Safety
Uncertainty of Acceleration of a Premixed Laminar Unstable Hydrogen Flame
Sep 2021
Publication
Unstable hydrogen-air flame behavior randomities are important for industrial safety hydrogen infrastructure safety and nuclear power plant hydrogen safety problems. The paper is devoted to an experimental and theoretical study of the uncertainty in the acceleration of a premixed laminar unstable hydrogen flame. The results of experiments on spherical flame propagation in hydrogen-air mixtures with a hydrogen content of 10 to 60% are presented. The experiments were repeated up to 30 times in the same mixtures. A statistical analysis of the experimental results has been carried out. The scatter of the experimental data depending on the hydrogen content in the mixture was estimated. It was found to be between 8 to 17% for different mixtures with the same flame radius and mixture composition. Similar results were obtained using the numerical integration of the Sivashinsky equation of flame propagation.
CFD Modelling of Hydrogen and Hydrogen-methane Explosions - Analysis of Varying Concentration and Reduced Oxygen Atmospheres
Feb 2023
Publication
This paper evaluates the predictive capabilities of the advanced consequence model FLACS-CFD for deflagrations involving hydrogen. Two modelling approaches are presented: the extensively validated model system originally developed for hydrocarbons included in FLACS-CFD 22.1 and a Markstein number dependent model implemented in the in-house version FLACS-CFD 22.1 IH. The ability of the models to predict the overpressure and the flame arrival time for scenarios with different concentrations of hydrogen and thus different Lewis and Markstein numbers is assessed. Furthermore the effect of adding methane or nitrogen on overpressure for different regimes of premixed combustion are investigated. The validation dataset includes deflagrations in the open or in congested open areas and vented deflagrations in empty or congested enclosures. The overpressure predictions by FLACS-CFD 22.1 IH are found to be more accurate than those obtained with FLACS-CFD 22.1 for scenarios with varying hydrogen concentrations and/or added nitrogen or methane in the mixture. The predictions by FLACS-CFD 22.1 IH for lean hydrogen mixtures are within a factor of 2 of the values observed in the experiments. Further development of the model is needed for more accurate prediction of deflagrations involving rich hydrogen mixtures as well as scenarios with other fuels and/or conditions where the initial pressure or temperature deviate significantly from ambient conditions.
Behavior of Barrier Wall under Hydrogen Storage Tank Explosion with Simulation and TNT Equivalent Weight Method
Mar 2023
Publication
Hydrogen gas storage place has been increasing daily because of its consumption. Hydrogen gas is a dream fuel of the future with many social economic and environmental benefits to its credit. However many hydrogen storage tanks exploded accidentally and significantly lost the economy infrastructure and living beings. In this study a protection wall under a worst-case scenario explosion of a hydrogen gas tank was analyzed with commercial software LS-DYNA. TNT equivalent method was used to calculate the weight of TNT for Hydrogen. Reinforced concrete and composite protection wall under TNT explosion was analyzed with a different distance of TNT. The initial dimension of the reinforced concrete protection wall was taken from the Korea gas safety code book (KGS FP217) and studied the various condition. H-beam was used to make the composite protection wall. Arbitrary-Lagrangian-Eulerian (ALE) simulation from LS-DYNA and ConWep pressure had a good agreement. Used of the composite structure had a minimum displacement than a normal reinforced concrete protection wall. During the worst-case scenario explosion of a hydrogen gas 300 kg storage tank the minimum distance between the hydrogen gas tank storage and protection wall should be 3.6 m.
