Production & Supply Chain
Exploring the Competitiveness of Hydrogen-fueled Gas Turbines in Future Energy Systems
Oct 2021
Publication
Hydrogen is currently receiving attention as a possible cross-sectoral energy carrier with the potential to enable emission reductions in several sectors including hard-to-abate sectors. In this work a techno-economic optimization model is used to evaluate the competitiveness of time-shifting of electricity generation using electrolyzers hydrogen storage and gas turbines fueled with hydrogen as part of the transition from the current electricity system to future electricity systems in Years 2030 2040 and 2050. The model incorporates an emissions cap to ensure a gradual decline in carbon dioxide (CO2) levels targeting near-zero CO2 emissions by Year 2050 and this includes 15 European countries. The results show that hydrogen gas turbines have an important role to play in shifting electricity generation and providing capacity when carbon emissions are constrained to very low levels in Year 2050. The level of competitiveness is however considerably lower in energy systems that still allow significant levels of CO2 emissions e.g. in Year 2030. For Years 2040 and 2050 the results indicate investments mainly in gas turbines that are partly fueled with hydrogen with 30e77 vol.-% hydrogen in biogas although some investments in exclusively hydrogen-fueled gas turbines are also envisioned. Both open cycle and combined cycle gas turbines (CCGT) receive investments and the operational patterns show that also CCGTs have a frequent cyclical operation whereby most of the start-stop cycles are less than 20 h in duration.
Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns
Feb 2022
Publication
Hydrogen is becoming an increasingly important energy carrier in sector integration for fuel cell transportation heat and electricity. Underground salt caverns are one of the most promising ways to store the hydrogen obtained from water electrolysis using power generation from renewable energy sources (RES). At the same time the production of hydrogen can be used to avoid energy curtailments during times of low electricity demand or low prices. The stored hydrogen can also be used during times of high energy demand for power generation e.g. with fuel cells to cover the fluctuations and shortages caused by low RES generation. This article presents an overview of the techniques that were used and proposed for using excess energy from RES for hydrogen production from water and its storage techniques especially in underground salt caverns for the aforementioned purpose and its feasibility. This paper compares and summarizes the competing technologies based on the current state-of-the-art identifies some of the difficulties in hydrogen production and storage and discusses which technology is the most promising. The related analysis compares cost and techno-economic feasibility with regard to hydrogen production and storage systems. The paper also identifies the potential technical challenges and the limitations associated with hydrogen integration into the power grid.
Catalytic and Photocatalytic Electrospun Nanofibers for Hydrogen Generation from Ammonia Borane Complex: A Review
Jul 2021
Publication
Hydrogen (H2) is a promising renewable energy source that can replace fossil fuels since it can solve several environmental and economic issues. However the widespread usage of H2 is constrained by its storage and safety issues. Many researchers consider solid materials with an excellent capacity for H2 storage and generation as the solution for most H2-related issues. Among solid materials ammonia borane (abbreviated hereafter as AB) is considered one of the best hydrogen storage materials due to its extraordinary H2 content and small density. However the process must be conducted in the presence of efficient catalysts to obtain a reasonable amount of generated H2. Electrospun nanofibrous catalysts are a new class of efficient catalysts that involves the usage of polymers. Here a comprehensive review of the ceramic-supported electrospun NF catalysts for AB hydrolysis is presented with a special focus on catalytic and photolytic performance and preparation steps. Photocatalytic AB hydrolysis was discussed in detail due to its importance and promising results. AB photocatalytic hydrolysis mechanisms under light were also explained. Electrospun catalysts show excellent activity for AB hydrolysis with good recyclability. Kinetics studies show that the AB hydrolysis reaction is independent of AB concentration and the first-order reaction of NF catalysts.
