Production & Supply Chain
Techno-economic Assessment of a Chemical Looping Splitting System for H2 and CO Co-generation
Feb 2022
Publication
The natural gas (NG) reforming is currently one of the low-cost methods for hydrogen production. However the mixture of H2 and CO2 in the produced gas inevitably includes CO2 and necessitates the costly CO2 separation. In this work a novel double chemical looping involving both combustion (CLC) and sorption-enhanced reforming (SE-CLR) was proposed towards the co-production of H2 and CO (CLC-SECLRHC) in two separated streams. CLC provides reactant CO2 and energy to feed SECLRHC which generates hydrogen in a higher purity as well as the calcium cycle to generate CO in a higher purity. Techno-economic assessment of the proposed system was conducted to evaluate its efficiency and economic competitiveness. Studies revealed that the optimal molar ratios of oxygen carrier (OC)/NG and steam/NG for reforming were recommended to be 1.7 and 1.0 respectively. The heat integration within CLC and SECLRHC units can be achieved by circulating hot OCs. The desired temperatures of fuel reactor (FR) and reforming reactor (RR) should be 850 °C and 600 °C respectively. The heat coupling between CLC and SECLRHC units can be realized via a jacket-type reactor and the NG split ratio for reforming and combustion was 0.53:0.47. Under the optimal conditions the H2 purity the H2 yield and the CH4 conversion efficiency were 98.76% 2.31 mol mol-1 and 97.96% respectively. The carbon and hydrogen utilization efficiency respectively were 58.60% and 72.45% in terms of the total hydrogen in both steam and NG. The exergy efficiency of the overall process reached 70.28%. In terms of the conventional plant capacity (75×103 t y-1 ) and current raw materials price (2500 $ t-1 ) the payback period can be 6.2 years and the IRR would be 11.5 demonstrating an economically feasible and risk resistant capability.
Sensing Hydrogen Seeps in the Subsurface for Natural Hydrogen Exploration
Jun 2022
Publication
The recent detection of natural hydrogen seeps in sedimentary basin settings has triggered significant interest in the exploration of this promising resource. If large economical resources exist and can be extracted from the sub-surface this would provide an opportunity for natural hydrogen to contribute to the non-carbon-based energy mix. The detection and exploration of hydrogen gas in the sub-surface is a significant challenge that requires costly drilling sophisticated instrumentation and reliable analytical/sampling methods. Here we propose the application of a commercial-based sensor that can be used to detect and monitor low levels of hydrogen gas emissions from geological environments. The sensitivity selectivity (K > 1000) and stability (<1 ppm/day) of the sensor was evaluated under various conditions to determine its suitability for geological field monitoring. Calibration tests showed that the hydrogen readings from the sensor were within ±20% of the expected values. We propose that chemical sensing is a simple and feasible method for understanding natural hydrogen seeps that emanate from geological systems and formations. However we recommend using this sensor as part of a complete geological survey that incorporates an understanding of the geology along with complementary techniques that provide information on the rock properties.
Everything About Hydrogen Podcast: Scaling Clean Hydrogen Production
Dec 2021
Publication
Today we are joined by our good friends from Enapter. The company is a leader in the clean hydrogen sector focused on AEM electrolyzer technology and innovative software solutions that make it possible to rapidly deploy and scale hydrogen production assets. For those who follow the hydrogen sector regularly it’s been hard not to hear Enapter-related news in 2021 and its impressive trajectory as they have gone public announced the plans for a brand new production facility in Germany (on which they have now begun construction) and most recently the announcement that Enapter was selected as the winner of the prestigious Earthshot prize. To do that we are absolutely delighted to have with us all the way from his home base in Thailand Thomas Chrometzka Chief Strategy Officer at Enapter and one of the people that we enjoy having on the show so much that we have brought him back again to fill us in on what he and Enapter are up to and what they have planned for the future of hydrogen.