Numerical Simulation of Leaking Hydrogen Dispersion Behavior
Sep 2021
Publication
As one kind of clean zero carbon and sustainable energy hydrogen energy has been regarded as the most potential secondary energy. Recently hydrogen refueling station gradually becomes one of important distribution infrastructures that provides hydrogen sources for transport vehicles and other distribution devices. However the highly combustible nature of hydrogen may bring great hazards to environment and human. The safety design of hydrogen usage has been brought to public too. This paper is mainly focused on the hydrogen leakage and dispersion process. A new solver for gaseous buoyancy dispersion process is developed based on OpenFOAM [1]. Thermodynamic and transport properties of gases are updated by library Mutation ++ [2]. For validation two tests of hydrogen dispersion in partially opened space and closed space are presented. Numerical simulation of hydrogen dispersion behavior in hydrogen refueling station is carried out in this paper as well. From the results three phases of injection dispersion and buoyancy can be seen clearly. The profile of hydrogen concentration is tend to be Gaussian in dispersion region. Subsonic H2 jet in stagnant environment is calculated for refueling station the relationship between H2 concentration decay and velocity along the jet trajectory is obtained.
Experimental and Numerical Analysis of Low-density Gas Dispersion Characteristics in Semi-confined Environments
Oct 2023
Publication
Hydrogen as a clean fuel offers a practical pathway to achieve net-zero targets. However due to its physical and chemical characteristics there are some safety concerns for large-scale hydrogen utilisation particularly in process safety management. Leakage of gaseous hydrogen especially in semi-confined spaces such as tunnels can lead to catastrophic outcomes including uncontrolled fire and explosion. The current paper describes the outcome of an experimental and numerical study that aims to understand the dispersion of leaked light gas in a semi-confined space to support the adoption of hydrogen. A dispersion chamber with dimensions of 4m × 0.3m × 0.3m was constructed to investigate a baseline gas leakage scenario. To reduce the risk of the experiment in the laboratory helium is utilised as a surrogate for hydrogen. Computational fluid dynamics simulations are con ducted using FLACS-CFD to model the dispersion of leaked gas in different scenarios focusing on the impact of the ventilation velocity leakage rate and slope. The results from comprehensive numerical simulations show that ventilation is a critical safety management measure that can significantly reduce the growth of flammable clouds and mitigate the fire and explosion risk. Even with the lowest ventilation velocity of 0.25 m/s an improvement in the gas concentration level of 29.34% can be achieved in the downstream chamber. The current results will help to further enhance the understanding of hydrogen safety aspects.
Multi-stage Monitoring of Hydrogen Systems for Improved Maintenance Approaches: An Extensive Review
Jan 2025
Publication
Hydrogen is considered a promising solution for global decarbonisation as an alternative to fossil fuels. However it can interact with and brittle most metallic materials and is highly flammable. These properties call for a systematic investigation of physical and chemical hazards and for the definition of a comprehensive risk management and monitoring framework including proper maintenance planning. This study aims at establishing a hydrogen monitoring scheme and it provides a descriptive bibliometric and interpretative review of the current state-of-the-art of suitable techniques to ensure the safe handling of hydrogen systems. The descriptive analysis outlines the technologies available to supervise the hydrogen-material interactions and detect hydrogen leaks and flames. The bibliometric analysis shows quantitative data to identify the most relevant research groups. The interpretative study discusses the findings and examines the possibility of combining the identified techniques with maintenance programs to prevent catastrophic events.
Safety Criteria for the Transport of Hydrogen in Permanently Mounted Composite Pressure Vessels
Aug 2020
Publication
The recent growth of the net of hydrogen fuelling stations increases the demands to transport compressed hydrogen on road by battery vehicles or tube-trailers both in composite pressure vessels. As a transport regulation the ADR is applicable in Europe and adjoined regions and is used for national transport in the EU. This regulation provides requirements based on the behaviour of each individual pressure vessel regardless of the pressure of the transported hydrogen and relevant consequences resulting from generally possible worst case scenarios such as sudden rupture. In 2012 the BAM (German Federal Institute for Materials Research and Testing) introduced consequence-dependent requirements and established them in national transport requirements concerning the “UN service life checks” etc. to consider the transported volume and pressure of gases. This results in a requirement that becomes more restrictive as the product of pressure and volume increases. In the studies presented here the safety measures for hydrogen road transport are identified and reviewed through a number of safety measures from countries including Japan the USA and China. Subsequently the failure consequences of using trailer vehicles the related risk and the chance are evaluated. A benefit-related risk criterion is suggested to add to regulations and to be defined as a safety goal in standards for hydrogen transport vehicles and for mounted pressure vessels. Finally an idea is given for generating probabilistic safety data and for highly efficient evaluation without a significant increase of effort.
