Production & Supply Chain
Techno-Economic Assessment of Natural Gas Pyrolysis in Molten Salts
Jan 2022
Publication
Steam methane reforming with CO2 capture (blue hydrogen) and water electrolysis based on renewable electricity (green hydrogen) are commonly assumed to be the main supply options in a future hydrogen economy. However another promising method is emerging in the form of natural gas pyrolysis (turquoise hydrogen) with pure carbon as a valuable by-product. To better understand the potential of turquoise hydrogen this study presents a techno-economic assessment of a molten salt pyrolysis process. Results show that moderate reactor pressures around 12 bar are optimal and that reactor size must be limited by accepting reactor performance well below the thermodynamic equilibrium. Despite this challenge stemming from slow reaction rates the simplicity of the molten salt pyrolysis process delivers high efficiencies and promising economics. In the long-term carbon could be produced for 200–300 €/ton granting access to high-volume markets in the metallurgical and chemical process industries. Such a scenario makes turquoise hydrogen a promising alternative to blue hydrogen in regions with public resistance to CO2 transport and storage. In the medium-term expensive first-of-a-kind plants could produce carbon around 400 €/ton if hydrogen prices are set by conventional blue hydrogen production. Pure carbon at this cost level can access smaller high-value markets such as carbon anodes and graphite ensuring profitable operation even for first movers. In conclusion the economic potential of molten salt pyrolysis is high and further demonstration and scale-up efforts are strongly recommended.
A Review of Water Electrolysis-based Systems for Hydrogen Production using Hybrid/Solar/Wind Energy Systems
Oct 2022
Publication
Hydrogen energy as clean and efcient energy is considered signifcant support for the construction of a sustainable society in the face of global climate change and the looming energy revolution. Hydrogen is one of the most important chemical substances on earth and can be obtained through various techniques using renewable and nonrenewable energy sources. However the necessity for a gradual transition to renewable energy sources signifcantly hampers eforts to identify and implement green hydrogen production paths. Therefore this paper’s objective is to provide a technological review of the systems of hydrogen production from solar and wind energy utilizing several types of water electrolyzers. The current paper starts with a short brief about the diferent production techniques. A detailed comparison between water electrolyzer types and a complete illustration of hydrogen production techniques using solar and wind are presented with examples after which an economic assessment of green hydrogen production by comparing the costs of the discussed renewable sources with other production methods. Finally the challenges that face the mentioned production methods are illuminated in the current review.
Hydrogen Production Possibility using Mongolian Renewable Energy
Jan 2019
Publication
There is widespread popular support for using renewable energy particularly solar and wind energy which provide electricity without giving rise to any carbon dioxide emissions. Harnessing these for electricity depends on the cost and efficiency of the technology which is constantly improving thus reducing costs per peak kilowatt and per kWh. Utilizing solar and wind-generated electricity in a stand-alone system requires corresponding battery or other storage capacity. The possibility of large-scale use of hydrogen in the future as a transport fuel increases the potential for both renewables and base-load electricity supply.