The podcast can be found on their website
The podcast can be found on their website
Fabrication of Highly Textured 2D SnSe Layers with Tunable Electronic Properties for Hydrogen Evolution
Jun 2021
Publication
Hydrogen is regarded to be one of the most promising renewable and clean energy sources. Finding a highly efficient and cost-effective catalyst to generate hydrogen via water splitting has become a research hotspot. Two-dimensional materials with exotic structural and electronic properties have been considered as economical alternatives. In this work 2D SnSe films with high quality of crystallinity were grown on a mica substrate via molecular beam epitaxy. The electronic property of the prepared SnSe thin films can be easily and accurately tuned in situ by three orders of magnitude through the controllable compensation of Sn atoms. The prepared film normally exhibited p-type conduction due to the deficiency of Sn in the film during its growth. First-principle calculations explained that Sn vacancies can introduce additional reactive sites for the hydrogen evolution reaction (HER) and enhance the HER performance by accelerating electron migration and promoting continuous hydrogen generation which was mirrored by the reduced Gibbs free energy by a factor of 2.3 as compared with the pure SnSe film. The results pave the way for synthesized 2D SnSe thin films in the applications of hydrogen production.
Techno-Economic Evaluation of Deploying CCS in SMR Based Merchant H2 Production with NG as Feedstock and Fuel
Aug 2017
Publication
Hydrogen is a crucial raw materials to other industries. Globally nearly 90% of the hydrogen or HyCO gas produced is consumed by the ammonia methanol and oil refining industries. In the future hydrogen could play an important role in the decarbonisation of transport fuel (i.e. use of fuel cell vehicles) and space heating (i.e. industrial commercial building and residential heating). This paper summarizes the results of the feasibility study carried out by Amec Foster Wheeler for the IEA Greenhouse Gas R&D Programme (IEA GHG) with the purpose of evaluating the performance and costs of a modern steam methane reforming without and with CCS producing 100000 Nm3 /h H2 and operating as a merchant plant. This study focuses on the economic evaluation of five different alternatives to capture CO2 from SMR. This paper provides an up-to-date assessment of the performance and cost of producing hydrogen without and with CCS based on technologies that could be erected today. This study demonstrates that CO2 could be captured from an SMR plant with an overall capture rate ranging between 53 to 90%. The integration of CO2 capture plant could increase the NG consumption by -0.03 to 1.41 GJ per Nm3 /h of H2. The amount of electricity exported to the grid by the SMR plant is reduced. The levelised cost of H2 production could increase by 2.1 to 5.1 € cent per Nm3 H2 (depending on capture rate and technology selected). This translates to a CO2 avoidance cost of 47 to 70 €/t.
Hydrogen Production by Water Electrolysis with Low Power and High Efficiency Based on Pre‐Magnetic Polarization
Mar 2022
Publication
In this paper a method of efficient hydrogen production using low‐power electrolysis based on pre‐magnetic polarization was proposed in order to improve the rate of hydrogen produc‐ tion by water electrolysis with reduced energy consumption molecular polarity and stress–strain characteristics of distilled water under the condition of a pre‐magnetic field. By constructing a mi‐ crophysical model of hydrogen proton energy‐level transition and a macroscopic mathematical model corresponding to magnetization vector‐polarization hydrogen proton concentration in the pre‐magnetic field the ionic conductivity electrolyte current density interelectrode voltage and hydrogen production efficiency under a varying magnetic field were qualitatively and quantita‐ tively analyzed. In addition an adjustable pre‐magnetic polarization hydrolyzing hydrogen pro‐ duction test platform was set up to verify the effectiveness of the proposed method. The repeated test results within a magnetic field strength range of 0–10000 GS showed that the conductivity of distilled water after pre‐magnetic polarization treatment increased by 2–3 times the electrolytic current density of the PEM (Proton Exchange Membrane) increased with increasing magnetic field strength the voltage between the poles continuously decreased and the hydrogen production rate was significantly improved. When the magnetic field strength reached 10000 GS the rate of hydro‐ gen production by the electrolysis of distilled water increased by 15%–20% within a certain period of time.