Hydrogen Jet Flame Simulation and Thermal Radiation Damage Estimation for Leakage Accidents in a Hydrogen Refueling Station
Jun 2024
Publication
With the rapid development of hydrogen energy worldwide the number of hydrogen energy facilities such as hydrogen refueling stations has grown rapidly in recent years. However hydrogen is prone to leakage accidents during use which could lead to hazards such as fires and explosions. Therefore research on the safety of hydrogen energy facilities is crucial. In this paper a study of high-pressure hydrogen jet flame accidents is conducted for a proposed integrated hydrogen production and refueling station in China. The effects of leakage direction and leakage port diameter on the jet flame characteristics are analyzed and a risk assessment of the flame accident is conducted. The results showed that the death range perpendicular to the flame direction increased from 2.23 m to 5.5 m when the diameter of the leakage port increased from 4 mm to 10 mm. When the diameter of the leakage port is larger than 8 mm the equipment on the scene will be within the boundaries of the damage. The consequences of fire can be effectively mitigated by a reasonable firewall setup to ensure the overall safety of the integrated station.
Experimental and Modelling Study of an Electrochemical Hydrogen Compressor
Mar 2019
Publication
The energy world is changing rapidly pushed also by the need for new green energy sources to reduce greenhouse gas emissions. The fast development of renewable energies has created many problems associated with grid management and stability which could be solved with storage systems. The hydrogen economy could be an answer to the need of storage systems and clean fuel for transportation. The Electrochemical Hydrogen Compressor (EHC) is an electrochemical device which could find a place in this scenario giving a solution for the hydrogen purification and compression for storage. This work analyzes through experimental and modeling studies the performance of the EHC in terms of polarization curve Hydrogen Recovery Factor (HRF) and outlet hydrogen purity. The influence of many input parameters such as the total inlet flow rate the hydrogen inlet concentration the contaminant in the feed and the cathode pressure have been investigated. Furthermore the EHC performance have been modelled in a 1D + 1D model implemented in Matlab® solving the Butler-Volmer system of equations numerically. The experimental campaign has shown that high purities can be obtained for the hydrogen separation from N2 and CH4 and purities over 98% feeding He. An increase in the cathode pressure has shown a slight improvement in the obtained purity. A comparison between PSA unit and EHC for a mixture 75% H2 – 25% CH4 at different outlet hydrogen pressure and purity was performed to analyze the energy consumption required. Results show PSA unit is convenient at large scale and high H2 concentration while for low concentration is extremely energy intense. The EHC proved to be worthwhile at small scale and higher outlet hydrogen pressure.
The Effect of Defueling Rate on the Temperature Evolution of On-board Hydrogen Tanks
Jul 2015
Publication
During the driving of a fuel cell car the expansion of the hydrogen along the emptying of the high pressure storage tank produces a cooling of the gas. The hydrogen vessel can experience a fast depressurization during acceleration or under an emergency release. This can result on the one hand in exceeding the low safety temperature limit of 40 C inside the on-board compressed hydrogen tank and on the other hand in the cooling of its walls. In the present paper defueling experiments of two different types of on-board hydrogen tanks (Type III and Type IV) have been performed in all the range of expected defueling rates. The lowest temperatures have been found on the bottom part of the Type IV tank in very fast defuelings. For average driving conditions in both types of vessels the inside gas temperature gets closer to that of the walls and the tank would arrive to the refuelling station at a temperature significantly lower than the ambient temperature.
