Safety
Security Risk Analysis of a Hydrogen Fueling Station with an On-site Hydrogen Production System Involving Methylcyclohexane
Sep 2017
Publication
Although many studies have looked at safety issues relating to hydrogen fuelling stations few studies have analyzed the security risks such as deliberate attack of the station by threats such as terrorists and disgruntled employees. The purpose of this study is to analyze security risks for a hydrogen fuelling station with an on-site production of hydrogen from methylcyclohexane. We qualitatively conducted a security risk analysis using American Petroleum Institute Standard 780 as a reference for the analysis. The analysis identified 93 scenarios including pool fires. We quantitatively simulated a pool fire scenario unique to the station to analyze attack consequences. Based on the analysis and the simulation we recommend countermeasures to prevent and mitigate deliberate attacks.
Effect of Expansion Ratio on Flame Acceleration During Hydrogen Fueled Gas Explosions
Sep 2019
Publication
A precise understanding of the flame turbulence induced by cellular instabilities is indispensable to perform an appropriate risk assessment of hydrogen fuelled gas explosion. In this research Darrieus Landau instability (DL instability) whose effect on gas explosion is remarkable was experimentally examined. The DL instability is essentially caused by a volumetric expansion of burned gas at flame front. Therefore in order to examine the effects of volumetric expansion ratio the experiments were conducted using H2-O2-N2-Ar gas mixtures of various volumetric expansion ratio conditions by changing N2-Ar ratio. When Ar content ratio is increased the flame temperature becomes higher and volumetric expansion ratio is increased owing to lower specific heat of Ar. The experiments were conducted in nearly unconfined conditions of laboratory-scale and large-scale. Gas mixtures were filled in a 10 cm diameter soap bubble for the laboratory-scale and in a plastic tent of thin vinyl sheet of 1m3 for the large-scale. The gas mixtures were ignited by an electric spark and blast wave and flame speed were measured simultaneously by using a pressure sensor and a high-speed video camera. The DL instability owing to volumetric expansion accelerates flame propagation. In addition the intensity of blast wave was greatly raised depending on flame acceleration which can be explained by an acoustic theory. The effects of expansion ratio and experimental scales on flame propagation and blast wave were analyzed in detail. These results are quite important to perform an appropriate consequence analysis of accidental explosion of hydrogen.
Numerical and Experimental Investigation of H2-air and H2-O2 Detonation Parameters in a 9 m Long Tube, Introduction of a New Detonation Model
Sep 2017
Publication
Experimental and numerical investigation of hydrogen-air and hydrogen-oxygen detonation parameters was performed. A new detonation model was introduced and validated against the experimental data. Experimental set-up consisted of 9 m long tube with 0.17 m in diameter where pressure was measured with piezoelectric transducers located along the channel. Numerical simulations were performed within OpenFoam code based on progress variable equation where the detonative source term accounts for autoignition effects. Autoignition delay times were computed at a simulation run-time with the use of a multivariate regression model where independent variables were: pressure temperature and fuel concentration. The dependent variable was the autoignition delay time. Range of the analyzed gaseous mixture composition varied between 20% and 50% of hydrogen-air and 50%–66% of hydrogen in oxygen. Simulations were performed using LES one-equation eddy viscosity turbulence model in 2D and 3D. Calculations were validated against experimental data.
Tokyo Gas’ Efforts Regarding Impact Assessment on Surroundings and Emergency Response Training
Sep 2017
Publication
In Japan 82 commercial Hydrogen Refuelling Stations (HRSs) were constructed as of March 1 2017 but few impact assessments have been reported on the surroundings at HRS. In addition as HRSs become more widespread the number of HRSs around narrow urban areas will also increase. Thus the necessity of impact assessments on the surroundings of HRSs is expected to increase. In order to confirm that the influence from our HRS is not problematic to the surrounding residences we conducted an impact assessment on the surroundings at HRS by using the actual HRS construction plan. Although safety is one of the objects of an impact assessment in Japan the safety of an HRS is guaranteed by observing the High Pressure Gas Safety Act its Technical Standards and other related regulations. On the other hand if an accident such as a hydrogen leak or hydrogen fire occurs at an HRS it becomes important to prevent secondary disasters and to minimize influence on the surroundings by means of an initial response by the operators of the HRS. Therefore we have conducted training to improve the emergency response capability of the HRS operators and to prevent secondary disasters. In this paper we describe the abovementioned information with regard to an impact assessment on the surroundings and for emergency response training.
