Safety
Safety Requirements for Liquefied Hydrogen Tankers
Oct 2015
Publication
R&D projects for establishing hydrogen supply chain have already been started in Japan in collaboration among the industry government and universities. One of the important subjects of the project is development of liquefied hydrogen tankers i.e. ships carrying liquefied hydrogen in bulk. In general basic safety requirements should be determined to design ships. However the existing regulations do not specify the requirements for hydrogen tankers while requirements for ships carrying many kinds of liquefied gases are specified in “International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk” (IGC Code) issued by the International Maritime Organization i.e. a special organization under the United Nations. Therefore the basic safety requirements for hydrogen tankers should be developed. We conducted bibliographic survey on the IGC Code ISO/TR 15916:2004 “Basic considerations for the safety of hydrogen systems” and so on; in order to provide safety requirements taking into account the properties of liquid and gaseous hydrogen. In this paper we provide safety requirements for liquefied hydrogen tankers as the basis for further consideration by relevant governments.
Hot Surface Ignition of Hydrogen-air Mixtures
Oct 2015
Publication
Hot surface ignition is relevant in the context of industrial safety. In the present work two-dimensional simulations with detailed chemistry and study of the reaction pathways of the buoyancy-driven flow and ignition of a stoichiometric hydrogen-air mixture by a rapidly heated surface (glowplug) are reported. Experimentally ignition is observed to occur regularly at the top of the glowplug; numerical results for hydrogen-air reproduce this trend and shed light on this behaviour. The simulations show the importance of flow separation in creating zones where convective losses are minimized and heat diffusion is maximized resulting in the critical conditions for ignition to take place.
Overview of the DOE Hydrogen Safety, Codes and Standards Program Part 3- Advances in Research and Development to Enhance the Scientific Basis for Hydrogen Regulations, Codes and Standards
Oct 2015
Publication
Hydrogen fuels are being deployed around the world as an alternative to traditional petrol and battery technologies. As with all fuels regulations codes and standards are a necessary component of the safe deployment of hydrogen technologies. There has been a focused effort in the international hydrogen community to develop codes and standards based on strong scientific principles to accommodate the relatively rapid deployment of hydrogen-energy systems. The need for science-based codes and standards has revealed the need to advance our scientific understanding of hydrogen in engineering environments. This brief review describes research and development activities with emphasis on scientific advances that have aided the advancement of hydrogen regulations codes and standards for hydrogen technologies in four key areas: (1) the physics of high-pressure hydrogen releases (called hydrogen behaviour); (2) quantitative risk assessment; (3) hydrogen compatibility of materials; and (4) hydrogen fuel quality.
Experimental Study of the Concentration Build-Up Regimes in an Enclosure Without Ventilation
Sep 2011
Publication
We present an experimental investigation of the different concentration build-up regimes encountered during a release of helium/air mixture in an empty enclosure without ventilation. The release is a vertical jet issuing from a nozzle located near the floor. The nozzle diameter the flow rate and the composition of the injected mixture have been varied such that the injection Richardson number ranges from 6 × 10−6 to 190. The volume Richardson number which gives the ability of the release to mix the enclosure content ranges from 2 × 10−3 to 2 × 104. This wide range allowed reaching three distinct regimes: stratified stratified with a homogeneous upper layer and homogenous.
Numerical Simulation on Low-speed Hydrogen Jet Diffusion
Oct 2015
Publication
The numerical simulation for the hydrogen jet experiments performed by Schefer et al. is conducted using the compressible multicomponent Navier-Stokes equations with the preconditioning method. The simulated results for the hydrogen jet agree with the theoretical results of Tollmien. As far as comparing with the experiments by Schefer et al. the concentration profiles along the radial direction agree with the present numerical results and that along the centerline also agree well with the experimental results after the data are normalized by the equivalent nozzle diameter. It is confirmed that the spread of the jet width from the jet exit to downstream is affected by the Kelvin-Helmholtz instability. It is also confirmed that the jet flow field is formed alternately by the high pressure region and the low pressure one to cause the jet flow fluctuation.