Green Energy Revolution and Substitution of Hydrocarbons with Hydrogen: Distribution Network Infrastructure Materials
Dec 2023
Publication
Global warming is an accepted fact of life on Earth posing grave consequences in the form of weather patterns with life-threatening outcomes for inhabitants and their cultures especially those of island countries. These wild and unpredictable weather patterns have persuaded authorities governments and industrial leaders to adapt a range of solutions to combat the temperature rise on Earth. One such solution is to abandon fossil fuels (hydrocarbons) for energy generation and employ renewable energy sources or at least use energy sources that do not generate greenhouse gases. One such energy carrier is hydrogen which is expected to slowly replace natural gas and will soon be pumped into the energy distribution pipeline network. Since the current energy distribution network was designed for hydrocarbons its use for hydrogen may pose some threat to the safety of urban society. This is the first time an overview article has examined the replacement of hydrocarbons by hydrogen from a totally different angle by incorporating material science viewpoints. This article discusses hydrogen properties and warns about the issue of hydrogen embrittlement in the current pipeline network if hydrogen is to be pumped through the current energy distribution network i.e. pipelines. It is recommended that sufficient study and research be planned and carried out to ensure the safety of using the current energy distribution network for hydrogen distribution and to set the necessary standards and procedures for future design and construction.
Research Progress on Corrosion and Hydrogen Embrittlement in Hydrogen-Natural Gas Pipeline Transportation
Jun 2023
Publication
Hydrogen clean efficient and zero-carbon is seen as a most promising energy source. The use of existing gas pipelines for hydrogenenatural gas transportation is considered to be an effective way to achieve long-distance large-scale efficient and economical hydrogen transportation. However the pipelines for hydrogenenatural gas transportation contain lots of impurities (e.g. CH4 high-pressure H2 H2S and CO2) and free water which will inevitably lead to corrosion and hydrogen embrittlement. This paper presents a systematic review of research and an outlook for corrosion and hydrogen embrittlement in hydrogenenatural gas pipeline transportation. The results show that gasphase hydrogen charging is suitable for hydrogenenatural gas transportation but this technique lacks technical standards. By contrast the liquid-phase hydrogen charging technique is more mature but has large deviation from the engineering reality. In the hydrogenenatural gas transportation pipelines corrosion and hydrogen embrittlement are synergetic and competitive but the failure mechanism and change law when corrosion and hydrogen embrittlement coexist remain unclear which need to be further clarified by experiments. The failure mechanism is believed to be mainly sensitive to three key factors i.e. the H2S/CO2 partial pressure ratio the hydrogen blending ratio and material strength. The increase of the three factors will make the pipeline materials more corrosive and more sensitive to hydrogen embrittlement. The research findings can be used as a reference for research and development of long-distance hydrogenenatural gas transportation technology and will drive the high-quality development of the hydrogenenatural gas blending industry.
Hydrogen UK Supply Chain Strategic Assessment
Sep 2024
Publication
Hydrogen offers the UK a unique opportunity to deliver on our Net Zero ambitions enabling deep decarbonisation of the parts of the energy system that are challenging to electrify balancing the energy system by providing large scale long duration energy storage and reducing pressure on electricity infrastructure. The UK Government in recognition of the centrality of hydrogen to the future energy system has set a 10GW hydrogen production ambition to be achieved by 2030. This ambition and its supporting policies such as the Hydrogen Business Model the Low Carbon Hydrogen Standard and the Hydrogen Transport and Storage Business Models will unlock private sector investment and kick-start the UK’s hydrogen activity. Encouragingly the UK has a positive track record of deploying low carbon technologies. The combination of the UK’s world leading policies and incentive schemes alongside a vibrant Research Development and Innovation (RD&I) and engineering environment has enabled rapid deployment of technologies such as offshore wind and electric vehicles. Yet despite being world leaders in deployment early opportunities for regional supply chain growth and job creation were not fully realised and taken advantage of from inception. The hydrogen sector is therefore at a tipping point. To capitalise on the economic opportunity hydrogen offers the UK must learn from prior technology deployments and build a strong domestic hydrogen supply chain in parallel to championing deployment.