Safety of Hydrogen Powered Industrial Trucks, Lessons Learned and Existing Codes and Standards Gaps
Sep 2011
Publication
This paper provides an introduction to the powered industrial truck application of fuel cell power systems the safety similarities with the automotive application and safety lessons learned. Fuel Cell niche markets have proven their value to many early adopters. How has the automotive market provided a springboard for these niche applications? How are niche markets revealing gaps in current safety approaches? What is different about the powered industrial truck application and what new codes and standards are needed to accommodate those differences?
Effects of Oxidants on Hydrogen Spontaneous Ignition: Experiments and Modelling
Sep 2017
Publication
Experiments were performed on the influence of oxidants (air pure oxygen O2 and pure nitrous oxide N2O at atmospheric pressure) in the straight expansion tube after the burst disk on the hydrogen spontaneous ignition. The lowest pressure at which the spontaneous ignition is observed has been researched for a 4 mm diameter tube with a length of 10 cm for the two oxidant gases. The ignition phenomenon is observed with a high speed camera and the external overpressures are measured. Numerical simulations have also been conducted with the high resolution CFD approach detailed chemistry formerly developed by Wen and co-workers. Comparison is made between the predictions and the experimental data.
Empirical Profiling of Cold Hydrogen Plumes Formed from Venting of LH2 Storage Vessels
Sep 2017
Publication
Liquid hydrogen (LH2) storage is viewed as a viable approach to assure sufficient hydrogen capacity at commercial fuelling stations. Presently LH2 is produced at remote facilities and then transported to the end-use site by road vehicles (i.e. LH2 tanker trucks). Venting of hydrogen to depressurize the transport storage tank is a routine part of the LH2 delivery and site transfer process. The behaviour of cold hydrogen plumes has not been well characterized because of the sparsity of empirical field data which can lead to overly conservative safety requirements. Committee members of the National Fire Protection Association (NFPA) Standard 2 [1] formed the Hydrogen Storage Safety Task Group which consists of hydrogen producers safety experts and computational fluid dynamics modellers has identified the lack of understanding of hydrogen dispersion during LH2 venting of storage vessels as a critical gap for establishing safety distances at LH2 facilities especially commercial hydrogen fuelling stations. To address this need the National Renewable Energy Laboratory Sensor Laboratory in collaboration with the NFPA Hydrogen Storage Task Group developed a prototype Cold Hydrogen Plume Analyzer to empirically characterize the hydrogen plume formed during LH2 storage tank venting. The prototype analyzer was field deployed during an actual LH2 venting process. Critical findings included
- Hydrogen above the lower flammable limit (LFL) was detected as much as 2 m lower than the release point which is not predicted by existing models.
- Personal monitors detected hydrogen at ground level although at levels below the LFL.
- A small but inconsistent correlation was found between oxygen depletion and the hydrogen concentration.
- A negligible to non-existent correlation was found between in-situ temperature measurements and the hydrogen concentration.
Validation Testing In Support Of Hydrogen Codes and Standards Developments
Sep 2011
Publication
New codes and standards are being developed to facilitate the safe deployment of emerging hydrogen technologies. Hydrogen markets will benefit from standards that address the specific properties of hydrogen hydrogen effects on strength of materials and hydrogen compressed gas storage at pressures up to 70 MPa. The need for validation of new hydrogen requirements has been identified by codes and standards technical committees. The US Department of Energy (DOE) office of Energy Efficiency and Renewable Energy (EERE) has tasked the National Renewable Energy Laboratory (NREL) with the role of supporting hydrogen codes and standards research and development needs. NREL has provided validation test support to several new standards development efforts including pressure testing of 70 MPa on board vehicle storage systems flaw testing of stationary hydrogen tanks fill protocols for hydrogen fuel dispensing and hydrogen compatibility testing for hydrogen pressure relief devices (HPRD’s). Validation test results are presented for these four specific standards development needs.