Enabling Low-carbon Hydrogen Supply Chains Through Use of Biomass and Carbon Capture and Storage: A Swiss Case Study
Jul 2020
Publication
This study investigates the optimal design of low-carbon hydrogen supply chains on a national scale. We consider hydrogen production based on several feedstocks and energy sources namely water with electricity natural gas and biomass. When using natural gas we couple hydrogen production with carbon capture and storage. The design of the hydrogen biomass and carbon dioxide (CO2 ) infrastructure is performed by solving an optimization problem that determines the optimal selection size and location of the hydrogen production technologies and the optimal structure of the hydrogen biomass and CO2 O2 networks. First we investigate the rationale behind the optimal design of low-carbon hydrogen supply chains by referring to an idealized system configuration and by performing a parametric analysis of the most relevant design parameters of the supply chains such as biomass availability. This allows drawing general conclusions independent of any specific geographic features about the minimum-cost and minimum-emissions system designs and network structures. Moreover we analyze the Swiss case study to derive specific guidelines concerning the design of hydrogen supply chains deploying carbon capture and storage. We assess the impact of relevant design parameters such as location of CO2 storage facilities techno-economic features of CO2 capture technologies and network losses on the optimal supply chain design and on the competition between the hydrogen and CO2 networks. Findings highlight the fundamental role of biomass (when available) and of carbon capture and storage for decarbonizing hydrogen supply chains while transitioning to a wider deployment of renewable energy sources.
Life Cycle Assessment of Improved High Pressure Alkaline Electrolysis
Aug 2015
Publication
This paper investigates environmental impacts of high pressure alkaline water electrolysis systems. An advanced system with membranes on polymer basis is compared to a state-of-the-art system with asbestos membranes using a Life Cycle Assessment (LCA) approach. For the advanced system a new improved membrane technology has been investigated within the EU research project “ELYGRID”. Results indicate that most environmental impacts are caused by the electricity supply necessary for operation. During the construction phase cell stacks are the main contributor to environmental impacts. New improved membranes have relatively small contributions to impacts caused by cell construction within the advanced systems. As main outcome the systems comparison illustrates a better ecological performance of the new developed system
Ex Situ Thermo-catalytic Upgrading of Biomass Pyrolysis Vapors Using a Traveling Wave Microwave Reactor
Sep 2016
Publication
Microwave heating offers a number of advantages over conventional heating methods such as rapid and volumetric heating precise temperature control energy efficiency and lower temperature gradient. In this article we demonstrate the use of 2450 MHz microwave traveling wave reactor to heat the catalyst bed for thermo-catalytic upgrading of pyrolysis vapors. HZSM-5 catalyst was tested at three different temperatures (290 330 and 370°C) at a catalyst to biomass ratio of 2. Results were compared with conventional heating and induction heating method of catalyst bed. The yields of aromatic compounds and coke deposition were dependent on temperature and method of heating. Microwave heating yielded higher aromatic compounds and lower coke deposition. Microwave heating was also energy efficient compared to conventional reactors. The rate of catalyst deterioration was lower for catalyst heated in microwave system.
Sorption-enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review
Oct 2021
Publication
The European Commission have just stated that hydrogen would play a major role in the economic recovery of post-COVID-19 EU countries. Hydrogen is recognised as one of the key players in a fossil fuel-free world in decades to come. However commercially practiced pathways to hydrogen production todays are associated with a considerable amount of carbon emissions. The Paris Climate Change Agreement has set out plans for an international commitment to reduce carbon emissions within the forthcoming decades. A sustainable hydrogen future would only be achievable if hydrogen production is “designed” to capture such emissions. Today nearly 98% of global hydrogen production relies on the utilisation of fossil fuels. Among these steam methane reforming (SMR) boasts the biggest share of nearly 3 50% of the global generation. SMR processes correspond to a significant amount of carbon emissions at various points throughout the process. Despite the dark side of the SMR processes they are projected to play a major role in hydrogen production by the first half of this century. This that a sustainable yet clean short/medium-term hydrogen production is only possible by devising a plan to efficiently capture this co-produced carbon as stated in the latest International Energy Agency (IEA) reports. Here we have carried out an in-depth technical review of the processes employed in sorption-enhanced steam methane reforming (SE-SMR) an emerging technology in low-carbon SMR for combined carbon capture and hydrogen production. This paper aims to provide an in-depth review on two key challenging elements of SE-SMR i.e. the advancements in catalysts/adsorbents preparation and current approaches in process synthesis and optimisation including the employment of artificial intelligence in SE-SMR processes. To the best of the authors‟ knowledge there is a clear gap in the literature where the above areas have been scrutinised in a systematic and coherent fashion. The gap is even more pronounced in the application of AI in SE-SMR technologies. As a result this work aims to fill this gap within the scientific literature.