Hydrogen is unique amongst low carbon technologies. It represents a significant economic opportunity with future hydrogen markets estimated by the Hydrogen Innovation Initiative to be worth $8tn and hydrogen technology markets estimated to reach $1tn by 20501 but crucially it is also still a nascent market. Unlike many other low carbon technologies where supply chains are already well established hydrogen supply chains are embryonic meaning that the UK has an opportunity to anchor these supply chains here and establish itself as a global leader.
The UK is well placed to capitalise on this opportunity with favourable geography and geology that enables us to produce and store hydrogen cost effectively coupled with a strong pipeline of hydrogen projects a stable policy environment that is attractive to investors and a wealth of transferable skills and expertise from the oil and gas industry.
We must ensure that alongside our focus on deployment we are also investing in technology and supply chains. Not only will this deliver exponential economic benefits from the projects supported by Government but it will also enable us to tackle increasing global supply chain constraints. Hydrogen UK estimated in its Economic Impact Assessment that hydrogen could deliver 30000 jobs annually and £7bn of GVA by 2030
It is important to be targeted and strategic in our investment and activities and recognise that hydrogen represents a wide range of technologies and the UK should not expect to lead in every area. Hydrogen UK with the support of the Hydrogen Delivery Council has undertaken analysis of the hydrogen value chain building on UK strengths and identifying the high value items that can deliver significant impact and benefit to the UK. We have also conducted widespread engagement with project developers to identify the barriers to utilising UK technology in projects and with technology developers to identify the challenges and barriers to investing and siting development and manufacturing in the UK.
The report can be found on Hydrogen UK's website.
Hydrogen is unique amongst low carbon technologies. It represents a significant economic opportunity with future hydrogen markets estimated by the Hydrogen Innovation Initiative to be worth $8tn and hydrogen technology markets estimated to reach $1tn by 20501 but crucially it is also still a nascent market. Unlike many other low carbon technologies where supply chains are already well established hydrogen supply chains are embryonic meaning that the UK has an opportunity to anchor these supply chains here and establish itself as a global leader.
The UK is well placed to capitalise on this opportunity with favourable geography and geology that enables us to produce and store hydrogen cost effectively coupled with a strong pipeline of hydrogen projects a stable policy environment that is attractive to investors and a wealth of transferable skills and expertise from the oil and gas industry.
We must ensure that alongside our focus on deployment we are also investing in technology and supply chains. Not only will this deliver exponential economic benefits from the projects supported by Government but it will also enable us to tackle increasing global supply chain constraints. Hydrogen UK estimated in its Economic Impact Assessment that hydrogen could deliver 30000 jobs annually and £7bn of GVA by 2030
It is important to be targeted and strategic in our investment and activities and recognise that hydrogen represents a wide range of technologies and the UK should not expect to lead in every area. Hydrogen UK with the support of the Hydrogen Delivery Council has undertaken analysis of the hydrogen value chain building on UK strengths and identifying the high value items that can deliver significant impact and benefit to the UK. We have also conducted widespread engagement with project developers to identify the barriers to utilising UK technology in projects and with technology developers to identify the challenges and barriers to investing and siting development and manufacturing in the UK.
The report can be found on Hydrogen UK's website.
Hydrogen Risk Assessment Studies: A Review Toward Environmental Sustainability
Jan 2025
Publication
The transition to hydrogen as a clean energy source is critical for addressing climate change and supporting environmental sustainability. This review provides an accessible summary of general research trends in hydrogen risk assessment methodologies enabling diverse stakeholders including researchers policymakers and industry professionals to gain insights into this field. By examining representative studies across theoretical experimental and simulation-based approaches the review highlights prominent trends and applications within academia and industry. The key focus is on evaluating risks in stationary and transportation applications paying particular attention to hydrogen storage systems transportation infrastructures and energy systems. By offering a concise yet informative summary of hydrogen risk assessment trends this paper aims to serve as a foundational resource for fostering safer and more sustainable hydrogen systems.