Operation Potential Evaluation of Multiple Hydrogen Production and Refueling Integrated Stations Under DC Interconnected Environment
Feb 2022
Publication
Hydrogen production and refueling integrated station can play an important role in the development of hydrogen transportation and fuel cell vehicles and actively promote the energy transformation. By using DC system for hydrogen production and refueling the conversion links can be reduced and the system efficiency can be effectively improved. In this paper a new scheme of DC interconnection for hydrogen production and refueling integrated station is proposed and the modular modeling and operation capability evaluation method are proposed including the characteristic analysis of integrated station the modular modeling and evaluation method for multiple integrated stations under DC interconnection. The DC interconnection system of five integrated stations is constructed and operation capability improvement of integrated stations after adopting the innovative DC interconnection scheme is analyzed. On this basis the system simulation model based on MATLAB/Simulink and physical test platform are built to verify the effectiveness of the theoretical analysis.
Reforming Processes for Syngas Production: A Mini-review on the Current Status, Challenges, and Prospects for Biomass Conversion to Fuels
Mar 2022
Publication
Dedicated bioenergy combined with carbon capture and storage are important elements for the mitigation scenarios to limit the global temperature rise within 1.5 °C. Thus the productions of carbon-negative fuels and chemicals from biomass is a key for accelerating global decarbonisation. The conversion of biomass into syngas has a crucial role in the biomass-based decarbonisation routes. Syngas is an intermediate product for a variety of chemical syntheses to produce hydrogen methanol dimethyl ether jet fuels alkenes etc. The use of biomass-derived syngas has also been seen as promising for the productions of carbon negative metal products. This paper reviews several possible technologies for the production of syngas from biomass especially related to the technological options and challenges of reforming processes. The scope of the review includes partial oxidation (POX) autothermal reforming (ATR) catalytic partial oxidation (CPO) catalytic steam reforming (CSR) and membrane reforming (MR). Special attention is given to the progress of CSR for biomass-derived vapours as it has gained significant interest in recent years. Heat demand and efficiency together with properties of the reformer catalyst were reviewed more deeply in order to understand and propose solutions to the problems that arise by the reforming of biomass-derived vapours and that need to be addressed in order to implement the technology on a big scale.
Improving the Efficiency of PEM Electrolyzers through Membrane-Specific Pressure Optimization
Feb 2020
Publication
Hydrogen produced in a polymer electrolyte membrane (PEM) electrolyzer must be stored under high pressure. It is discussed whether the gas should be compressed in subsequent gas compressors or by the electrolyzer. While gas compressor stages can be reduced in the case of electrochemical compression safety problems arise for thin membranes due to the undesired permeation of hydrogen across the membrane to the oxygen side forming an explosive gas. In this study a PEM system is modeled to evaluate the membrane-specific total system efficiency. The optimum efficiency is given depending on the external heat requirement permeation cell pressure current density and membrane thickness. It shows that the heat requirement and hydrogen permeation dominate the maximum efficiency below 1.6 V while above the cell polarization is decisive. In addition a pressure-optimized cell operation is introduced by which the optimum cathode pressure is set as a function of current density and membrane thickness. This approach indicates that thin membranes do not provide increased safety issues compared to thick membranes. However operating an N212-based system instead of an N117-based one can generate twice the amount of hydrogen at the same system efficiency while only one compressor stage must be added.