Interaction of Hydrogen Jets with Hot Surfaces
Sep 2017
Publication
The formation of hydrogen jets from pressurized sources and its ignition when hitting hot devices has been studied by many projects. The transient jets evolve with high turbulence depending on the configuration of the nozzle and especially the pressure in the hydrogen reservoir. In addition the length of the jets and the flames generated by ignition at a hot surface varies. Parameters to be varied were initial pressure of the source (2.5 10 20 and 40 MPa) distance between the nozzle and the hot surface (3 5 and 7 m) and temperature of the hot surface (between 400 and 1000 K). The interaction of the hydrogen jets is visualized by high-speed cinematography techniques which allow analysing the jet characteristics. By combination of various methods of image processing the visibility of the phenomena on the videos taken at 15 000 fps was improved. In addition high-speed NIR spectroscopy was used to obtain temperature profiles of the expanding deflagrations. The jets ignite already above 450 K for conditions mainly from the tubular source at 40 MPa. In addition the propagation of the flame front depends on all three varied parameters: temperature of the hot surface pressure in the reservoir and distance between nozzle and hot surface. In most cases also upstream propagation occurs. A high turbulence seems to lead to the strong deflagrations. At high temperatures of the ignition sources the interaction leads to fast deflagration and speeds up- and downstream of the jet. The deflagration velocity is close to velocity of sound and emission of pressure waves occurs.
Numerical Prediction of Forced-ignition Limit in High-pressurized Hydrogen Jet Flow Through a Pinhole
Sep 2017
Publication
The numerical simulations on the high-pressure hydrogen jet are performed by using the unsteady three-dimensional compressible Navier-Stokes equations with multi-species conservation equations. The present numerical results show that the highly expanded hydrogen free jet observes and the distance between the Mach disc and the nozzle exit agrees well with the empirical equation. The time-averaged H2 concentration of the numerical simulations agrees well with the experimental data and the empirical equation. The numerical simulation of ignition in a hydrogen jet is performed to show the flame behaviour from the calculated OH iso surface. We predicted the ignition and no-ignition region from the present numerical results about the forced ignition in the high-pressurized hydrogen jet.
Measurements of Flow Velocity and Scalar Concentration in Turbulent Multi-component Jets
Sep 2017
Publication
Buoyancy effects and nozzle geometry can have a significant impact on turbulent jet dispersion. This work was motivated by applications involving hydrogen. Using helium as an experimental proxy buoyant horizontal jets issuing from a round orifice on the side wall of a circular tube were analyzed experimentally using particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques simultaneously to provide instantaneous and time-averaged flow fields of velocity and concentration. Effects of buoyancy and asymmetry on the resulting flow structure were studied over a range of Reynolds numbers and gas densities. Significant differences were found between the centreline trajectory spreading rate and velocity decay of conventional horizontal round axisymmetric jets issuing through flat plates and the pipeline leak-representative jets considered in the present study. The realistic pipeline jets were always asymmetric and found to deflect about the jet axis in the near field. In the far field it was found that the realistic pipeline leak geometry causes buoyancy effects to dominate much sooner than expected compared to horizontal round jets issuing through flat plates.
Application of the Validated 3D Multiphase-multicomponent CFD Model to an Accidental Liquid Hydrogen Release Scenario in a Liquefication Plant
Sep 2017
Publication
Hydrogen-air mixtures are flammable in a wide range of compositions and have a low ignition energy compared to gaseous hydrocarbons. Due to its low density high buoyancy and diffusivity the mixing is strongly enhanced which supports distribution into large volumes if accidentally released. Economically valuable discontinuous transportation over large distances is only expected using liquid hydrogen (LH2). Releases of LH2 at its low temperature (20.3 K at 0.1 MPa) have additional hazards besides the combustible character of gaseous hydrogen (GH2). Hazard assessment requires simulation tools capable of calculating the pool spreading as well as the gas distribution for safety assessments of existing the future liquid hydrogen facilities. Evaluating possible risks the following process steps are useful:
- Possible accident release scenarios need to be identified for a given plant layout.
- Environmental boundary conditions such as wind conditions and humidity need to be identified and worst case scenarios have to be identified.
- A model approach based on this information which is capable of simulating LH2 releases vaporization rates and atmospheric dispersion of the gaseous hydrogen.
- Evaluate and verify safety distances identify new risks and/or extract certain design rules.