Auto-ignition Mechanism Near the Boundary Layer for High-pressure Hydrogen Release into Circular and Rectangular Tubes
Oct 2015
Publication
The accidents that hydrogen ignites without ignition source are reported in several cases which phenomenon is called “auto-ignition.” Since the use of high pressure hydrogen will be increased for the hydrogen society it must be necessary to understand auto-ignition mechanism in detail to prevent such accidents. In this study we performed three-dimensional numerical simulations to clarify the autoignition mechanism using the three-dimensional compressive Navier-Stokes equations and a hydrogen chemical reaction model including nine species and twenty elementary reactions. We focus on the effects of the shape of the cross-section on the hydrogen auto-ignition mechanism applying for a rectangular and cylindrical tube. The results obtained indicate that the Richtmyer-Meshukov instability involves these auto-ignition.
CFD Evaluation Against a Large Scale Unconfined Hydrogen Deflagration
Oct 2015
Publication
In the present work CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen–air mixture occupies a 20 m hemisphere. Two combustion models are compared and evaluated against the experiment: the Eddy Dissipation Concept model and a multi-physics combustion model which calculates turbulent burning velocity based on Yakhot's equation. Sensitivity analysis on the value of fractal dimension of the latter model is performed. A semi-empirical relation which estimates the fractal dimension is also tested. The effect of the turbulence model on the results is examined. LES approach and k-ε models are used. The multi-physics combustion model with constant fractal dimension value equal to 2.3 using the RNG LES turbulence model achieves the best agreement with the experiment.
Failure of PEM Water Electrolysis Cells: Case Study Involving Anode Dissolution and Membrane Thinning
Sep 2013
Publication
Polymer electrolyte membrane (PEM) water electrolysis is an efficient and environmental friendly method that can be used for the production of molecular hydrogen of electrolytic grade using zero-carbon power sources such as renewable and nuclear. However market applications are asking for cost reduction and performances improvement. This can be achieved by increasing operating current density and lifetime of operation. Concerning performance safety reliability and durability issues the membrane-electrode assembly (MEA) is the weakest cell component. Most performance losses and most accidents occurring during PEM water electrolysis are usually due to the MEA. The purpose of this communication is to report on some specific degradation mechanisms that have been identified as a potential source of performance loss and membrane failure. An accelerated degradation test has been performed on a MEA by applying galvanostatic pulses. Platinum has been used as electrocatalyst at both anode and cathode in order to accelerate degradation rate by maintaining higher cell voltage and higher anodic potential that otherwise would have occurred if conventional Ir/IrOx catalysts had been used. Experimental evidence of degradation mechanisms have been obtained by post-mortem analysis of the MEA using microscopy and chemical analysis. Details of these degradation processes are presented and discussed.
Experimental Determination of Critical Conditions for Hydrogen-air Detonation Propagation in Partially Confined Geometry
Oct 2015
Publication
An experimental investigation was performed to determine critical semi-open channel height (h*) and two-sided open channel width (w*) in which hydrogen-air detonation may propagate. Three types of gaseous mixture composition were used: 25% 29.6% and 40% of hydrogen in air. Experimental setup was based on rectangular (0.11 × 0.11 × 2 m) test channel equipped with acceleration section (0.11 × 0.11 × 1 m). Different channel heights h in range of 15–40 mm and widths w in range of 30–50 mm were used in the test channel. The critical height h* and width w* were defined for each investigated configuration. To determine representative detonation cell sizes λ and to calculate their relationship to h* and w* the sooted plate technique was used. The results showed that detonation in stoichiometric H2-air mixture may propagate in semi-open channel only when the channel height is very close to or higher than approximately 3λ. For less reactive mixtures critical relation h*/λ reaches 3.1 or 3.6 for mixtures with 25% and 40% of hydrogen in air respectively. For two-sided open channel similar relations w*/λ were close to 4.9 and 5.5 for 29.6%H2 and 40%H2 in air respectively.
Comparison of Convective Schemes in Hydrogen Impinging Jet CFD Simulation
Oct 2015
Publication
Hydrogen impinging jets can be formed in the case of an accidental release indoors or outdoors. The CFD simulation of hydrogen impinging jets suffers from numerical errors resulting in a non-physical velocity and hydrogen concentration field with a butterfly like structure. In order to minimize the numerical errors and to avoid the butterfly effect high order schemes need to be used. The aim of this work is to give best practices guidelines for hydrogen impinging jet simulations. A number of different numerical schemes is evaluated. The number of cells which discretize the source is also examined.