Towards the Rational Design of Stable Electrocatalysts for Green Hydrogen Production
Feb 2022
Publication
Now it is time to set up reliable water electrolysis stacks with active and robust electro‐ catalysts to produce green hydrogen. Compared with catalytic kinetics much less attention has been paid to catalyst stability and the weak understanding of the catalyst deactivation mechanism restricts the design of robust electrocatalysts. Herein we discuss the issues of catalysts’ stability evaluation and characterization and the degradation mechanism. The systematic understanding of the degradation mechanism would help us to formulate principles for the design of stable catalysts. Particularly we found that the dissolution rate for different 3d transition metals differed greatly: Fe dissolves 114 and 84 times faster than Co and Ni. Based on this trend we designed Fe@Ni and FeNi@Ni core‐shell structures to achieve excellent stability in a 1 A cm−2 current density as well as good catalytic activity at the same time
Effect of Au Plasmonic Material on Poly M-Toluidine for Photoelectrochemical Hydrogen Generation from Sewage Water
Feb 2022
Publication
This study provides H2 gas as a renewable energy source from sewage water splitting reaction using a PMT/Au photocathode. So this study has a dual benefit for hydrogen generation; at the same time it removes the contaminations of sewage water. The preparation of the PMT is carried out through the polymerization process from an acid medium. Then the Au sputter was carried out using the sputter device under different times (1 and 2 min) for PMT/Au-1 min and PMT/Au-2min respectively. The complete analyses confirm the chemical structure such as XRD FTIR HNMR SEM and Vis-UV optical analyses. The prepared electrode PMT/Au is used for the hydrogen generation reaction using Na2S2O3 or sewage water as an electrolyte. The PMT crystalline size is 15 nm. The incident photon to current efficiency (IPCE) efficiency increases from 2.3 to 3.6% (at 390 nm) and the number of H2 moles increases from 8.4 to 33.1 mmol h−1 cm−2 for using Na2S2O3 and sewage water as electrolyte respectively. Moreover all the thermodynamic parameters such as activation energy (Ea) enthalpy (∆H*) and entropy (∆S*) were calculated; additionally a simple mechanism is mentioned for the water-splitting reaction.
Hydrogen Separation and Purification from Various Gas Mixtures by Means of Electrochemical Membrane Technology in the Temperature Range 100–160 ◦C
Apr 2021
Publication
This paper reports on an experimental evaluation of the hydrogen separation performance in a proton exchange membrane system with Pt-Co/C as the anode electrocatalyst. The recovery of hydrogen from H2/CO2 H2/CH4 and H2/NH3 gas mixtures were determined in the temperature range of 100–160 ◦C. The effects of both the impurity concentration and cell temperature on the separation performance of the cell and membrane were further examined. The electrochemical properties and performance of the cell were determined by means of polarization curves limiting current density open-circuit voltage hydrogen permeability hydrogen selectivity hydrogen purity and cell efficiencies (current voltage and power efficiencies) as performance parameters. High purity hydrogen (>99.9%) was obtained from a low purity feed (20% H2 ) after hydrogen was separated from H2/CH4 mixtures. Hydrogen purities of 98–99.5% and 96–99.5% were achieved for 10% and 50% CO2 in the feed respectively. Moreover the use of proton exchange membranes for electrochemical hydrogen separation was unsuccessful in separating hydrogen-rich streams containing NH3 ; the membrane underwent irreversible damage.
The Influence of Hydrogen Sulfide Contaminations on Hydrogen Production in Chemical Looping Processes
Aug 2021
Publication
Chemical looping with iron-based oxygen carriers enables the production of hydrogen from various fossil and biogenic primary energy sources. In applications with real producer gases such as biogas or gasified biomass hydrogen sulfide represents one of the most challenging contaminants. The impact of H2S on the reactivity of a Fe2O3/Al2O3 oxygen carrier material in chemical looping hydrogen production was investigated in the present work. First potential sulfur deactivation mechanisms are discussed in detail on the basis of thermodynamic data. Afterwards an experimental study in a fixed-bed reactor system gave experimental evidence on the fate of sulfur in chemical looping hydrogen systems. The chemisorption of hydrogen sulfide (H2S) was identified as the main cause for the accumulative adsorption of H2S in the reduction phase and was confirmed by ex-situ ICP-EOS analysis. In the subsequent steam oxidation step significant quantities of H2S were released resulting in an undesirable contamination of the hydrogen product gas. The reason was found as weakened sulfur bonds through increasing reactor temperatures caused by the exothermic oxidation reactions. In additional air oxidation steps no further contaminants as sulfur dioxide were identified. A profound interpretation was achieved through the fulfillment of the overall sulfur mass balance within a mean deviation of 3.7%. Quantitative investigations showed that the hydrogen consumption decreased by 12% throughout the reduction phase in the event of 100 ppm H2S in the feed gas
Hydrogen Production in the Swedish Power Sector: Considering Operational Volatilities and Long-term Uncertainties
Nov 2020
Publication
With more renewables on the Swedish electricity market while decommissioning nuclear power plants electricity supply increasingly fluctuates and electricity prices are more volatile. There is hence a need for securing the electricity supply before energy storage solutions become widespread. Electricity price fluctuations moreover affect operating income of nuclear power plants due to their inherent operational inflexibility. Since the anticipated new applications of hydrogen in fuel cell vehicles and steel production producing hydrogen has become a potential source of income particularly when there is a surplus supply of electricity at low prices. The feasibility of investing in hydrogen production was investigated in a nuclear power plant applying Swedish energy policy as background. The analysis applies a system dynamics approach incorporating the stochastic feature of electricity supply and prices. The study revealed that hydrogen production brings alternative opportunities for large-scale electricity production facilities in Sweden. Factors such as hydrogen price will be influential and require in-depth investigation. This study provides guidelines for power sector policymakers and managers who plan to engage in hydrogen production for industrial applications. Although this study was focused upon nuclear power sources it can be extended to hydrogen production from renewable energy sources such as wind and solar.
