Production & Supply Chain
Methane Pyrolysis for CO2-Free H2 Production: A Green Process to Overcome Renewable Energies Unsteadiness
Aug 2020
Publication
The Carbon2Chem project aims to convert exhaust gases from the steel industry into chemicals such as methanol to reduce CO2 emissions. Here H2 is required for the conversion of CO2 into methanol. Although much effort is put to produce H2 from renewables the use of fossil fuels especially natural gas seems to be fundamental in the short term. For this reason the development of clean technologies for the processing of natural gas with a low environmental impact has become a topic of utmost importance. In this context methane pyrolysis has received special attention to produce CO2-free H2.
Review of Power-to-X Demonstration Projects in Europe
Sep 2020
Publication
At the heart of most Power-to-X (PtX) concepts is the utilization of renewable electricity to produce hydrogen through the electrolysis of water. This hydrogen can be used directly as a final energy carrier or it can be converted into for example methane synthesis gas liquid fuels electricity or chemicals. Technical demonstration and systems integration are of major importance for integrating PtX into energy systems. As of June 2020 a total of 220 PtX research and demonstration projects in Europe have either been realized completed or are currently being planned. The central aim of this review is to identify and assess relevant projects in terms of their year of commissioning location electricity and carbon dioxide sources applied technologies for electrolysis capacity type of hydrogen post-processing and the targeted field of application. The latter aspect has changed over the years. At first the targeted field of application was fuel production for example for hydrogen buses combined heat and power generation and subsequent injection into the natural gas grid. Today alongside fuel production industrial applications are also important. Synthetic gaseous fuels are the focus of fuel production while liquid fuel production is severely under-represented. Solid oxide electrolyzer cells (SOECs) represent a very small proportion of projects compared to polymer electrolyte membranes (PEMs) and alkaline electrolyzers. This is also reflected by the difference in installed capacities. While alkaline electrolyzers are installed with capacities between 50 and 5000 kW (2019/20) and PEM electrolyzers between 100 and 6000 kW SOECs have a capacity of 150 kW. France and Germany are undertaking the biggest efforts to develop PtX technologies compared to other European countries. On the whole however activities have progressed at a considerably faster rate than had been predicted just a couple of years ago.
On Green Hydrogen Generation Technologies: A Bibliometric Review
Mar 2024
Publication
Green hydrogen produced by water electrolysis with renewable energy plays a crucial role in the revolution towards energy sustainability and it is considered a key source of clean energy and efficient storage. Its ability to address the intermittency of renewable sources and its potential to decarbonize sectors that are difficult to electrify make it a strategic component in climate change mitigation. By using a method based on a bibliometric review of scientific publications this paper represents a significant contribution to the emerging field of research on green hydrogen and provides a detailed review of electrolyzer technologies identifying key areas for future research and technology development. The results reflect the immaturity of a technology which advances with different technical advancements waiting to find the optimal technical solution that allows for its massive implementation as a source of green hydrogen generation. According to the results found in this article alkaline (ALK) and proton exchange membrane (PEM) electrolyzers seem to be the ones that interest the scientific community the most. Similarly in terms of regional analysis Europe is clearly committed to green hydrogen in view of the analysis of its scientific results on materials and electrolyzer capacity forecasts for 2030.
Solar Water Splitting by Photovoltaic-electrolysis with a Solar-to-hydrogen Efficiency over 30%
Oct 2016
Publication
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.