Gas Crossover Predictive Modelling Using Artificial Neural Networks Based on Original Dataset Through Aspen Custom Modeler for Proton Exchange Membrane Electrolyte System
Sep 2023
Publication
Proton exchange membrane electrolyzer cell (PEMEC) will play a central role in future power-to-H2 plants. Current research focuses on the materials and operation parameters. Setting up experiments to explore operational accident scenarios about safety feasibility is not always practical. This paper focuses on building mathematical and prediction models of hydrogen and oxygen mixing scenarios of PEMEC. A mathematical model of the PEMEC device was customized in the Aspen Custom Model (ACM) software and integrated various critical Physico-chemical phenomena as the original data set for the prediction model. The results of the mathematical simulation verified the experimental results. The prediction model proposes an artificial neural network (ANN) framework to predict component distribution in the gas stream to prevent hydrogen-oxygen explosion scenarios. The presented approach by training ANN to 1000 sets of hydrogen-oxygen mixing simulation data from ACM is applicable to bypass tedious and non-smooth systems of equations for PEMEC.
Hazard Identification of Hydrogen-Based Alternative Fuels Onboard Ships
Dec 2023
Publication
It is essential to use alternative fuels if we are to reach the emission reduction targets set by the IMO. Hydrogen carriers are classified as zero-emission while having a higher energy density (including packing factor) than pure hydrogen. They are often considered as safe alternative fuels. The exact definition of what safety entails is often lacking both for hydrogen carriers as well as for ship safety. The aim of this study is to review the safety of hydrogen carriers from two perspectives investigating potential connections between the chemical and maritime approaches to safety. This enables a reasoned consideration between safety aspects and other design drivers in ship design and operation. The hydrogen carriers AB NaBH4 KBH4 and two LOHCs (NEC and DBT) are taken into consideration together with a couple reference fuels (ammonia methanol and MDO). After the evaluation of chemical properties related to safety and the scope of the current IMO safety framework it can be concluded that safety remains a vague and non-explicit concept from both perspectives. Therefore further research is required to prove the safe application of hydrogen carriers onboard ships.
Numerical Simulation and Field Experimental Study of Combustion Characteristics of Hydrogen-Enriched Natural Gas
Jun 2024
Publication
For the safe and efficient utilization of hydrogen-enriched natural gas combustion in industrial gas-fired boilers the present study adopted a combination of numerical simulation and field tests to investigate its adaptability. Firstly the combustion characteristics of hydrogen-enriched natural gas with different hydrogen blending ratios and equivalence ratios were evaluated by using the Chemkin Pro platform. Secondly a field experimental study was carried out based on the WNS2- 1.25-Q gas-fired boiler to investigate the boiler’s thermal efficiency heat loss and pollutant emissions after hydrogen addition. The results show that at the same equivalence ratio with the hydrogen blending ratio increasing from 0% to 25% the laminar flame propagation speed of the fuel increases the extinction strain rate rises and the combustion limit expands. The laminar flame propagation speed of premixed methane/air gas reaches the maximum value when the equivalence ratio is 1.0 and the combustion intensity of the flame is the highest at this time. In the field tests as the hydrogen blending ratio increases from 0% to nearly 10% with the increasing excess air ratio the boiler’s thermal efficiency decreases as well as the NOx emission. This indicates that there exists a tradeoff between the boiler thermal efficiency and NOx emission in practice.