Setting Thresholds to Define Indifferences and Preferences in PROMETHEE for Life Cycle Sustainability Assessment of European Hydrogen Production
Jun 2021
Publication
The Life Cycle Sustainability Assessment (LCSA) is a proven method for sustainability assessment. However the interpretation phase of an LCSA is challenging because many different single results are obtained. Additionally performing a Multi-Criteria Decision Analysis (MCDA) is one way—not only for LCSA—to gain clarity about how to interpret the results. One common form of MCDAs are outranking methods. For these type of methods it becomes of utmost importance to clarify when results become preferable. Thus thresholds are commonly used to prevent decisions based on results that are actually indifferent between the analyzed options. In this paper a new approach is presented to identify and quantify such thresholds for Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) based on uncertainty of Life Cycle Impact Assessment (LCIA) methods. Common thresholds and this new approach are discussed using a case study on finding a preferred location for sustainable industrial hydrogen production comparing three locations in European countries. The single LCSA results indicated different preferences for the environmental economic and social assessment. The application of PROMETHEE helped to find a clear solution. The comparison of the newly-specified thresholds based on LCIA uncertainty with default thresholds provided important insights of how to interpret the LCSA results regarding industrial hydrogen production.
Goal and Scope in Life Cycle Sustainability Analysis: The Case of Hydrogen Production from Biomass
Aug 2014
Publication
The framework for life cycle sustainability analysis (LCSA) developed within the project CALCAS (Co-ordination Action for innovation in Life-Cycle Analysis for Sustainability) is introducing a truly integrated approach for sustainability studies. However it needs to be further conceptually refined and to be made operational. In particular one of the gaps still hindering the adoption of integrated analytic tools for sustainability studies is the lack of a clear link between the goal and scope definition and the modeling phase. This paper presents an approach to structure the goal and scope phase of LCSA so as to identify the relevant mechanisms to be further detailed and analyzed in the modeling phase. The approach is illustrated with an on-going study on a new technology for the production of high purity hydrogen from biomass to be used in automotive fuel cells.