Coal Decarbonization: A State-of-the-art Review of Enhanced Hydrogen Production in Underground Coal Gasification
Aug 2022
Publication
The world is endowed with a tremendous amount of coal resources which are unevenly distributed in a few nations. While sustainable energy resources are being developed and deployed fossil fuels dominate the current world energy consumption. Thus low-carbon clean technologies like underground coal gasification (UCG) ought to play a vital role in energy supply and ensuring energy security in the foreseeable future. This paper provides a state-of-the-art review of the world's development of UCG for enhanced hydrogen production. It is revealed that the world has an active interest in decarbonizing the coal industry for hydrogen-oriented research in the context of UCG. While research is ongoing in multiple coal-rich nations China dominates the world's efforts in both industrial-scale UCG pilots and laboratory experiments. A variety of coal ranks were tested in UCG for enhanced hydrogen output and the possibilities of linking UCG with other prospective technologies had been proposed and critically scrutinized. Moreover it is found that transborder collaborations are in dire need to propel a faster commercialization of UCG in an ever-more carbon-conscious world. Furthermore governmental and financial support is necessary to incentivize further UCG development for large-scale hydrogen production.
Sustainable Ammonia Production Processes
Mar 2021
Publication
Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier many studies have recently attempted to find the most environmentally benign energy efficient and economically viable production process for ammonia synthesis. The most commonly utilized ammonia production method is the Haber-Bosch process. The downside to this technology is the high greenhouse gas emissions surpassing 2.16 kgCO2-eq/kg NH3 and high amounts of energy usage of over 30 GJ/tonne NH3 mainly due to the strict operational conditions at high temperature and pressure. The most widely adopted technology for sustainable hydrogen production used for ammonia synthesis is water electrolysis coupled with renewable technologies such as wind and solar. In general a water electrolyzer requires a continuous supply of pretreated water with high purity levels for its operation. Moreover for production of 1 tonne of hydrogen 9 tonnes of water is required. Based on this data for the production of the same amount of ammonia through water electrolysis 233.6 million tonnes/yr of water is required. In this paper a critical review of different sustainable hydrogen production processes and emerging technologies for sustainable ammonia synthesis along with a comparative life cycle assessment of various ammonia production methods has been carried out. We find that through the review of each of the studied technologies either large amounts of GHG emissions are produced or high volumes of pretreated water is required or a combination of both these factors occur.
Thermocatalytic Hydrogen Production Through Decomposition of Methane-A Review
Oct 2021
Publication
Consumption of fossil fuels especially in transport and energy-dependent sectors has led to large greenhouse gas production. Hydrogen is an exciting energy source that can serve our energy purposes and decrease toxic waste production. Decomposition of methane yields hydrogen devoid of COx components thereby aiding as an eco-friendly approach towards large-scale hydrogen production. This review article is focused on hydrogen production through thermocatalytic methane decomposition (TMD) for hydrogen production. The thermodynamics of this approach has been highlighted. Various methods of hydrogen production from fossil fuels and renewable resources were discussed. Methods including steam methane reforming partial oxidation of methane auto thermal reforming direct biomass gasification thermal water splitting methane pyrolysis aqueous reforming and coal gasification have been reported in this article. A detailed overview of the different types of catalysts available the reasons behind their deactivation and their possible regeneration methods were discussed. Finally we presented the challenges and future perspectives for hydrogen production via TMD. This review concluded that among all catalysts nickel ruthenium and platinum-based catalysts show the highest activity and catalytic efficiency and gave carbon-free hydrogen products during the TMD process. However their rapid deactivation at high temperatures still needs the attention of the scientific community.
Review and Harmonization of the Life-Cycle Global Warming Impact of PV-Powered Hydrogen Production by Electrolysis
Sep 2021
Publication
This work presents a review of life-cycle assessment (LCA) studies of hydrogen electrolysis using power from photovoltaic (PV) systems. The paper discusses the assumptions strengths and weaknesses of 13 LCA studies and identifies the causes of the environmental impact. Differences in assumptions of system boundaries system sizes evaluation methods and functional units make it challenging to directly compare the Global Warming Potential (GWP) resulting from different studies. To simplify this process 13 selected LCA studies on PV-powered hydrogen production have been harmonized following a consistent framework described by this paper. The harmonized GWP values vary from 0.7 to 6.6 kg CO2-eq/kg H2 which can be considered a wide range. The maximum absolute difference between the original and harmonized GWP results of a study is 1.5 kg CO2-eq/kg H2. Yet even the highest GWP of this study is over four times lower than the GWP of grid-powered electrolysis in Germany. Due to the lack of transparency of most LCAs included in this review full identification of the sources of discrepancies (methods applied assumed production conditions) is not possible. Overall it can be concluded that the environmental impact of the electrolytic hydrogen production process is mainly caused by the GWP of the electricity supply. For future environmental impact studies on hydrogen production systems it is highly recommended to 1) divide the whole system into well-defined subsystems using compression as the final stage of the LCA and 2) to provide energy inputs/GWP results for the different subsystems.