First Responder Training Supporting Commercialization of Hydrogen and Fuel Cell Technologies
Oct 2015
Publication
A properly trained first responder community is critical to the successful introduction of hydrogen fuel cell applications and their transformation in how we use energy. Providing resources with accurate information and current knowledge is essential to the delivery of effective hydrogen and fuel cell-related first responder training. The California Fuel Cell Partnership and the Pacific Northwest National Laboratory have over 15 years of experience in developing and delivering hydrogen safety-related first responder training materials and programs. A National Hydrogen and Fuel Cell Emergency Response Training Resource was recently released. This training resource serves the delivery of a variety of training regimens. Associated materials are adaptable for different training formats ranging from high-level overview presentations to more comprehensive classroom training. This paper presents what has been learned from the development and delivery of hydrogen safety-related first responder training programs (online classroom hands-on) by the respective organizations. The collaborative strategy being developed for enhancing training materials and methods for greater accessibility based on stakeholder input will be discussed.
Mixed E-learning and Virtual Reality Pedagogical Approach for Innovative Hydrogen Safety Training for First Responders
Oct 2015
Publication
Within the scope of the HyResponse project the development of a specialised training programme is currently underway. Utilizing an andragogy approach to teaching distance learning is mixed with classroom instructors-led activities while hands-on training on a full-scale simulator is coupled with an innovative virtual reality based experience. Although the course is dedicated mainly to first responders provision has been made to incorporate not only simple table-top and drill exercises but also full-scale training involving all functional emergency response organisations at multi-agency cooperation level. The developed curriculum includes basics of hydrogen safety first responders' procedures and incident management expectations
Outward Propagation Velocity and Acceleration Characteristics in Hydrogen-air Deflagration
Oct 2015
Publication
Propagation characteristics of hydrogen-air deflagration need to be understood for an accurate risk assessment. Especially flame propagation velocity is one of the most important factors. Propagation velocity of outwardly propagating flame has been estimated from burning velocity of a flat flame considering influence of thermal expansion at a flame front; however this conventional method is not enough to estimate an actual propagation velocity because flame propagation is accelerated owing to cellular flame front caused by intrinsic instability in hydrogen-air deflagration. Therefore it is important to understand the dynamic propagation characteristics of hydrogen-air deflagration. We performed explosion tests in a closed chamber which has 300 mm diameter windows and observed flame propagation phenomena by using Schlieren photography. In the explosion experiments hydrogen-air mixtures were ignited at atmospheric pressure and room temperature and in the range of equivalence ratio from 0.2 to 1.0. Analyzing the obtained Schlieren images flame radius and flame propagation velocity were measured. As the result cellular flame fronts formed and flame propagations of hydrogen–air mixture were accelerated at the all equivalence ratios. In the case of equivalent ratio φ = 0.2 a flame floated up and could not propagate downward because the influence of buoyancy exceeded a laminar burning velocity. Based upon these propagation characteristics a favorable estimation method of flame propagation velocity including influence of flame acceleration was proposed. Moreover the influence of intrinsic instability on propagation characteristics was elucidated.
Safe Operation of Combined Cycle Gas Turbine and Gas Engine Systems Using Hydrogen Rich Fuels
Oct 2015
Publication
This paper describes work performed by a consortium led by the UK Health and Safety Laboratory(HSL)to identify the safe operating conditions for combined cycle power generating systems running on high hydrogen fuels. The work focuses on hydrogen and high hydrogen syngas and biogas waste-stream fuel mixtures which may prove hazardous in the event of a turbine or engine flame out resulting in a flammable fuel mixture entering the hot exhaust system and igniting. The paper describes the project presenting some initial results from this work including the development of large scale experimental facilities on the550 acre HSL site near Buxton Derbyshire UK. It describes the large scale experimental facility which utilises the exhaust gas from a Rolls-Royce Viper jet-engine (converted to run on butane) feeding into a 12 m long 0.60 m diameter instrumented tube at a pre-combustion velocity of 22 m/s. A variable geometry simulated heat exchanger with a 40 %2blockage ratio is present in the tube. Flammable mixtures injected into the tube close to the Viper outlet together with make-up oxygen are then ignited. Extensive optical ionisation temperature and pressure sensors are employed along the length of the tube to measure the pressures and flame speeds resulting from the combustion event. Some preliminary results from the test programme are discussed including deflagration to detonation transitions at high equivalence ratios.