Modeling Photovoltaic-electrochemical Water Splitting Devices for the Production of Hydrogen Under Real Working Conditions
Jan 2022
Publication
Photoelectrochemical splitting of water is potentially a sustainable and affordable solution to produce hydrogen from sun light. Given the infancy stage of technology development it is important to compare the different experimental concepts and identify the most promising routes. The performance of photoelectrochemical devices is typically measured and reported under ideal irradiation conditions i.e. 1 sun. However real-life operating conditions are very different and are varying in time according to daily and seasonal cycles. In this work we present an equivalent circuit model for computing the steady state performance of photoelectrochemical cells. The model allows for a computationally efficient yet precise prediction of the system performance and a comparison of different devices working in real operating conditions. To this end five different photo-electrochemical devices are modeled using experimental results from literature. The calculated performance shows good agreement with experimental data of the different devices. Furthermore the model is extended to include the effect of illumination and tilt angle on the hydrogen production efficiency. The resulting model is used to compare the devices for different locations with high and low average illumination and different tilt angles. The results show that including real illumination data has a considerable impact on the efficiency of the PV-EC device. The yearly average solar-to-hydrogen efficiency is significantly lower than the ideal one. Moreover it is dependent on the tilt angle whose optimal value for European-like latitude is around 40. Notably we also show that the most performing device through the whole year might not necessarily be the one with highest sun-to-hydrogen efficiency for one-sun illumination.
Hydrogen Production via Steam Reforming: A Critical Analysis of MR and RMM Technologies
Jan 2020
Publication
Hydrogen as the energy carrier of the future’ has been a topic discussed for decades and is today the subject of a new revival especially driven by the investments in renewable electricity and the technological efforts done by high-developed industrial powers such as Northern Europe and Japan. Although hydrogen production from renewable resources is still limited to small scale local solutions and R&D projects; steam reforming (SR) of natural gas at industrial scale is the cheapest and most used technology and generates around 8 kg CO2 per kg H2. This paper is focused on the process optimization and decarbonization of H2 production from fossil fuels to promote more efficient approaches based on membrane separation. In this work two emerging configurations have been compared from the numerical point of view: the membrane reactor (MR) and the reformer and membrane module (RMM) proposed and tested by this research group. The rate of hydrogen production by SR has been calculated according to other literature works a one-dimensional model has been developed for mass heat and momentum balances. For the membrane modules the rate of hydrogen permeation has been estimated according to mass transfer correlation previously reported by this research group and based on previous experimental tests carried on in the first RMM Pilot Plant. The methane conversion carbon dioxide yield temperature and pressure profile are compared for each configuration: SR MR and RMM. By decoupling the reaction and separation section such as in the RMM the overall methane conversion can be increased of about 30% improving the efficiency of the system.
Charge Carrier Mapping for Z-scheme Photocatalytic Water-splitting Sheet via Categorization of Microscopic Time-resolved Image Sequences
Jun 2021
Publication
Photocatalytic water splitting system using particulate semiconductor materials is a promising strategy for converting solar energy into hydrogen and oxygen. In particular visible-light-driven ‘Z-scheme’ printable photocatalyst sheets are cost-effective and scalable. However little is known about the fundamental photophysical processes which are key to explaining and promoting the photoactivity. Here we applied the pattern-illumination time-resolved phase microscopy for a photocatalyst sheet composed of Mo-doped BiVO4 and Rh-doped SrTiO3 with indium tin oxide as the electron mediator to investigate photo-generated charge carrier dynamics. Using this method we successfully observed the position- and structure-dependent charge carrier behavior and visualized the active/inactive sites in the sheets under the light irradiation via the time sequence images and the clustering analysis. This combination methodology could provide the material/synthesis optimization methods for the maximum performance of the photocatalyst sheets.
Assessing the Environmental Impacts of Wind-based Hydrogen Production in the Netherlands Using Ex-ante LCA and Scenarios Analysis
Mar 2021
Publication
Two electrolysis technologies fed with renewable energy sources are promising for the production of CO2-free hydrogen and enabling the transition to a hydrogen society: Alkaline Electrolyte (AE) and Polymer Electrolyte Membrane (PEM). However limited information exists on the potential environmental impacts of these promising sustainable innovations when operating on a large-scale. To fill this gap the performance of AE and PEM systems is compared using ex-ante Life Cycle Assessment (LCA) technology analysis and exploratory scenarios for which a refined methodology has been developed to study the effects of implementing large-scale sustainable hydrogen production systems. Ex-ante LCA allows modelling the environmental impacts of hydrogen production exploratory scenario analysis allows modelling possible upscaling effects at potential future states of hydrogen production and use in vehicles in the Netherlands in 2050. A bridging tool for mapping the technological field has been created enabling the combination of quantitative LCAs with qualitative scenarios. This tool also enables diversity for exploring multiple sets of visions. The main results from the paper show with an exception for the “ozone depletion” impact category (1) that large-scale AE and PEM systems have similar environmental impacts with variations lower than 7% in all impact categories (2) that the contribution of the electrolyser is limited to 10% of all impact categories results and (3) that the origin of the electricity is the largest contributor to the environmental impact contributing to more than 90% in all impact categories even when renewable energy sources are used. It is concluded that the methodology was applied successfully and provides a solid basis for an ex-ante assessment framework that can be applied to emerging technological systems.