Experimental Study of the Feasibility of In‐Situ Hydrogen Generation from Gas Reservoir
Nov 2022
Publication
Due to there is no better way to exploit depleted gas reservoirs and hydrogen can generate from natural gas combustion. In this paper the possibility of in‐situ hydrogen generation in air injected gas reservoirs was determined through pseudo dynamic experiments. The study indicated that highertemperature and steam/methane ratio can generate more hydrogen and the temperature should not be lower than 600 °C within gas reservoirs. The debris has positive catalysis for hydrogen generation. The maximum mole fraction of hydrogen was 26.63% at 600 °C.
EU Harmonised Testing Procedure: Determination of Water Electrolyser Energy Performance
Jan 2023
Publication
The objective of this pre-normative research (PNR) document is to present a testing procedure for establishing the energy performance of water (steam) electrolyser systems (WE systems) whether grid-connected or off-grid and individual water electrolysers (WEs)/high-temperature electrolysers (HTEs) for the generation of hydrogen by water/steam electrolysis. The WE systems use electricity mostly from variable renewable energy sources. HTE may additionally utilise (waste) heat from energy conversion and other industrial processes. By applying this procedure the determination of the specific energy consumption per unit of hydrogen output under standard ambient temperature and pressure (SATP) conditions allows for an adequate comparison of different WE systems. Also the energy performance potential of WEs or WE systems employing low-temperature water electrolysis (LTWE) technologies compared to HTE employing high-temperature steam electrolysis (HTSEL) technologies may be established under actual hydrogen output conditions by applying this procedure. The test method is to evaluate the specific energy consumption during steady-state operation at specified conditions including rated input power pressure and temperature of hydrogen recommended by the manufacturer of the WE or WE system. The energy efficiency and the electrical efficiency based on higher and lower heating value of hydrogen can be derived from respectively the specific energy consumption and the specific electric energy consumption as additional energy performance indicators (EPIs). In a plant setting the specific energy consumption of an individual water electrolyser including HTE under hydrogen output conditions may also be determined using this testing procedure. This procedure is intended to be used as a general characterisation method for evaluating the energy performance of WEs including HTEs and systems by the research community and industry alike.
Low-carbon and Cost-efficient Hydrogen Optimisation through a Grid-connected Electrolyser: The Case of GreenLab Skive
Nov 2022
Publication
Power-to-X technologies are a promising means to achieve Denmark’s carbon emission reduction targets. Water electrolysis can potentially generate carbon-neutral fuels if powered with renewable electricity. However the high variability of renewable sources threatens the Power-to-X plant’s cost-efficiency instead favouring high and constant operation rates. Therefore a diversified electricity supply is often an option to maximise the load factor of the Power-to-X systems. This paper analyses the impact of using different power sources on the cost of production and the carbon intensity of hydrogen produced by a Power-to-X system. GreenLab Skive the world’s first industrial facility with Power-to-X integrated into an industrial symbiosis network has been used as a case study. Results show that the wind/PV/grid-connected electrolyser for hydrogen and electricity production can reduce operational costs and emissions saving 30.6 × 107 kgCO2 and having a Net Present Value twice higher than a grid-connected electrolyser. In addition the carbon emission coefficient for this configuration is 3.5 × 10− 2 kgH2/kgCO2 against 7.0 gH2/gCO2 produced by Steam Methane Reforming. A sensitivity analysis detects the optimal capacity ratio between the renewables and the electrolyser. A plateau is reached for carbon emission performances suggesting a wind/grid-connected electrolyser setup with a wind farm three times the size of the electrolyser. Results demonstrate that hydrogen cost is not competitive yet with the electricity suggesting an investment cost reduction but can be competitive with the current hydrogen price if the wind capacity is less than three times the electrolyser capacity.
