% with a CO2 recovery of around 77% and 90% respectively. Therefore the latter configuration could serve as an efficient process to decarbonize existing hydrogen plants and produce blue H2.
A Comprehensive Review of Microbial Electrolysis Cells (MEC) Reactor Designs and Configurations for Sustainable Hydrogen Gas Production
Nov 2015
Publication
Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier for vehicles. A cutting edge technology called a microbial electrolysis cell (MEC) can achieve sustainable and clean hydrogen production from a wide range of renewable biomass and wastewaters. Enhancing the hydrogen production rate and lowering the energy input are the main challenges of MEC technology. MEC reactor design is one of the crucial factors which directly influence on hydrogen and current production rate in MECs. The rector design is also a key factor to upscaling. Traditional MEC designs incorporated membranes but it was recently shown that membrane-free designs can lead to both high hydrogen recoveries and production rates. Since then multiple studies have developed reactors that operate without membranes. This review provides a brief overview of recent advances in research on scalable MEC reactor design and configurations.
Techno-economic Analysis of Hydrogen Production from PV Plants
Jan 2022
Publication
Hydrogen production through electrolysis from renewable sources is expected to play an important role to achieve the reduction targets of carbon dioxide emissions set for the next decades. Electrolysers can use the renewable energy surplus to produce green hydrogen and contribute to making the electrical grid more stable. Hydrogen can be used as medium-long term energy storage converted into other fuels or used as feedstock in industry thus contributing to decarbonise hard-to-abate-sectors. However due to the intermittent and variable nature of solar and wind power the direct coupling of electrolysers with renewables may lead to high production fluctuations and frequent shutdowns. As a consequence accelerated electrolyser degradation and safety issues related to low load operation may arise. In this study simulations of hydrogen production with an electrolyser fed by a PV system are performed in Matlab for a reference year. The effect of PV power fluctuations on the electrolyser operation and production is investigated. The impact of the electrolyser size for a fixed nominal power of the PV plant is also analysed from both energetic and economic points of view.
Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production
Apr 2023
Publication
Hydrogen is known to be the carbon-neutral alternative energy carrier with the highest energy density. Currently more than 95% of hydrogen production technologies rely on fossil fuels resulting in greenhouse gas emissions. Water electrolysis is one of the most widely used technologies for hydrogen generation. Nuclear power a renewable energy source can provide the heat needed for the process of steam electrolysis for clean hydrogen production. This review paper analyses the recent progress in hydrogen generation via high-temperature steam electrolysis through solid oxide electrolysis cells using nuclear thermal energy. Protons and oxygen-ions conducting solid oxide electrolysis processes are discussed in this paper. The scope of this review report covers a broad range including the recent advances in material development for each component (i.e. hydrogen electrode oxygen electrode electrolyte interconnect and sealant) degradation mechanisms and countermeasures to mitigate them.
Techno-Economic Analysis of Flare Gas to Hydrogen: A Lean and Green Sustainability Approach
Jul 2025
Publication
The increasing demand for hydrogen has made it a promising alternative for decarbonizing industries and reducing CO2 emissions. Although mainly produced through the gray pathway the integration of carbon capture and storage (CCS) reduces the CO2 emissions. This study presents a sustainability method that uses flare gas for hydrogen production through steam methane reforming (SMR) with CCS supported by a techno-economic analysis. Data Envelopment Analysis (DEA) was used to evaluate the oil company’s efficiency and inverse DEA/sensitivity analysis identified maximum flare gas reduction which was modeled in Aspen HYSYS V14. Subsequently an economic evaluation was performed to determine the levelized cost of hydrogen (LCOH) and the cost–benefit ratio (CBR) for Nigeria. The CBR results were 2.15 (payback of 4.11 years with carbon credit) and 1.96 (payback of 4.55 years without carbon credit) indicating strong economic feasibility. These findings promote a practical approach for waste reduction aiding Nigeria’s transition to a circular low-carbon economy and demonstrate a positive relationship between lean and green strategies in the petroleum sector.
