Safety
Detailed Assessment of Dispersion for High-pressure H2 in Multi-fuel Environment
Sep 2023
Publication
The MultHyFuel project notably aims to produce the data missing for usable risk analysis and mitigation activity for Hydrogen Refuelling Stations (HRS) in a multi-fuel context. In this framework realistic releases of hydrogen that could occur in representative multi-fuel forecourts were studied. These releases can occur inside or outside fuel dispensers and they can interact with a complex environment notably made of parked cars and trucks. This paper is focused on the most critical scenarios that were addressed by a sub-group through the use of Computational Fluid Dynamics (CFD) modelling. Once the corresponding source terms for hydrogen releases were known two stages are followed:<br/>♦ Model Validation – to evaluate the CFD models selected by the task partners and to evaluate their performance through comparison to experimental data.<br/>♦ Realistic Release Modelling – to perform demonstration simulations of a range of critical scenarios.<br/>The CFD models selected for the Model Validation have been tested against measured data for a set of experiments involving hydrogen releases. Each experiment accounts for physical features that are encountered in the realistic cases. The selected experiments include an under-expanded hydrogen jet discharging into the open atmosphere with no obstacles or through an array of obstacles. Additionally a very different set-up was studied with buoyancy-driven releases inside a naturally ventilated enclosure. The results of the Model Validation exercise show that the models produce acceptable solutions when compared to measured data and give confidence in the ability of the models and the modellers to capture the behaviour of the realistic releases adequately. The Realistic Release Modelling phase will provide estimation of the flammable gas cloud volume for a set of critical scenarios and will be described at the second stage.
Pressure Evolution from Head-on Reflection of High-speed Deflagration in Hydrogen Mixtures
Sep 2023
Publication
Our previous reported experiments revealed that the reflection of high-speed deflagrations in hydrogenair and hydrogen-oxygen mixtures produces higher mechanical loading and reflected pressures than reflecting detonations. This surprising result was shown to correlate with the onset of detonation in the gases behind the reflected shock. We revisit these experiments with the aim of developing a closed-form model for the pressure evolution due to the shock-induced ignition and rapid transition to detonation. We find that the reflection condition of fast deflagrations corresponds to the chain-branching crossover regime of hydrogen ignition in which the reduced activation energy is very large and the reaction characteristic time is very short compared to the induction time. We formulate a closed-form model in the limit of fast reaction times as compared to the induction time which is used to predict a square wave pressure profile generated by self-similar propagation of internal Chapman-Jouguet detonation waves followed by Taylor expansion waves. The model predictions are compared with Navier-Stokes numerical simulations with full chemistry as well as simple Euler calculations using calibrated one-step or twostep chain-branching models. Both simplified numerical models were found to be in good agreement with the full chemistry model. We thus demonstrate that the end pressure evolution due to the reflection of high-speed deflagrations can be well predicted analytically and numerically using relatively simple models in this ignition regime of main interest for safety analysis and explosion mitigations. The slight departures from the square wave model are investigated based on the physical wave processes occurring in the shocked gases controlling the shock-to-detonation transition. Using the two-step model we study how the variations of the rate of energy release control the pressure evolution in the end gas extending the analysis of Sharpe to very large rates of energy release.
Field Test Series for Development of Mitigation Barriers and its Designs Against Hydrogen Explosion
Sep 2023
Publication
A field test series where a composite pressure vessel for hydrogen is exploded by fire 1) to provide the facts and the data for the safety distance based on overpressure; 2) to validate the current status of mitigation barrier per KGS FP216 and further designs for developments of the codes and standards relating to hydrogen refueling stations. A pair of barriers to be tested are installed approximately 4 m apart standing face to face. The explosion source is a type-4 composite vessel of 175 L filled with compressed hydrogen up to 70 MPa. The vessel is in the middle of the barriers and the body part is heated with an LPG burner until it blows out. The incident overpressures from the blast are measured with 40 high-speed pressure sensors which are respectively installed 2 to 32 m away from the explosion. In the tests with the barrier constructed per the current status of KGS FP216 the explosion of the vessel resulted in partial destruction of the reinforced concrete barrier and made the steel plate barrier dissociated from the foundation then flew away approximately 25 m. The peak overpressure was 14.65 kPa at 32 m. The test data will be further analyzed to select the barriers for the subsequent tests and to develop the codes and standards for hydrogen refueling stations.
Erosive Effects of Hydrogen Jet Fires on Tunnel Structural Materials
Sep 2023
Publication
This paper presents work undertaken as part of the Hytunnel-CS project a consortium investigating safety considerations for fuel cell hydrogen (FCH) vehicles in tunnels and similar confined spaces. This test programme investigated erosive effects of an ignited high pressure hydrogen jet impinging onto tunnel structural materials specifically concrete as used for tunnel linings and asphalt road surfacing for the road itself. The chosen test conditions mimicked a high-pressure release (700 bar) from an FCH car as a result of activation of the thermal pressure relief device (TPRD) on the fuel tank. These devices typically have a release opening of 2 mm and thus a nozzle diameter of approximately 2 mm was used. The resultant releases were ignited using a propane pilot light and test samples were placed in the jet path at varying standoff distances from the release nozzle.<br/>An initial characterization test of a free unimpeded ignited jet demonstrated a rapid and intense temperature increase up to 1650 °C lasting in the order of 3 - 5 minutes for that fuel inventory (4 kg hydrogen). Five tests were carried out where the ignited jet was impinged onto five structural samples. It was found that erosion occurred in the concrete samples where no fire mitigation namely addition of polypropylene fibres was applied. The road-surface sample was found to become molten but did not progress to combustion.<br/>Post-test material analysis including compressive strength and thermal conductivity measurements was carried out on some of the concrete samples to investigate whether structural deformities had occurred within the sample microstructure. The results suggested that the erosive damage caused by the hydrogen jet was mostly superficial and as such did not present an increased fire risk to the structural integrity to that of conventional hydrocarbon fires i.e. those that would result from petrol or diesel fuel tank releases. In terms of fire resistance standards it is suggested that current fire mitigation strategies and structural testing standards would be adequate for hydrogen vehicles on the road network.