The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production
Feb 2023
Publication
Hydrogen has become the most promising energy carrier for the future. The spotlight is now on green hydrogen produced with water electrolysis powered exclusively by renewable energy sources. However several other technologies and sources are available or under development to satisfy the current and future hydrogen demand. In fact hydrogen production involves different resources and energy loads depending on the production method used. Therefore the industry has tried to set a classification code for this energy carrier. This is done by using colors that reflect the hydrogen production method the resources consumed to produce the required energy and the number of emissions generated during the process. Depending on the reviewed literature some colors have slightly different definitions thus making the classifications imprecise. Therefore this techno-economic analysis clarifies the meaning of each hydrogen color by systematically reviewing their production methods consumed energy sources and generated emissions. Then an economic assessment compares the costs of the various hydrogen colors and examines the most feasible ones and their potential evolution. The scientific community and industry’s clear understanding of the advantages and drawbacks of each element of the hydrogen color spectrum is an essential step toward reaching a sustainable hydrogen economy
On the Potential of Blue Hydrogen Production in Colombia: A Fossil Resource-Based Assessment for Low-Emission Hydrogen
Sep 2022
Publication
Latin America is starting its energy transition. In Colombia with its abundant natural resources and fossil fuel reserves hydrogen (H2 ) could play a key role. This contribution analyzes the potential of blue H2 production in Colombia as a possible driver of the H2 economy. The study assesses the natural resources available to produce blue H2 in the context of the recently launched National Hydrogen Roadmap. Results indicate that there is great potential for low-emission blue H2 production in Colombia using coal as feedstock. Such potential besides allowing a more sustainable use of non-renewable resources would pave the way for green H2 deployment in Colombia. Blue H2 production from coal could range from 700 to 8000 ktH2 /year by 2050 under conservative and ambitious scenarios respectively which could supply up to 1.5% of the global H2 demand by 2050. However while feedstock availability is promising for blue H2 production carbon dioxide (CO2 ) capture capacities and investment costs could limit this potential in Colombia. Indeed results of this work indicate that capture capacities of 15 to 180 MtCO2 /year (conservative and ambitious scenarios) need to be developed by 2050 and that the required investment for H2 deployment would be above that initially envisioned by the government. Further studies on carbon capture utilization and storage capacity implementation of a clear public policy and a more detailed hydrogen strategy for the inclusion of blue H2 in the energy mix are required for establishing a low-emission H2 economy in the country.
Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model
Feb 2019
Publication
The main objective of this paper is to develop a dynamic emulator of a proton exchange membrane (PEM) electrolyzer (EL) through an equivalent electrical model. Experimental investigations have highlighted the capacitive effect of EL when subjecting to dynamic current profiles which so far has not been reported in the literature. Thanks to a thorough experimental study the electrical domain of a PEM EL composed of 3 cells has been modeled under dynamic operating conditions. The dynamic emulator is based on an equivalent electrical scheme that takes into consideration the dynamic behavior of the EL in cases of sudden variation in the supply current. The model parameters were identified for a suitable current interval to consider them as constant and then tested with experimental data. The obtained results through the developed dynamic emulator have demonstrated its ability to accurately replicate the dynamic behavior of a PEM EL.
Main Trends and Research Directions in Hydrogen Generation Using Low Temperature Electrolysis: A Systematic Literature Review
Aug 2022
Publication
Hydrogen (H2 ) is the most abundant element in the universe and it is also a neutral energy carrier meaning the environmental effects of using it are strictly related to the effects of creating the means of producing of that amount of Hydrogen. So far the H2 generation by water electrolysis research field did not manage to break the efficiency barrier in order to consider H2 production as a technology that sustains financially its self-development. However given the complexity of this technology and the overall environmental impacts an up-to-date research and development status review is critical. Thus this study aims to identify the main trends achievements and research directions of the H2 generation using pure and alkaline water electrolysis providing a review of the state of the art in the specific literature. Methods: In order to deliver this a Systematic Literature Review was carried out using PRISMA methodology highlighting the research trends and results in peer review publish articles over more than two years (2020–2022). Findings: This review identifies niches and actual status of the H2 generation by water and alkaline water electrolysis and points out in numbers the boundaries of the 2020–2022 timeline research.
Analysis of Hydrogen Production Costs in Steam-Methane Reforming Considering Integration with Electrolysis and CO2 Capture
Aug 2022
Publication
Global hydrogen production is dominated by the Steam-Methane Reforming (SMR) route which is associated with significant CO2 emissions and excess process heat. Two paths to lower specific CO2 emissions in SMR hydrogen production are investigated: (1) the integration of CO2 capture and compression for subsequent sequestration or utilization and (2) the integration of electrolysis for increased hydrogen production. In both cases the excess process heat is utilized to drive the emissions reduction options. Four different design regimes for integration of carbon capture and compression with the SMR process are identified. Techno-economic analyses are performed to study the effect of CO2 mitigation on hydrogen production costs compared to grey hydrogen production without emissions mitigation options. Integration with electrolysis is shown to be less attractive compared to the proposed heat and power integration schemes for the SMR process with CO2 capture and compression for subsequent sequestration or utilization which can reduce emissions by 90% with hydrogen production costs increasing only moderately by 13%. This blue hydrogen production is compared in terms of costs and emissions against the emerging alternative production by electrolysis in the context of renewable and fossil electricity generation and electricity mixes while considering life-cycle emissions.