Hydrogen Production Using Advanced Reactors by Steam Methane Reforming: A Review
Apr 2023
Publication
The present review focuses on the current progress on harnessing the potential of hydrogen production by Methane Steam Reforming (MSR). First based on the prominent literature in last few years the overall research efforts of hydrogen production using different feed stocks like ethanol ammonia glycerol methanol and methane is presented. The presented data is based on reactor type reactor operating conditions catalyst used and yield of hydrogen to provide a general overview. Then the most widely used process [steam methane reforming (SMR)/ methane steam reforming (MSR)] are discussed. Major advanced reactors the membrane reactors Sorption Enhanced methane steam reforming reactors and micro-reactors are evaluated. The evaluation has been done based on parameters like residence time surface area scale-up coke formation conversion space velocity and yield of hydrogen. The kinetic models available in recently published literature for each of these reactors have been presented with the rate constants and other parameters. The mechanism of coke formation and the rate expressions for the same have also been presented. While membrane reactors and sorption enhanced reactors have lot of advantages in terms of process intensification scale-up to industrial scale is still a challenge due to factors like membrane stability and fouling (in membrane reactors) decrease in yield with increasing WHSV (in case of Sorption Enhanced Reactors). Micro-reactors pose a higher potential in terms of higher yield and very low residence time in seconds though the volumes might be substantially lower than present industrial scale conventional reactors.
Climate Change Impacts on Gaseous Hydrogen (H2) Potential Produced by Photovoltaic Electrolysis for Stand-Alone or Grid Applications in Europe
Dec 2022
Publication
The EU’s hydrogen strategy consists of studying the potential for renewable hydrogen to help decarbonize the EU in a cost-effective way. Today hydrogen accounts for less than 2% of Europe’s energy consumption. It is primarily used to produce chemical products. However 96% of this hydrogen production is through natural gas leading to significant amounts of CO2 emissions. In this paper we investigated PV electrolysis H2 gas (noted H2(g)) production for mapping this resource at Europe’s scale. The Cordex/Copernicus RCPs scenarios allow for evaluating the impact of climate changes on the H2 -produced mass and the equivalent energy according to both extreme RCPs scenarios. New linear regressions are investigated to study the great dependence in H2(g) produced masses (kg·yr−1 ) and equivalent energies (MWh·yr−1 ) for European countries. Computational scenarios are investigated from a reference year (2005) to the end of the century (2100) by steps of 5 years. According to RCPs 2.6 (favorable)/8.5 (extreme) 31.7% and 77.4% of Europe’s area presents a decrease of H2(g)-produced masses between 2005 and 2100. For the unfavorable scenario (8.5) only a few regions located in the northeast of France Germany Austria Romania Bulgaria and Greece present a positive balance in H2(g) production for supplying remote houses or smart grids in electricity and heat energy.
Review—Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development
Feb 2017
Publication
Although polymer electrolyte water electrolyzers (PEWEs) have been used in small-scale (kW to tens of kW range) applications for several decades PEWE technology for hydrogen production in energy applications (power-to-gas power-to-fuel etc.) requires significant improvements in the technology to address the challenges associated with cost performance and durability. Systems with power of hundreds of kW or even MWs corresponding to hydrogen production rates of around 10 to 20 kg/h have started to appear in the past 5 years. The thin (∼0.2 mm) polymer electrolyte in the PEWE with low ohmic resistance compared to the alkaline cell with liquid electrolyte allows operation at high current densities of 1–3 A/cm2 and high differential pressure. This article after an introductory overview of the operating principles of PEWE and state-of-the-art discusses the state of understanding of key phenomena determining and limiting performance durability and commercial readiness identifies important ‘gaps’ in understanding and essential development needs to bring PEWE science & engineering forward to prosper in the energy market as one of its future backbone technologies. For this to be successful science engineering and process development as well as business and market development need to go hand in hand.