Determination of the Optimal Power Ratio between Electrolysis and Renewable Energy to Investigate the Effects on the Hydrogen Production Costs
Sep 2022
Publication
Green hydrogen via renewable powered electrolysis has a high relevance in decarbonization and supply security. Achieving economically competitive hydrogen production costs is a major challenge in times of an energy price crisis. Our objective is to show the economically optimal installed capacity of electrolysers in relation to wind and solar power so swift and credible statements can be made regarding the system design. The ratio between renewable generation and electrolysis power as well as scaling effects operating behaviour and development of costs are considered. Hydrogen production costs are calculated for four exemplary real PV and wind sites and different ratios of electrolysis to renewable power for the year 2020. The ideal ratio for PV systems is between 14% and 73% and for wind between 3.3% and 143% for low and high full load hours. The lowest hydrogen production costs are identified at 2.53 €/kg for 50 MW wind power and 72 MW electrolysis power. The results provide plant constructors the possibility to create a cost-optimized design via an optimum ratio of electrolysis to renewable capacity. Therefore the procedures for planning and dimensioning of selected systems can be drastically simplified.
Investigation on Green Hydrogen Generation Devices Dedicated for Integrated Renewable Energy Farm: Solar and Wind
Oct 2022
Publication
This study presents a comprehensive methodology to evaluate plants that integrate renewable energy sources and hydrogen generation devices. The paper focuses on presenting the methods for devices’ operation assessment taking into account the annual operation. Multiple effectiveness indices have been presented. On the basis of experimental investigation with the hydrogen generator the methods for assessing its operation during start-up phase and sudden change in the supply current were proposed. The results of the experiments and the provided mathematical models show that dynamics of the hydrogen generator should be taken into account when selecting the suitable device for cooperation with variable renewable energy. It is especially important for multiple start-ups throughout the day due to significant differences in the amount of hydrogen produced by devices characterized by the same efficiency yet various time constants. Methodology for selecting the optimal nominal power for hydrogen generator to cooperate with given renewable sources was developed. It was proven the optimal power depends on the type of the renewable source and minimal load of the hydrogen generator. Several case studies including the integration of wind and solar energy farms to yield a 10 MW renewable energy farm were considered and the minimal load of the hydrogen generator impacts the annual operation of the device has been presented. The paper provides a set of tools to contribute to the development of sustainable energy plants. The methods proposed in this paper are universal and can be used for various renewable energy sources.
Potential Renewable Hydrogen from Curtailed Electricity to Decarbonize ASEAN’s Emissions: Policy Implications
Dec 2020
Publication
The power generation mix of the Association of Southeast Asian Nations (ASEAN) is dominated by fossil fuels which accounted for almost 80% in 2017 and are expected to account for 82% in 2050 if the region does not transition to cleaner energy systems. Solar and wind power are the most abundant energy resources but contribute negligibly to the power mix. Investors in solar or wind farms face high risks from electricity curtailment if surplus electricity is not used. Employing the policy scenario analysis of the energy outlook modelling results this paper examines the potential scalability of renewable hydrogen production from curtailed electricity in scenarios of high share of variable renewable energy in the power generation mix. The study found that ASEAN has high potential in developing renewable hydrogen production from curtailed electricity. The study further found that the falling cost of renewable hydrogen production could be a game changer to upscaling the large-scale hydrogen production in ASEAN through policy support. The results implied a future role of renewable hydrogen in energy transition to decarbonize ASEAN’s emissions.