Overview of the Hydrogen Production by Plasma-Driven Solution Electrolysis
Oct 2022
Publication
This paper reviews the progress in applying the plasma-driven solution electrolysis (PDSE) which is also referred to as the contact glow-discharge electrolysis (CGDE) or plasma electrolysis for hydrogen production. The physicochemical processes responsible for the formation of PDSE and effects occurring at the discharge electrode in the cathodic and anodic regimes of the PDSE operation are described. The influence of the PDSE process parameters especially the discharge polarity magnitude of the applied voltage type and concentration of the typical electrolytic solutions (K2CO3 Na2CO3 KOH NaOH H2SO4 ) presence of organic additives (CH3OH C2H5OH CH3COOH) temperature of the electrolytic solution the active length and immersion depth of the discharge electrode into the electrolytic solution on the energy efficiency (%) energy yield (g(H2 )/kWh) and hydrogen production rate (g(H2 )/h) is presented and discussed. This analysis showed that in the cathodic regime of PDSE the hydrogen production rate is 33.3 times higher than that in the anodic regime of PDSE whereas the Faradaic and energy efficiencies are 11 and 12.5 times greater respectively than that in the anodic one. It also revealed the energy yield of hydrogen production in the cathodic regime of PDSE in the methanol–water mixture as the electrolytic solution is 3.9 times greater compared to that of the alkaline electrolysis 4.1 times greater compared to the polymer electrolyte membrane electrolysis 2.8 times greater compared to the solid oxide electrolysis 1.75 times greater than that obtained in the microwave (2.45 GHz) plasma and 5.8% greater compared to natural gas steam reforming.
Green Hydrogen Production Technologies from Ammonia Cracking
Nov 2022
Publication
The rising technology of green hydrogen supply systems is expected to be on the horizon. Hydrogen is a clean and renewable energy source with the highest energy content by weight among the fuels and contains about six times more energy than ammonia. Meanwhile ammonia is the most popular substance as a green hydrogen carrier because it does not carry carbon and the total hydrogen content of ammonia is higher than other fuels and is thus suitable to convert to hydrogen. There are several pathways for hydrogen production. The considered aspects herein include hydrogen production technologies pathways based on the raw material and energy sources and different scales. Hydrogen can be produced from ammonia through several technologies such as electro-chemical photocatalytic and thermochemical processes that can be used at production plants and fueling stations taking into consideration the conversion efficiency reactors catalysts and their related economics. The commercial process is conducted by using expensive Ru catalysts in the ammonia converting process but is considered to be replaced by other materials such as Ni Co La and other perovskite catalysts which have high commercial potential with equivalent activity for extracting hydrogen from ammonia. For successful engraftment of ammonia to hydrogen technology into industry integration with green technologies and economic methods as well as safety aspects should be carried out.
Energy and Economic Costs of Chemical Storage
May 2020
Publication
The necessity of neutralizing the increase of the temperature of the atmosphere by the reduction of greenhouse gas emissions in particular carbon dioxide (CO2) as well as replacing fossil fuels leads to a necessary energy transition that is already happening. This energy transition requires the deployment of renewable energies that will replace gradually the fossil fuels. As the renewable energy share increases energy storage will become key to avoid curtailment or polluting back-up systems. This paper considers a chemical storage process based on the use of electricity to produce hydrogen by electrolysis of water. The obtained hydrogen (H2) can then be stored directly or further converted into methane (CH4 from methanation if CO2 is available e.g. from a carbon capture facility) methanol (CH3OH again if CO2 is available) and/or ammonia (NH3 by an electrochemical process). These different fuels can be stored in liquid or gaseous forms and therefore with different energy densities depending on their physical and chemical nature. This work aims at evaluating the energy and the economic costs of the production storage and transport of these different fuels derived from renewable electricity sources. This applied study on chemical storage underlines the advantages and disadvantages of each fuel in the frame of the energy transition.