Process Reconfiguration and Intensification: An Emerging Opportunity Enabling Efficient Carbon Capture and Low-cost Blue Hydrogen Production
Mar 2023
Publication
Low-carbon hydrogen can play a significant role in decarbonizing the world. Hydrogen is currently mainly produced from fossil sources requiring additional CO2 capture to decarbonize which energy intense and costly. In a recent Green Energy & Environment paper Cheng and Di et al. proposed a novel integration process referred to as SECLRHC to generate high-purity H2 by in-situ separation of H2 and CO without using any additional separation unit. Theoretically the proposed process can essentially achieve the separation of C and H in gaseous fuel via a reconfigured reaction process and thus attaining high-purity hydrogen of ∼99% as well as good carbon and hydrogen utilization rates and economic feasibility. It displays an optimistic prospect that industrial decarbonization is not necessarily expensive as long as a suitable CCS measure can be integrated into the industrial manufacturing process.
Water Consumption from Electrolytic Hydrogen in a Carbon-neutral US Energy System
Feb 2023
Publication
Hydrogen is an energy carrier with potential applications in decarbonizing difficult-to-electrify energy and industrial systems. The environmental profile of hydrogen varies substantially with its inputs. Water consumption is a particular issue of interest as decisions are made about capital and other investments that will affect the scale and scope of hydrogen use. This study focuses on electrolytic hydrogen due to its path to greenhouse gas neutrality and irreducible water demand (though other pathways might be more water intensive). Specifically it evaluates life cycle consumptive freshwater intensity of electrolytic hydrogen in the United States at volumes associated with 12 scenarios for a deeply decarbonized 2050 US energy system from two modeling efforts for which both electricity fuel mix and electrolytic hydrogen production were projected (America’s Zero Carbon Action Plan and Net Zero America) in addition to volumes for a stylized energy storage project (500 MW hydrogen-fired turbine). Freshwater requirements for hydrogen could be large. Under a central estimate for 2050 US electrolytic hydrogen production electrolytic freshwater demand for process and feedstock inputs alone (i.e. excluding water for electricity) would be about 7.5% of total 2014 US freshwater consumption for energy (1 billion cubic meters/year 109 m3 /y; [0.2% 15%] across scenarios for 2050 electrolytic hydrogen production of [0.3 18] exajoules EJ). Including water associated with production of input electricity doubles this central estimate to 15% (2 × 109 m3 /y; [1% 23%] across scenarios). Turbines using electrolytic hydrogen are estimated to be about as freshwater intensive as a coal or nuclear plant assuming decarbonized low-water electricity inputs. Although a decarbonized energy system is projected to require less water for resource capture and electricity conversion than the current fossil-dominated energy system additional conversion processes supporting decarbonization like electrolysis could offset water savings.
Energy Recovery from Wastewater in Mexico: A Systematic Review
Feb 2023
Publication
The usage of fossil fuels to generate energy and the lack of wastewater treatment in Mexico are two issues that can be addressed at the same time while developing wastewater treatment technologies that incorporate energy recovery in their process train. We carried out a systematic review based on the PRISMA methodology to identify and review studies regarding energy recovery using wastewater as a substrate in Mexico. Peer-reviewed papers were identified through Scopus Web of Knowledge and Google Scholar using a timeframe of 22 years that represented from 2000 to 2022. After applying the selection criteria we identified 31 studies to be included in the final review starting from 2007. The kind of energy product type of technology used substrate wastewater amount of energy produced and main parameters for the operation of the technology were extracted from the papers. The results show that methane is the most researched energy recovery product from wastewater followed by hydrogen and electricity and the technology used to archive it is an up-flow anaerobic sludge bed (UASB) reactor to produce methane and hydrogen. In addition microbial fuel cells (MFCs) were preferred to produce electricity. According to our data more energy per kgCOD removed could be obtained with methane-recovering technologies in the Mexican peer-reviewed studies compared with hydrogen recovery and electricity production.
No more items...