A Fundamental Viewpoint on the Hydrogen Spillover Phenomenon of Electrocatalytic Hydrogen Evolution
Jun 2021
Publication
Hydrogen spillover phenomenon of metal-supported electrocatalysts can significantly impact their activity in hydrogen evolution reaction (HER). However design of active electrocatalysts faces grand challenges due to the insufficient understandings on how to overcome this thermodynamically and kinetically adverse process. Here we theoretically profile that the interfacial charge accumulation induces by the large work function difference between metal and support (∆Φ) and sequentially strong interfacial proton adsorption construct a high energy barrier for hydrogen transfer. Theoretical simulations and control experiments rationalize that small ∆Φ induces interfacial charge dilution and relocation thereby weakening interfacial proton adsorption and enabling efficient hydrogen spillover for HER. Experimentally a series of Pt alloys-CoP catalysts with tailorable ∆Φ show a strong ∆Φ-dependent HER activity in which PtIr/CoP with the smallest ∆Φ = 0.02 eV delivers the best HER performance. These findings have conclusively identified ∆Φ as the criterion in guiding the design of hydrogen spillover-based binary HER electrocatalysts
High Performance of Biohydrogen Production in Packed-Filter Bioreactor via Optimizing Packed-Filter Position
Jul 2021
Publication
In this present investigation a packed-filter bioreactor was employed to produce hydrogen utilizing an expired soft drink as a substrate. The effects of feeding substrate concentrations ranging from 19.51 10.19 5.34 3.48 to 2.51 g total sugar/L were examined and the position of the packed filter installed in the bioreactor at dimensionless heights (h/H) of 1/4 2/4 3/4 and 4/4 was studied. The results revealed that with a substrate concentration of 20 g total sugar/L and a hydraulic retention time (HRT) of 1 h a packed filter placed at the half-height position of the bioreactor (h/H 2/4) has the optimal hydrogen production rate hydrogen yield and average biomass concentration in the bioreactor resulting in 55.70 ± 2.42 L/L/d 0.90 ± 0.06 mol H2/mol hexose and 17.86 ± 1.09 g VSS/L. When feeding substrate concentrations varied from 20 10 to 5 g total sugar/L with the packed-filter position at h/H 2/4 Clostridium sp. Clostridium tyrobutyricum and Bifidobacterium crudilactis were the predominant bacteria community. Finally it was discovered that the packed-filter bioreactor can produce stable hydrogen in high-strength organic effluent.
Controlled Biosynthesis of ZnCdS Quantum Dots with Visible-Light-Driven Photocatalytic Hydrogen Production Activity
May 2021
Publication
The development of visible-light-responsive photocatalysts with high efficiency stability and eco-friendly nature is beneficial to the large-scale application of solar hydrogen production. In this work the production of biosynthetic ternary ZnCdS photocatalysts (Eg = 2.35–2.72 eV) by sulfate-reducing bacteria (SRB) under mild conditions was carried out for the first time. The huge amount of biogenic S2− and inherent extracellular proteins (EPs) secreted by SRB are important components of rapid extracellular biosynthesis. The ternary ZnCdS QDs at different molar ratios of Zn2+and Cd2+ from 15:1 to 1:1 were monodisperse spheres with good crystallinity and average crystallite size of 6.12 nm independent of the molar ratio of Cd2+ to Zn2+. All the ZnCdS QDs had remarkable photocatalytic activity and stability for hydrogen evolution under visible light without noble metal cocatalysts. Especially ZnCdS QDs at Zn/Cd = 3:1 showed the highest H2 production activity of 3.752 mmol·h−1·g−1. This excellent performance was due to the high absorption of visible light the high specific surface area and the lower recombination rate between photoexcited electrons and holes. The adhered inherent EPs on the ZnCdS QDs slowed down the photocorrosion and improved the stability in photocatalytic hydrogen evolution. This study provides a new direction for solar hydrogen production.