Potential for Natural Hydrogen in Quebec (Canada): A First Review
Mar 2024
Publication
The energy transition calls for natural hydrogen exploration with most occurrences discovered either inadvertently or more recently at the location of potentially diffusive circles observed from a change of vegetation cover at the surface. However some notable hydrogen occurrences are not directly associated with the presence of diffusive circles like the Bourakebougou field in Mali. Thus the objective of this work was to highlight geological areas that have some potential to find natural hydrogen in Quebec a Canadian province where no diffusive circles have yet been documented but which is rich in potential source rocks and where no exploration for natural hydrogen has been undertaken so far. A review of the different geological regions of Quebec was undertaken to highlight the relevant characteristics and geographical distribution of geological assemblages that may produce or have produced natural hydrogen in particular iron-rich rocks but also uranium-rich rocks supramature shales and zones where significant structural discontinuities are documented or suspected which may act as conduits for the migration of fluids of mantle origin. In addition to regional and local geological data an inventory of available geochemical data is also carried out to identify potential tracers or proxies to facilitate subsequent exploration efforts. A rating was then proposed based on the quality of the potential source rocks which also considers the presence of reservoir rocks and the proximity to end-users. This analysis allowed rating areas of interest for which fieldwork can be considered thus minimizing the exploratory risks and investments required to develop this resource. The size of the study area (over 1.5 million km2 ) the diversity of its geological environments (from metamorphic cratons to sedimentary basins) and their wide age range (from Archean to Paleozoic) make Quebec a promising territory for natural hydrogen exploration and to test the systematic rating method proposed here.
Assessing Fluctuating Wind to Hydrogen Production via Long-term Testing of Solid Oxide Electrolysis Stacks
Mar 2024
Publication
The Danish government plans two energy islands to collect offshore wind power for power distribution and green fuel production. Wind power is often criticized for lacking stability which challenges downstream fuel synthesis processes. Solid oxide electrolysis cells (SOEC) are promising for green hydrogen production on a commercial scale but the impact of fluctuating power on SOEC remains uncertain. This paper explores the feasibility of a Wind-SOEC coupled system by conducting a 2104-h durability test with the state-of-the-art Topsoe TSP-1 stack. Three periods of steady operation and two periods of dynamic operation were conducted. Wind power fluctuation was simulated during the dynamic period and two control strategies were used to handle it. The constant flow (CF) and constant conversion (CC) strategies maintain the feedstock flow rate and conversion ratio of steamto‑hydrogen respectively. Compared to steady operation the stack shows no signs of additional degradation in dynamic operation. Thus the TSP-1 stack has been proven robust and flexible enough to handle fluctuating wind power supplies under both operation strategies. Further stack performance during dynamic periods was compared and analyzed by removing degradation effects. Accordingly SOEC stacks with CC control will consume less external heat than CF to maintain a heat balance. Nevertheless SOEC systems with CF and CC control strategies may have different efficiency or hydrogen production costs. Tech-economic analyses will be needed to investigate control strategies at the system level.
A Review of Recent Advances in Water-gas Shift Catalysis for Hydrogen Production
Aug 2020
Publication
The water-gas shift reaction (WGSR) is an intermediate reaction in hydrocarbon reforming processes considered one of the most important reactions for hydrogen production. Here water and carbon monoxide molecules react to generate hydrogen and carbon dioxide. From the thermodynamics aspect pressure does not have an impact whereas low-temperature conditions are suitable for high hydrogen selectivity because of the exothermic nature of the WGSR reaction. The performance of this reaction can be greatly enhanced in the presence of suitable catalysts. The WGSR has been widely studied due do the industrial significance resulting in a good volume of open literature on reactor design and catalyst development. A number of review articles are also available on the fundamental aspects of the reaction including thermodynamic analysis reaction condition optimization catalyst design and deactivation studies. Over the past few decades there has been an exceptional development of the catalyst characterization techniques such as near-ambient x-ray photoelectron spectroscopy (NA-XPS) and in situ transmission electron microscopy (in situ TEM) providing atomic level information in presence of gases at elevated temperatures. These tools have been crucial in providing nanoscale structural details and the dynamic changes during reaction conditions which were not available before. The present review is an attempt to gather the recent progress particularly in the past decade on the catalysts for low-temperature WGSR and their structural properties leading to new insights that can be used in the future for effective catalyst design. For the ease of reading the article is divided into subsections based on metals (noble and transition metal) oxide supports and carbon-based supports. It also aims at providing a brief overview of the reaction conditions by including a table of catalysts with synthesis methods reaction conditions and key observations for a quick reference. Based on our study of literature on noble metal catalysts atomic Pt substituted Mn3O4 shows almost full CO conversion at 260 °C itself with zero methane formation. In the case of transition metals group the inclusion of Cu in catalytic system seems to influence the CO conversion significantly and in some cases with CO conversion improvement by 65% at 280 °C. Moreover mesoporous ceria as a catalyst support shows great potential with reports of full CO conversion at a low temperature of 175 °C.