Hydrogen Production from Sea Wave for Alternative Energy Vehicles for Public Transport in Trapani (Italy)
Oct 2016
Publication
The coupling of renewable energy and hydrogen technologies represents in the mid-term a very interesting way to match the tasks of increasing the reliable exploitation of wind and sea wave energy and introducing clean technologies in the transportation sector. This paper presents two different feasibility studies: the first proposes two plants based on wind and sea wave resource for the production storage and distribution of hydrogen for public transportation facilities in the West Sicily; the second applies the same approach to Pantelleria (a smaller island) including also some indications about solar resource. In both cases all buses will be equipped with fuel-cells. A first economic analysis is presented together with the assessment of the avoidable greenhouse gas emissions during the operation phase. The scenarios addressed permit to correlate the demand of urban transport to renewable resources present in the territories and to the modern technologies available for the production of hydrogen from renewable energies. The study focuses on the possibility of tapping the renewable energy potential (wind and sea wave) for the hydrogen production by electrolysis. The use of hydrogen would significantly reduce emissions of particulate matter and greenhouse gases in urban districts under analysis. The procedures applied in the present article as well as the main equations used are the result of previous applications made in different technical fields that show a good replicability.
The Role of Offshore Wind Power in Renewable Hydrogen Production
Jan 2023
Publication
We investigate the role of offshore wind in a hybrid system comprising solar PV offshore wind electrical storage (pumped hydro energy storage or battery) and an electrolyser in an off-grid hydrogen production system. Further we capture a wide range of future cost reduction scenarios for offshore wind power and solar PV generation in addition to accounting for future projected falls in electrolyser costs allowing future hydrogen costs to be estimated with a variety of different assumptions. The empirical setting of Australia and incorporation of solar PV as an additional potential source of electricity enables us to examine the contribution of offshore wind to renewable hydrogen production when an low-cost renewable alternative is available. This study complements a small number of studies on opportunities for offshore wind power in the Australian setting (Briggs et al. 2021; Golestani et al. 2021; Aryai et al. 2021) and contributes to research on the potential for offshore wind to contribute to green hydrogen production focused on the crucial Asia-Pacific region (Kim and Kim 2017; Song et al. 2021).<br/>In the following sections we describe the optimization model and the process used for selecting sites used in the study. We then summarize the modelling scenarios and assumptions before outlining the modelling results. We conclude by discussing the implications of the findings.
Design and Multi-scenario Optimization of a Hybrid Power System Based on a Working Gas Turbine: Energy, Exergy, Exergoeconomic and Environmental Evaluation
Sep 2022
Publication
The rising demand for electricity along with the need to minimize carbon footprints has motivated academics to investigate the flexible and efficient integration of energy conversion technologies. A novel hybrid power generation system based on environmentally friendly and cost-effective technologies to recover the waste heat of a working gas turbine is designed and assessed in different scenarios of multi-objective optimization from energy exergy exergoeconomic and environmental (4E) perspectives. In the proposed system a steam methane reformer and a water gas shift reactor are utilized for hydrogen production while a polymer electrolyte membrane fuel cell (PEMFC) and steam/organic Rankine cycles are run for generating additional power. Aspen Plus in conjunction with Fortran Microsoft Excel and MATLAB is used to model and simulate the designed plant. The response surface methodology (RSM) is utilized to determine accurate surrogate models to describe the evaluation criteria and the Non-dominated Sorting Genetic Algorithm II technique is employed to seek the optimal conditions. Moreover TOPSIS and LINMAP decision-making approaches are used to find the best final solution among Pareto frontiers. The analysis of variance (ANOVA) and sensitivity analysis are also applied to evaluate the importance of the design variables. In this regard three single-objective optimizations and four multi-objective optimization scenarios based on the maximization of the ecological coefficient of performance (ECOP) and the minimization of CO2 emissions and total system product cost (C˙ p) are carried out. It is demonstrated that the system’s evaluation criteria have the highest and lowest sensitivity to the variation of reformer temperature and ORC pressure respectively. From the triple-objective optimization procedure the decision variables including reformer temperature ORC pressure Rankine cycle I pressure and Rankine cycle II pressure are 544 ◦C 4.35 bar 158.12 bar and 52.82 bar respectively. At these conditions the total hybrid system’s energy efficiency exergy efficiency exergy destruction net generated power and total investment cost rate are 45.96% 46.83% 215.72 MW 203.67 MW and 9791 $/h respectively. The findings of this paper conclude that it is necessary to address all objective functions simultaneously in the system’s ultimate optimum design. Furthermore the objective of this paper becomes even more apparent when there is no choice but to cut greenhouse gas emissions while also addressing the rising global energy demand.