Life Cycle Assessment of Hydrogen from Proton Exchange Membrane Water Electrolysis in Future Energy Systems
Jan 2019
Publication
This study discusses the potential of H2 production by proton exchange membrane water electrolysis as an effective option to reduce greenhouse gas emissions in the hydrogen sector. To address this topic a life cycle assessment is conducted to compare proton exchange membrane water electrolysis versus the reference process - steam methane reforming. As a relevant result we show that hydrogen production via proton exchange membrane water electrolysis is a promising technology to reduce CO2 emissions of the hydrogen sector by up to 75% if the electrolysis system runs exclusively on electricity generated from renewable energy sources. In a future (2050) base-load operation mode emissions are comparable to the reference system.
The results for the global warming potential show a strong reduction of greenhouse gas emissions by 2050. The thoroughly and in-depth modelled components of the electrolyser have negligible influence on impact categories; thus emissions are mainly determined by the electricity mix. With 2017 electricity mix of Germany the global warming potential corresponds to 29.5 kg CO2 eq. for each kg of produced hydrogen. Referring to the electricity mix we received from an energy model emissions can be reduced to 11.5 kg CO2 eq. in base-load operation by the year 2050. Using only the 3000 h of excess power from renewables in a year will allow for the reduction of the global warming potential to 3.3 kg CO2 eq. From this result we see that an environmentally friendly electricity mix is crucial for reducing the global warming impact of electrolytic hydrogen.
The results for the global warming potential show a strong reduction of greenhouse gas emissions by 2050. The thoroughly and in-depth modelled components of the electrolyser have negligible influence on impact categories; thus emissions are mainly determined by the electricity mix. With 2017 electricity mix of Germany the global warming potential corresponds to 29.5 kg CO2 eq. for each kg of produced hydrogen. Referring to the electricity mix we received from an energy model emissions can be reduced to 11.5 kg CO2 eq. in base-load operation by the year 2050. Using only the 3000 h of excess power from renewables in a year will allow for the reduction of the global warming potential to 3.3 kg CO2 eq. From this result we see that an environmentally friendly electricity mix is crucial for reducing the global warming impact of electrolytic hydrogen.
A Review on Recent Advances in Hydrogen Energy, Fuel Cell, Biofuel and Fuel Refining via Ultrasound Process Intensification
Mar 2021
Publication
Hydrogen energy is one of the most suitable green substitutes for harmful fossil fuels and has been investigated widely. This review extensively compiles and compares various methodologies used in the production storage and usage of hydrogen. Sonochemistry is an emerging synthesis process and intensification technique adapted for the synthesis of novel materials. It manifests acoustic cavitation phenomena caused by ultrasound where higher rates of reactions occur locally. The review discusses the effectiveness of sonochemical routes in developing fuel cell catalysts fuel refining biofuel production chemical processes for hydrogen production and the physical chemical and electrochemical hydrogen storage techniques. The operational parameters and environmental conditions used during ultrasonication also influence the production rates which have been elucidated in detail. Hence this review's major focus addresses sonochemical methods that can contribute to the technical challenges involved in hydrogen usage for energy.
A Mountain to Climb? Tracking Progress in Scaling Up Renewable Gas Production in Europe
Oct 2019
Publication
In the last couple of years there has been increasing recognition by key players in the European gas industry that to mitigate the risk of terminal decline in the context of a decarbonising energy system there will need to be rapid scale up of decarbonised gas. This has led to several projections of the scale of decarbonised gas which could potentially be supplied by 2030 2040 or 2050. This paper joint with the Sustainable Gas Institute at Imperial College London considers the very significant rate of scale up and the significant cost reductions contemplated by such projections. Based on a database of actual announced projects (both committed and in earlier stages of development) for production of decarbonised gas it then considers the extent to which project activity is consistent with meeting the ambitious projections. It identifies a significant gap in current levels of activity largely because there is not yet sufficient economic incentive for investors to develop the required projects. It is intended that this paper will form the basis of continued tracking of the level of activity over the coming years to help inform industry players of further actions which may be required.