Experimental Measurements of Structural Displacement During Hydrogen Vented Deflagrations for FE Model Validation
Sep 2017
Publication
Vented deflagration tests were conducted by UNIPI at B. Guerrini Laboratory during the experimental campaign for HySEA project. Experiments included homogeneous hydrogen-air mixture in a 10-18% vol. range of concentrations contained in an about 1 m3 enclosure called SSE (Small Scale Enclosure). Displacement measurements of a test plate were taken in order to acquire useful data for the validation of FE model developed by IMPETUS Afea. In this paper experimental facility displacement measurement system and FE model are briefly described then comparison between experimental data and simulation results is discussed.
Blending Ammonia into Hydrogen to Enhance Safety through Reduced Burning Velocity
Sep 2019
Publication
Laminar burning velocities (SL) of hydrogen/ammonia mixtures in air at atmospheric pressure were studied experimentally and numerically. The blending of hydrogen with ammonia two fuels that have been proposed as promising carriers for renewable energy causes the laminar flame speed of the mixture SL to decrease significantly. However details of this have not previously available. Systematic measurements were therefore performed for a series of hydrogen/ammonia mixtures with wide ranges of mole fractions of blended ammonia (XNH3) and equivalence ratio using a heat flux method based on heat flux of a flat flame transferred to the burner surface. It was found that the mixture of XNH3 = 40% has a value of SL close to that of methane which is the dominant component of natural gas. Using three chemical kinetic mechanisms available in the literature i.e. the well-known GRI-Mech 3.0 mechanism and two mechanisms recently released SL were also modelled for the cases studied. However the discrepancies between the experimental and numerical results can exceed 50% with the GRI-Mech 3.0 mechanism. Discrepancies were also found between the numerical results obtained with different mechanisms. These results can contribute to an increase in both the safety and efficiency of the coutilization of these two types of emerging renewable fuel and to guiding the development of better kinetic models.
Prevention of Hydrogen Accumulation Inside the Vacuum Vessel Pressure Suppression System of the ITER Facility by Means of Passive Auto-catalytic Recombiners
Sep 2017
Publication
Hydrogen safety is a relevant topic for both nuclear fission and fusion power plants. Hydrogen generated in the course of a severe accident may endanger the integrity of safety barriers and may result in radioactive releases. In the case of the ITER fusion facility accident scenarios with water ingress consider the release of hydrogen into the suppression tank (ST) of the vacuum vessel pressure suppression system (VVPSS). Under the assumption of additional air ingress the formation of flammable gas mixtures may lead to explosions and safety component failure.<br/>The installation of passive auto-catalytic recombiners (PARs) inside the ST which are presently used as safety devices inside the containments of nuclear fission reactors is one option under consideration to mitigate such a scenario. PARs convert hydrogen into water vapor by means of passive mechanisms and have been qualified for operation under the conditions of a nuclear power plant accident since the 1990s.<br/>In order to support on-going hydrogen safety considerations simulations of accident scenarios using the CFD code ANSYS-CFX are foreseen. In this context the in-house code REKO-DIREKT is coupled to CFX to simulate PAR operation. However the operational boundary conditions for hydrogen recombination (e.g. temperature pressure gas mixture) of a fusion reactor scenario differ significantly from those of a fission reactor. In order to enhance the code towards realistic PAR operation a series of experiments has been performed in the REKO-4 facility with specific focus on ITER conditions. These specifically include operation under sub-atmospheric pressure (0.2–1.0 bar) gas compositions ranging from lean to rich H2/O2 mixtures and superposed flow conditions.<br/>The paper gives an overview of the experimental program presents results achieved and gives an outlook on the modelling approach towards accident scenario simulation.
Experimental Determination of Minimum Ignition Current (MIC) for Hydrogen & Methane Mixtures for the Determination of the Explosion Group Corresponding to IEC 60079-20-1
Sep 2017
Publication
Power to gas could get an important issue in future permitting the valorisation of green electric excess energy by producing hydrogen mixing it with natural gas (NG) and use the NG grid as temporary storage. NG grid stakeholders expect that blends up to 20% seem to be a realistic scenario. The knowledge of the explosion group for these hydrogen/NG (H2NG) mixtures is a necessary information for the choice of equipment and protective systems intended for the use in potentially explosive atmospheres of these mixtures. Therefore we determined experimentally the minimum ignition current (MIC) the MIC ratios referenced on MIC of pure methane corresponding to IEC 60079-20-1 standard. The results are compared to those obtained by maximum experimental safe gap (MESG) the second standardized method. The tested gas mixtures started from 2 vol.% volume admixture in methane rising in 2% steps up to 20 vol.% of hydrogen. The interpretation of these results could conduct to consider methane/hydrogen mixtures containing more than 14 vol.% of hydrogen as Group IIB gases.