Transient Numerical Modeling and Model Predictive Control of an Industrial-scale Steam Methane Reforming Reactor
Mar 2021
Publication
A steam methane reforming reactor is a key equipment in hydrogen production and numerical analysis and process control can provide a critical insight into its reforming mechanisms and flexible operation in real engineering applications. The present paper firstly studies the transport phenomena in an industrial-scale steam methane reforming reactor by transient numerical simulations. Wall effect and local non thermal equilibrium is considered in the simulations. A temperature profile of the tube outer wall is given by user defined functions integrated into the ANSYS FLUENT software. Dynamic simulations show that the species distribution is closely related to the temperature distribution which makes the temperature of the reactor tube wall an important factor for the hydrogen production of the reformer and the thermal conductivity of the catalyst network is crucial in the heat transfer in the reactor. Besides there exists a delay of the reformer's hydrogen production when the temperature profile of the tube wall changes. Among inlet temperature inlet mass flow rate and inlet steam-to-carbon (S/C) ratio the mass flow rate is the most influencing factor for the hydrogen production. The dynamic matrix control (DMC) scheme is subsequently designed to manipulate the mole fraction of hydrogen of the outlet to the target value by setting the temperature profile trajectory of the reforming tube with time. The proportional-integral control strategy is also studied for comparison. The closed-loop simulation results show that the proposed DMC control strategy can reduce the overshoot and have a small change of the input variable. In addition the disturbances of feed disturbance can also be well rejected to assure the tracking performance indicating the superiority of the DMC controller. All the results give insight to the theoretical analysis and controller design of a steam methane reformer and demonstrate the potential of the CFD modeling in study the transport mechanism and the idea of combining CFD modelling with controller design for the real application.
Recent Development of Biomass Gasification for H2 Rich Gas Production
Mar 2022
Publication
Biomass gasification for hydrogen (H2) production provides outstanding advantages in terms of renewable energy resources carbon neutral high efficiency and environmental benefits. However the factors influencing H2 production from biomass gasification are complex which makes determining the optimal operating conditions challenging. Biomass gasification also poses challenges owing to the high associated tar content and low gas yield which need to be overcome. This review summarizes the influence of the gasification parameters on H2 production. Catalytic gasification technology and some of the latest catalysts such as composites and special structure catalysts are also summarized herein based on the requirements of high-purity H2 production. Moreover novel technologies such as staged gasification chemical looping gasification and adsorption-enhanced reforming for producing H2 rich gas are introduced. Finally the challenges and prospects associated with biomass gasification for H2 production are presented.
Analysis of Control-System Strategy and Design of a Small Modular Reactor with Different Working Fluids for Electricity and Hydrogen Production as Part of a Decentralised Mini Grid
Mar 2022
Publication
Hydrogen is increasingly being viewed as a significant fuel for future industrial processes as it offers pathways to zero emission. The UK sees hydrogen as one of a handful of low-carbon solutions for transition to net zero. Currently most hydrogen production is from steam reforming of natural gas or coal gasification both of which involve the release of carbon dioxide. Hydrogen production from mini decentralised grids via a thermochemical process coupled with electricity production could offer favourable economics for small modular reactors (SMRs) whereby demand or grid management as a solution would include redirecting the power for hydrogen production when electricity demand is low. It also offers a clean-energy alternative to the aforementioned means. SMRs could offer favourable economics due to their flexible power system as part of the dual-output function. This study objective is to investigate the critical performance parameters associated with the nuclear power plant (NPP) the cycle working fluids and control-system design for switching between electricity and hydrogen demand to support delivery as part of a mini grid system for a reactor power delivering up to approximately 600 MWth power. The novelty of the work is in the holistic parametric analysis undertaken using a novel in-house tool which analyses the NPP using different working fluids with a control function bolt-on at the offtake for hydrogen production. The results indicate that the flow conditions at the offtake can be maintained. The choice of working fluids affects the pressure component. However the recuperator and heat-exchanger effectiveness are considered as efficiency-limiting factors for hydrogen production and electricity generation. As such the benefit of high-technology heat exchangers cannot be underestimated. This is also true when deciding on the thermochemical process to bolt onto the plant. The temperature of the gas at the end of the pipeline should also be considered to ensure that the minimum temperature-requirement status for hydrogen production is me
Everything About Hydrogen Podcast: Could Electrolysers Replicate Moore's Law?
Apr 2020
Publication
On this weeks episode the team are talking all things hydrogen with Sebastian-Justus Schmidt Chairman of Enapter and Thomas Chrometzka Head of Strategy at Enapter. On the show we discuss Enapter’s Anion Exchange Membrane (AEM) electrolyser and why Enapter believe that their modular electrolyser approach will revolutionise the cost of green hydrogen. We also discuss the wide array of use cases and sectors that Enapter are already working with to provide their solution as well as their view on where the current barriers exist for the hydrogen market. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
No more items...