Clean Hydrogen Production by Ultrasound (Sonochemistry): The Effect of Noble Gases
Feb 2022
Publication
Power ultrasonic (> 100 kHz) splits water into free radicals and hydrogen. As a result water sonochemistry is considered as an alternative clean and fossil-fuel-free hydrogen production technique. In this research work the impact of rare gases (Xe Ar and He) on the sonochemical production of hydrogen as well as the population of active bubbles has been investigated computationally for various sonicated frequencies (213-515 kHz) and intensities (1-2 W/cm²). It has been found that both the H2 yielding and the bubble population size for H2 yielding are in the order Xe>Ar>He whatever the imposed sonolytic parameters (i.e. frequency and power). These findings were principally ascribed to the thermal conductivity of the saturating gases which is in the reverse order (He>Ar>Xe). Besides the difference between Ar and Xe is condensed in comparison with the He gas. For wave frequencies larger than 213 kHz however all saturating gases (Xe Ar and He) behave identically with the influence of thermal conductivity of these gases on the optimal radius muted. At 213 kHz however this impact is plainly visible (Ropt (Ar and Xe)>Ropt (He)). As per the results obtained helium's inefficiency as a saturating gas for hydrogen production is verified but xenon's maximal efficacy is reached when water is saturated with it. These results support the fewer experimental data reported in this emerging branch of sonochemistry while the discussed results in the present (i.e. noble gases effect on sono-hydrogen production) are treated for the first time consequently our work is considered as a guideline for increasing the efficacy of hydrogen production in a sonochemical reactor.
Ranking Locations for Hydrogen Production Using Hybrid Wind-Solar: A Case Study
Apr 2021
Publication
Observing the growing energy demand of modern societies many countries have recognized energy security as a looming problem and renewable energies as a solution to this issue. Renewable hydrogen production is an excellent method for the storage and transfer of energy generated by intermittent renewable sources such as wind and solar so that they can be used at a place and time of our choosing. In this study the suitability of 15 cities in Fars province Iran for renewable hydrogen production was investigated and compared by the use of multiple multi-criteria decision-making methods including ARAS SAW CODAS and TOPSIS. The obtained rankings were aggregated by rank averaging Borda method and Copeland method. Finally the partially ordered set ranking technique was used to reach a general consensus about the ranking. The criteria that affect hydrogen production were found to be solar energy potential wind energy potential population air temperature natural disasters altitude relative humidity land cost skilled labor infrastructure topographic condition and distance from main roads. These criteria were weighted using the best–worst method (BWM) based on the data collected by a questionnaire. Solar energy potential was estimated using the Angstrom model. Wind energy potential was estimated by using the Weibull distribution function for each month independently. The results of the multi-criteria decision-making methods showed Izadkhast to be the most suitable location for renewable hydrogen production in the studied area.
Rising To the Challenge of a Hydrogen Economy: The Outlook for Emerging Hydrogen Value Chains, From Production to Consumption
Jul 2021
Publication
For many a large-scale hydrogen economy is essential to a a clean energy future with three quarters of the more than 1100 senior energy professionals we surveyed saying Paris Agreement targets will not be possible without it.
DNV’s research Rising to the challenge of a hydrogen economy explores the outlook for emerging hydrogen value chains from production to consumption. It combines the wider view from the energy industry with commentary from business leaders and experts. Our research finds that the challenge is not in the ambition but in changing the timeline: from hydrogen on the horizon to hydrogen in our homes businesses and transport systems.
We see that the energy industry is rising to this challenge. By 2025 almost half (44%) of energy companies globally involved in hydrogen expect it to account for more than a tenth of their revenue rising to 73% of companies by 2030 – up significantly from just 8% of companies today. The research identifies infrastructure and cost as two of the biggest hurdles while the right regulations are deemed the most powerful enabler followed by carbon pricing. Proving the safety case will also be key to scaling the hydrogen economy.
Download your complimentary copy of DNV’s latest hydrogen research at their website link
DNV’s research Rising to the challenge of a hydrogen economy explores the outlook for emerging hydrogen value chains from production to consumption. It combines the wider view from the energy industry with commentary from business leaders and experts. Our research finds that the challenge is not in the ambition but in changing the timeline: from hydrogen on the horizon to hydrogen in our homes businesses and transport systems.
We see that the energy industry is rising to this challenge. By 2025 almost half (44%) of energy companies globally involved in hydrogen expect it to account for more than a tenth of their revenue rising to 73% of companies by 2030 – up significantly from just 8% of companies today. The research identifies infrastructure and cost as two of the biggest hurdles while the right regulations are deemed the most powerful enabler followed by carbon pricing. Proving the safety case will also be key to scaling the hydrogen economy.
Download your complimentary copy of DNV’s latest hydrogen research at their website link
No more items...