Storage Batteries in Photovoltaic-electrochemical Device for Solar Hydrogen Production
Aug 2021
Publication
Hydrogen produced by water electrolysis and electrochemical batteries are widely considered as primary routes for the long- and short-term storage of photovoltaic (PV) energy. At the same time fast power ramps and idle periods in PV power generation may cause degradation of water splitting electrochemical (EC) cells. Implementation of batteries in PV-EC systems is a viable option for smoothening out intermittence of PV power. Notably the spreading of PV energy over the diurnal cycle reduces power of the EC cell and thus its overpotential loss. We study these potential advantages theoretically and experimentally for a simple parallel connected combination of PV EC and battery cells (PV-EC-B) operated without power management electronics. We show feasibility of the unaided operation of PV-EC-B device in a relevant duty cycle and explore how PV-EC-B system can operate at higher solar-to-hydrogen efficiency than the equivalent reference PV-EC system despite the losses caused by the battery.
Critical Materials in PEMFC Systems and a LCA Analysis for the Potential Reduction of Environmental Impacts with EoL Strategies
Jul 2019
Publication
Commonly used materials constituting the core components of polymer electrolyte membrane fuel cells (PEMFCs) including the balance‐of‐plant were classified according to the EU criticality methodology with an additional assessment of hazardousness and price. A life‐cycle assessment (LCA) of the materials potentially present in PEMFC systems was performed for 1 g of each material. To demonstrate the importance of appropriate actions at the end of life (EoL) for critical materials a LCA study of the whole life cycle for a 1‐kW PEMFC system and 20000 operating hours was performed. In addition to the manufacturing phase four different scenarios of hydrogen production were analyzed. In the EoL phase recycling was used as a primary strategy with energy extraction and landfill as the second and third. The environmental impacts for 1 g of material show that platinum group metals and precious metals have by far the largest environmental impact; therefore it is necessary to pay special attention to these materials in the EoL phase. The LCA results for the 1‐kW PEMFC system show that in the manufacturing phase the major environmental impacts come from the fuel cell stack where the majority of the critical materials are used. Analysis shows that only 0.75 g of platinum in the manufacturing phase contributes on average 60% of the total environmental impacts of the manufacturing phase. In the operating phase environmentally sounder scenarios are the hydrogen production with water electrolysis using hydroelectricity and natural gas reforming. These two scenarios have lower absolute values for the environmental impact indicators on average compared with the manufacturing phase of the 1‐kW PEMFC system. With proper recycling strategies in the EoL phase for each material and by paying a lot of attention to the critical materials the environmental impacts could be reduced on average by 37.3% for the manufacturing phase and 23.7% for the entire life cycle of the 1‐kW PEMFC system.
Technical Evaluation of the Flexibility of Water Electrolysis Systems to Increase Energy Flexibility: A Review
Jan 2023
Publication
The goal of achieving water electrolysis on a gigawatt scale faces numerous challenges regarding technological feasibility and market application. Here the flexibility of operation scenarios such as load changes and capacity of electrolysis plays a key role. This raises the question of how flexible electrolysis systems currently are and what possibilities there are to increase flexibility. In order to be able to answer this question in the following a systematic literature research was carried out with the aim to show the current technical possibilities to adapt load and capacity of electrolysis technologies and to determine limits. The result of the systematic literature research is an overview matrix of the electrolysis types AEL PEMEL HTEL and AEMEL already applied in the market. Technical data on the operation of the respective electrolysis stacks as well as details and materials for the respective stack structure (cathode anode electrolyte) were summarized. The flexibility of the individual technologies is addressed by expressing it in values such as load flexibility and startup-times. The overview matrix contains values from various sour1ces in order to make electrolysis comparable at the stack level and to be able to make statements about flexibility. The result of the overview article shows the still open need for research and development to make electrolysis more flexible.