Numerical Simulation of Deflagration-to-detonation Transition in Hydrogen-air Mixtures with Concentration Gradients
Oct 2015
Publication
Flame acceleration in inhomogeneous combustible gas mixture has largely been overlooked despite being relevant to many accidental scenarios. The present study aims to validate our newly developed density-based solver ExplosionFoam for flame acceleration and deflagration-to-detonation transition. The solver is based on the open source computational fluid dynamics (CFD) platform OpenFOAM®. For combustion it uses the hydrogen-air single-step chemistry and the corresponding transport coefficients developed by the authors. Numerical simulations have been conducted for the experimental set up of Ettner et al. [1] which involves flame acceleration and DDT in both homogeneous hydrogen-air mixture as well as an inhomogeneous mixture with concentration gradients in an obstucted channel. The predictions demonstrate good quantitative agreement with the experimental measurements in flame tip position speed and pressure profiles. Qualitatively the numerical simulations reproduce well the flame acceleration and DDT phenomena observed in the experiment. The results have shown that in the computed cases DDT is induced by the interaction of the precursor inert shock wave with the wall close to high hydrogen concentration rather than with the obstacle. Some vortex pairs appear ahead of the flame due to the interaction between the obstacles and the gas flow caused by combustion-induced expansion but they soon disappear after the flame passes through them. Hydrogen cannot be completely consumed especially in the fuel rich region. This is of additional safety concern as the unburned hydrogen can potentially re-ignite once more fresh air is available in an accidental scenario causing subsequent explosions. The results demonstrate the potential of the newly developed density based solver for modelling flame acceleration and DDT in both homogeneous/inhomogeneous hydrogen-air mixture. Further validation needs to be carried out for other mixtures and large-scale cases.
Application of Quantitative Risk Assessment for Performance-based Permitting of Hydrogen Fueling Stations
Oct 2015
Publication
NFPA 2 Hydrogen Technologies Code allows the use of risk-informed approaches to permitting hydrogen fuelling installations through the use of performance-based evaluations of specific hydrogen hazards. However the hydrogen fuelling industry in the United States has been reluctant to implement the performance-based option because the perception is that the required effort is cost prohibitive and there is no guarantee that the Authority Having Jurisdiction (AHJ) would accept the results. This report provides a methodology for implementing a performance-based design of an outdoor hydrogen refuelling station that does not comply with specific prescriptive separation distances. Performance-based designs are a code-compliant alternative to meeting prescriptive requirements. Compliance is demonstrated by evaluating a compliant prescriptive-based refuelling station design with a performance-based design approach using Quantitative Risk Assessment (QRA) methods and hydrogen risk tools. This template utilizes the Sandia-developed QRA tool Hydrogen Risk Analysis Model (HyRAM) to calculate risk values when developing risk-equivalent designs. HyRAM combines reduced-order deterministic models that characterize hydrogen release and flame behaviour with probabilistic risk models to quantify risk values. Each project is unique and this template is not intended to cover unique site-specific characteristics. Instead example content and a methodology are provided for a representative hydrogen refuelling site which can be built upon for new hydrogen applications.
Overview of the DOE Hydrogen Safety, Codes and Standards Program part 2- Hydrogen and Fuel Cells, Emphasizing Safety to Enable Commercialization
Oct 2015
Publication
Safety is of paramount importance in all facets of the research development demonstration and deployment work of the U.S. Department of Energy’s (DOE) Fuel Cell Technologies Program. The Safety Codes and Standards sub-program (SC&S) facilitates deployment and commercialization of fuel cell and hydrogen technologies by developing and disseminating information and knowledge resources for their safe use. A comprehensive safety management program utilizing the Hydrogen Safety Panel to raise safety consciousness at the project level and developing/disseminating a suite of safety knowledge resources is playing an integral role in DOE and SC&S efforts. This paper provides examples of accomplishments achieved while reaching a growing and diverse set of stakeholders involved in research development and demonstration; design and manufacturing; deployment and operations. The work of the Hydrogen Safety Panel highlights new knowledge and the insights gained through interaction with project teams. Various means of collaboration to enhance the value of the program’s safety knowledge tools and training resources are illustrated and the direction of future initiatives to reinforce the commitment to safety is discussed.