Liquid Hydrogen Pool Evaporation Above Four Different Substrates
Sep 2023
Publication
In the frame of the EC-funded project PRESLHY ten experiments on LH2-pool evaporation above four different substrates have been performed with the POOL-facility on a free field test site. Substrates to be investigated comprised concrete sand water and gravel. Four of the experiments were made with artificial side wind of known direction and known velocity to investigate the influence of side wind on hydrogen evaporation and cloud formation above the LH2-pool. The POOL-facility mainly consists of an insulated stainless-steel box with the dimensions 0.5 x 0.5 x 0.2 m³ that is filled up to half the height (0.1 m) with the respective substrate and LH2. The height of the LH2-pool that forms above the substrate can be determined using the weight of the complete facility which is positioned on a scale. Additionally six thermocouples are located in different heights above the substrate surface to indicate the LH2-level as soon as they are covered with LH2. Further measurement equipment used in the tests comprises temperature measurements inside the substrate and several thermocouples in the unconfined space above the pool where also H2-concentration measurements were performed. Using the sensor information pool evaporation rates for the different substrates were determined. The temperature and concentration measurements above the pool were mainly used to define promising ignition positions for subsequent combustion experiments in which the LH2-spills above the different substrates were ignited.
Numerical Investigations of Hydrogen Release and Dispersion Due to Silane Decomposition in a Ventilated Container
Sep 2023
Publication
In recent years new chemical release agents based on silane are being used in the tire industry. Silane is an inorganic chemical compound consisting of a silicon backbone and hydrogen. Silanes can be thermally decomposed into high-purity silicon and hydrogen. If silane is stored and transported in Intermediate Bulk Containers (IBCs) equipped with safety valves in vented semi-confined spaces such as ISO-Containers hydrogen can be accumulated and become explosive mixture with air. A conservative CFD analysis using the GASFLOW-MPI code has been carried out to assess the hydrogen risk inside the vented containers. Two types of containers with different natural ventilation systems were investigated under various hypothetical accident scenarios. A continuous release of hydrogen due to the chemical decomposition of silane from IBCs was studied as the reference case. The effect of the safety valves on hydrogen accumulation in the container which results in small pulsed releases of hydrogen was investigated. The external effects of the sun and wind on hydrogen distribution and ventilation were also evaluated. The results can provide detailed information on hydrogen dispersion and mixing within the vented enclosures and used to evaluate the hydrogen risks such as flammability. Based on the assumptions used in this study it indicates that the geometry of ventilation openings plays a key role in the efficiency of the indoor air exchange process. In addition the use of safety valves makes it possible to reduce the concentration of hydrogen by volume in air compared to the reference case. The effect of the sun which results in a temperature difference between two container walls allows a strong mixing of hydrogen and air which helps to obtain a concentration lower than both the base case and the case of the pulsed releases. But the best results for the venting process are obtained with the wind that can drive the mixture to the downwind wall vent holes.
A Multi-Zone Model for Hydrogen Accumulation and Ventilation in Enclosures
Sep 2023
Publication
Due to the small characteristic molecular size of hydrogen small leaks are more common in hydrogen systems compared to similar systems with hydrocarbons. This together with the high reactivity makes an efficient ventilation system very important in hydrogen applications. There are several models available for ventilation sizing that are based on either a well-mixed assumption or a fully stratified situation. However experiments show that many realistic releases will be neither and therefore additional models are needed. One possibility is to use CFD-models but the small release sizes for pinhole releases (<<1 mm) make it difficult to find an appropriate mesh without excessive computational time (especially since the simulations need to be iterated to find the optimum ventilation size). An alternative approach which is described and benchmarked in the current paper is to use a multi-zone model where the domain is divided into several large cells where the mass exchange is simplified compared to CFD and thus simulation time is reduced. The flow in the model is governed by mass conservation and density differences due to concentration gradients using the Bernoulli equation. The release of gas generates a plume which is modelled based on an empirical plume model which gives the entrainment and hydrogen source term for each cell. The model has a short run time and will therefore allow optimization in a short time frame. The model is benchmarked against five experiments with helium at the Canadian Nuclear Laboratories (CNL) in Canada and one hydrogen experiment performed at Lodz University of Technology in Poland. The result shows that the model can reasonably well reproduce accumulation in the experiments with small release without ventilation but appears to slightly underestimate the level of stratification and the interface height for ventilated cases where the source is elevated from the floor level.
No more items...