Technical and Economic Performance Assessment of Blue Hydrogen Production Using New Configuration Through Modelling and Simulation
Mar 2024
Publication
Steam methane reforming (SMR) is the dominant process for hydrogen production which produce large amount of carbon dioxide (CO2) as a by-product. To address concerns about carbon emissions there is an increasing focus on blue hydrogen to mitigate carbon emissions during hydrogen production. However the commercialization of blue hydrogen production (BHP) is hindered by the challenges of high cost and energy consumption. This study proposes a new configuration to address these challenges which is characterized by: (a) the use of piperazine (PZ) as a solvent which has a high CO2 absorption efficiency; (b) a more efficient heat exchange configuration which recovers the waste exergy from flue gas; (c) the advanced flash stripper (AFS) was adopted to reduce the capital cost due to its simpler stripper configuration. In addition the technical and economic performance of the proposed energy and cost-saving blue hydrogen production (ECSB) process is investigated and compared with the standard SMR process. The detailed models of the SMR process and the post-combustion carbon capture (PCC) process were developed and integrated in Aspen plus® V11. The results of the technical analysis showed that the ECSB process with 30 wt.% PZ achieves a 36.3 % reduction in energy penalty when compared to the standard process with 30 wt.% Monoethanolamine (MEA). The results of the economic analysis showed that the lowest levelized cost of blue hydrogen (LCBH) was achieved by the ECSB process with 30 wt.% PZ. Compared to the BHP process with 30 wt.% MEA the LCBH was reduced by 19.7 %.
Intelligent Damping Control of Renewable Energy/Hydrogen Energy DC Interconnection System
Oct 2022
Publication
Renewable energy DC hydrogen production has become a new development trend. Due to the interaction between the weak damping of DC network and the negative impedance characteristics of power supply of hydrogen production the actual available power of renewable and hydrogen energy DC interconnection system will be lower than its rated setting value. To solve this problem this paper proposes an intelligent damping control to realize the rated power operation of hydrogen generation power source and significantly improve the hydrogen generation performance. In this paper the nonlinear model under typical control strategies is established in order to adapt to different degrees of disturbance and the damping controller is designed based on state feedback including feedback control law and damping generation formula. On this basis an intelligent method of damping control is proposed to support rapid decision-making. Finally the intelligent damping control method is verified by simulation analysis. It realizes rated power of power supply of hydrogen production by generating only a small amount of damping power and superimposing it on the hydrogen production power
Green Energy by Hydrogen Production from Water Splitting, Water Oxidation Catalysis and Acceptorless Dehydrogenative Coupling
Feb 2023
Publication
In this review we want to explain how the burning of fossil fuels is pushing us towards green energy. Actually for a long time we have believed that everything is profitable that resources are unlimited and there are no consequences. However the reality is often disappointing. The use of non-renewable resources the excessive waste production and the abandonment of the task of recycling has created a fragile thread that once broken may never restore itself. Metaphors aside we are talking about our planet the Earth and its unique ability to host life including ourselves. Our world has its balance; when the wind erodes a mountain a beach appears or when a fire devastates an area eventually new life emerges from the ashes. However humans have been distorting this balance for decades. Our evolving way of living has increased the number of resources that each person consumes whether food shelter or energy; we have overworked everything to exhaustion. Scientists worldwide have already said actively and passively that we are facing one of the biggest problems ever: climate change. This is unsustainable and we must try to revert it or if we are too late slow it down as much as possible. To make this happen there are many possible methods. In this review we investigate catalysts for using water as an energy source or instead of water alcohols. On the other hand the recycling of gases such as CO2 and N2O is also addressed but we also observe non-catalytic means of generating energy through solar cell production.
No more items...