A Study on the Continuous Spill with Limited Period of Release
Sep 2013
Publication
In this study the spread of cryogenic liquid due to a limited period of release is investigated for the first time to clarify the unclear conventional concept regarding two release types continuous and instantaneous release. In describing instantaneous release a discharge time has been assumed to be infinitesimally small; however such an assumption is unreal because there exists a finite period of release no matter how rapid it is. If the discharge time is less than the entire time domain the instantaneous release model should be added to the continuous model from the end of the time. This combined release that consists of the initial continuous model and subsequent instantaneous model is more realistic than the instantaneous release. The physical phenomenon is governed by three parameters: the evaporation rate per unit area release time and spill quantity. Third-order perturbation solutions are obtained and compared with a numerical solution to verify the perturbation solution. For the same spill quantity the combined model that consists of continuous and subsequent instantaneous model is necessary for small release times whereas the continuous model is only required for large release times. Additionally the combined release model is necessary for a small spill quantity at a fixed release time. These two release models are clearly distinguished using the perturbation solution.
Modelling and Simulation of High-pressure Hydrogen Jets Using H2FC European Cyber-laboratory
Oct 2015
Publication
The Hydrogen and Fuel Cell (H2FC) European research infrastructure cyber-laboratory is a software suite containing ‘modelling’ and ‘engineering’ tools encompassing a wide range of H2FC processes and systems. One of the core aims of the H2FC Cyber-laboratory has been the creation of a state-of-the-art hydrogen CFD modelling toolbox. This paper describes the implementation and validation of this new CFD modelling toolbox in conjunction with a selection of the available ‘Safety’ engineering tools to analyse a high pressure hydrogen release and dispersion scenario. The experimental work used for this validation was undertaken by Shell and the Health and Safety Laboratory (UK). The overall goal of this work is to provide and make readily available a Cyber-laboratory that will be worth maintaining after the end of the H2FC project for the benefit of both the FCH scientific community and industry. This paper therefore highlights how the H2FC Cyber-laboratory which is offered as an open access platform can be used to replicate and analyse real-world scenarios using both numerical engineering tools and through the implementation of CFD modelling techniques.
Blast Wave from Hydrogen Storage Rupture in a Fire
Oct 2015
Publication
This study addresses one of knowledge gaps in hydrogen safety science and engineering i.e. a predictive model for calculation of deterministic separation distances defined by the parameters of a blast wave generated by a high-pressure gas storage tank rupture in a fire. An overview of existing methods to calculate stored in a tank internal (mechanical) energy and a blast wave decay is presented. Predictions by the existing technique and an original model developed in this study which accounts for the real gas effects and combustion of the flammable gas released into the air (chemical energy) are compared against experimental data on high-pressure hydrogen tank rupture in the bonfire test. The main reason for a poor predictive capability of the existing models is the absence of combustion contribution to the blast wave strength. The developed methodology is able to reproduce experimental data on a blast wave decay after rupture of a stand-alone hydrogen tank and a tank under a vehicle. In this study the chemical energy is dynamically added to the mechanical energy and is accounted for in the energy-scaled non-dimensional distance. The fraction of the total chemical energy of combustion released to feed the blast wave is 5% and 9% however it is 1.4 and 30 times larger than the mechanical energy in the stand-alone tank test and the under-vehicle tank test respectively. The model is applied as a safety engineering tool to four typical hydrogen storage applications including onboard vehicle storage tanks and a stand-alone refuelling station storage tank. Harm criteria to people and damage criteria for buildings from a blast wave are selected by the authors from literature to demonstrate the calculation of deterministic separation distances. Safety strategies should exclude effects of fire on stationary storage vessels and require thermal protection of on-board storage to prevent dangerous consequences of high-pressure tank rupture in a fire.
No more items...