Techno-economic Analysis of On-site Blue Hydrogen Production Based on Vacuum Pressure Adsorption: Practical Application to Real-world Hydrogen Refueling Stations
Feb 2023
Publication
Although climate change can be efficiently curbed by shifting to low-carbon (blue) hydrogen as an energy carrier to achieve carbon neutrality current hydrogen production mainly proceeds via the gray pathway i.e. generates large amounts of CO2 as a byproduct. To address the need for cleaner hydrogen production we herein propose novel CO2 capture processes based on the integration of vacuum pressure swing adsorption into a gray hydrogen production process and perform retrofitting to a blue hydrogen production process for on-site hydrogen refueling stations. Techno-economic analysis reveals that the implementation of the proposed capture processes allows one to significantly reduce CO2 emission while preserving thermal efficiency and the economic feasibility of this implementation in different scenarios is determined by computing the levelized cost of hydrogen. As a result blue hydrogen is shown to hold great promise for the realization of sustainable energy usage and the net-zero transition.
Biohydrogen—A Green Fuel for Sustainable Energy Solutions
Oct 2022
Publication
Energy plays a crucial role in the sustainable development of modern nations. Today hydrogen is considered the most promising alternative fuel as it can be generated from clean and green sources. Moreover it is an efficient energy carrier because hydrogen burning only generates water as a byproduct. Currently it is generated from natural gas. However it can be produced using other methods i.e. physicochemical thermal and biological. The biological method is considered more environmentally friendly and pollution free. This paper aims to provide an updated review of biohydrogen production via photofermentation dark fermentation and microbial electrolysis cells using different waste materials as feedstocks. Besides the role of nanotechnology in enhancing biohydrogen production is examined. Under anaerobic conditions hydrogen is produced during the conversion of organic substrate into organic acids using fermentative bacteria and during the conversion of organic acids into hydrogen and carbon dioxide using photofermentative bacteria. Different factors that enhance the biohydrogen production of these organisms either combined or sequentially using dark and photofermentation processes are examined and the effect of each factor on biohydrogen production efficiency is reported. A comparison of hydrogen production efficiency between dark fermentation photofermentation and two-stage processes is also presented.
Simulation and Techno-Economic Assessment of Hydrogen Production from Biomass Gasification-Based Processes: A Review
Nov 2022
Publication
The development of low-carbon fuels from renewable resources is a key measure to reduce carbon dioxide emissions and mitigate climate change. Biomass gasification with subsequent gas processing and purification is a promising route to produce low-carbon hydrogen. In the past decade simulation-based modelling using Aspen Plus software has supported the investigation of future potential industrial applications of this pathway. This article aims to provide a review of the modelling and economic assessment of woody biomass gasification-based hydrogen production with focus on the evaluation of the model accuracy in predicting producer gas composition in comparison with experimental data depending on the approach implemented. The assessment of comprehensive models which integrate biomass gasification with gas processing and purification highlights how downstream gas processing could improve the quality of the syngas and thus the hydrogen yield. The information in this article provides an overview of the current practices challenges and opportunities for future research particularly for the development of a comprehensive pathway for hydrogen production based on biomass gasification. Moreover this review includes a techno-economic assessment of biomass to hydrogen processes which will be useful for implementation at industrial-scale.
No more items...