Delayed Explosion of Hydrogen High Pressure Jets: An Inter Comparison Benchmark Study
Sep 2017
Publication
Delayed explosions of accidental high pressure hydrogen releases are an important risk scenario for safety studies of production plants transportation pipelines and fuel cell vehicles charging stations. As a consequence the assessment of the associated consequences requires accurate and validated prediction based on modelling and experimental approaches. In the frame of the French working group dedicated to the evaluation of computational fluid dynamics (CFD) codes for the modelling of explosion phenomena this study is dedicated to delayed explosions of high pressure releases. Two participants using two different codes have evaluated the capacity of CFD codes to reproduce explosions of high pressure hydrogen releases. In the first step the jet dispersion is modelled and simulation results are compared with experimental data in terms of axial and radial concentration dilution velocity decay and turbulent characteristics of jets. In the second step a delayed explosion is modelled and compared to experimental data in terms of overpressure at different monitor points. Based on this investigation several recommendations for CFD modelling of high pressure jets explosions are suggested.
Study of Fire Risk and Accidents Emergency Disposal Technology System of Hydrogen Fuel Vehicles
Sep 2017
Publication
As the energy crisis and environment pollution growing severely the hydrogen fuel motor vehicle has got more and more attention many automobile companies and research institutions invest significant R&D resources to research and develop the hydrogen fuel vehicles. With the development of the hydrogen fuel cell vehicles and hydrogen fuel motor vehicles the hydrogen had more to more extensive application. According to the categories of the hydrogen fuel vehicles the characteristics of hydrogen fuel vehicle fire risk and accidents are analyzed in this paper. As for hydrogen fuel cell vehicles the function of its key components such as the fuel cell the high-pressure storage tank is presented firstly. Then based on the low density fast diffusion and flammable of hydrogen the probable scenarios of accident such as fuel leak jet flame are analyzed and the fire risk of the key components and the whole vehicle is evaluated. Finally the development trend of the emergency warning system of hydrogen fuel cell vehicles is analyzed and some recommendations are proposed referring to the detection pre-warning and control technologies used in the industrial sites. Aiming at the hydrogen car structure characteristics and the fire accident modes and accidents evolution rules the emergency disposal technology system for hydrogen fuel motor vehicles is put forward.
Structural Response for Vented Hydrogen Deflagrations: Coupling CFD and FE Tools
Sep 2017
Publication
This paper describes a methodology for simulating the structural response of vented enclosures during hydrogen deflagrations. The paper also summarises experimental results for the structural response of 20-foot ISO (International Organization for Standardization) containers in a series of vented hydrogen deflagration experiments. The study is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The project is funded by the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 671461. The HySEA project focuses on vented hydrogen deflagrations in containers and smaller enclosures with internal congestion representative of industrial applications. The structural response modelling involves one-way coupling of pressure loads taken either directly from experiments or from simulations with the computational fluid dynamics (CFD) tool FLACS to the non-linear finite element (FE) IMPETUS Afea Solver. The performance of the FE model is evaluated for a range of experiments from the HySEA project in both small-scale enclosures and 20-foot ISO containers. The paper investigates the sensitivity of results from the FE model to the specific properties of the geometry model. The performance of FLACS is evaluated for a selected set of experiments from the HySEA project. Furthermore the paper discusses uncertainties associated with the combined modelling approach.
European Hydrogen Safety Training Programme for First Responders: Hyresponse Outcomes and Perspectives
Sep 2017
Publication
The paper presents the outcomes of the HyResponse project i.e. the European Hydrogen Safety Training Programme for first responders. The threefold training is described: the content of the educational training is presented the operational training platform and its mock-up real scale transport and hydrogen stationary installations are detailed and the innovative virtual tools and training exercises are highlighted. The paper underlines the outcomes the three pilot sessions as well as the Emergency Response Guide available on the HyResponse’s public website. The next steps for widespread dissemination into the community are discussed.
No more items...