A New Method to Quantify the Leakage Scenarios (Frequencies and Flowrates) on Hydrogen High Pressure Components
Sep 2023
Publication
This work is part of the MULTHYFUEL E.U. research program [1] aiming at enabling the implementation of hydrogen dispersers in refuelling stations. One important challenge is the severity of accidents due to a leakage of hydrogen from a dispenser in the forecourt. The work presented in this paper deals with the quantification of the leakage scenarios in terms of frequencies and severities. The risk analysis exercise although performed by experts showed very large discrepancies between the frequencies of leakages of the same categories and even between the consequences. A large part of the disagreement comes from the failure databases chosen as shown in the paper. The mismatch between the components on which the databases have been settled and the actual hydrogen components may be responsible for this situation. However as it stands limited confidence can be laid on the outcome of the risk analysis.<br/>A new method is being developed to calculate the frequencies of the leakage and the flowrate based on an accurate description of each component and of each hazardous situation. For instance the possibility for a fitting to become untight due to pressure cycling is modelled based on the contact mechanics. Human errors can also be introduced by describing the tasks. In addition of the description of the method the application to a disperser is proposed with some comparison to experiments. One of the outcomes is that leakage cross sections can be much larger than expected.
Comparative Study of LNG, Liquid Hydrogen ,and Liquid Ammonia Post-release Evaporation and Dispersion During Bunkering
Apr 2024
Publication
The use of alternative fuels is a primary means for decarbonising the maritime industry. Liquefied natural gas (LNG) liquid hydrogen (LH2) and liquid ammonia (LNH3) are liquified gases among the alternative fuels. The safety risks associated with these fuels differ from traditional fuels. In addition to their low-temperature hazards the flammability of LNG and LH2 and the high toxicity of LNH3 present challenges in fuel handlings due to their high likelihood of fuel release during bunkering. This study aims at drawing extensive comparisons of the evaporation and vapour dispersion behaviours for the three fuels after release accidents during bunkering and discuss their safety issues. The study involved the release event of the three fuels on the main deck area of a reference bulk carrier with a deadweight of 208000 tonnes. Two release scenarios were considered: Scenario 1 involved a release of 0.3 m3 of fuel and Scenario 2 involved a release of 100 kg of fuel. An empirical equation was used to calculate the fuel evaporation process and the Computational Fluid Dynamic (CFD) code FDS was employed to simulate the dispersion of vapour clouds. The obtained results reveal that LH2 has the highest evaporation rate followed by LNG and LNH3. The vapour clouds of LNG and LNH3 spread along the main deck surface while the LH2 vapour cloud exhibits upward dispersion. The flammable vapour clouds of LNG and LH2 remain within the main deck area whereas the toxic gas cloud of LNH3 disperses towards the shore and spreads near the ground on the shore side. Based on the dispersion behaviours the hazards of LNG and LH2 are com parable while LNH3 poses significantly higher hazards. In terms of hazard mitigations effective water curtain systems can suppress the vapour dispersion.
Research on Characteristics of Hydrogen Dynamic Leakage and Combustion at High Pressure
Apr 2023
Publication
Hydrogen is promoted as an alternative energy given the global energy shortage and environmental pollution. A scientific basiscan be provided for the safe use and emergency treatment of hydrogen based on hydrogen leakage and combustion behavior.This study examined the stagnation parameters of dynamic hydrogen leakage and flame propagation in turbulent jets undernormal temperatures and high pressure. Based on van der Waals’ equation of state for gas a theoretical model for completelypredicting stagnation parameters outlet gas velocity and flow rate changes in the process of high-pressure hydrogen leakagecould be proposed and the calculation result of this model was compared with the experimental result with an error within±10%. The progression and propagation of the flame in turbulent jets after ignition were recorded using the background-oriented schlieren image technology and the propagation speed of flame from the ignition position downward and upwardwas calculated. Moreover the influence of initial pressure nozzle diameter and ignition position on the flame propagationprocess and propagation speed was analyzed.
Recent Developments in Sensor Technologies for Enabling the Hydrogen Economy
Dec 2023
Publication
Efforts to create a sustainable hydrogen economy are gaining momentum as governments all over the world are investing in hydrogen production storage distribution and delivery technologies to develop a hydrogen infrastructure. This involves transporting hydrogen in gaseous or liquid form or using carrier gases such as methane ammonia or mixtures of methane and hydrogen. Hydrogen is a colorless odorless gas and can easily leak into the atmosphere leading to economic loss and safety concerns. Therefore deployment of robust low-cost sensors for various scenarios involving hydrogen is of paramount importance. Here we review some recent developments in hydrogen sensors for applications such as leak detection safety process monitoring in production transport and use scenarios. The status of methane and ammonia sensors is covered due to their important role in hydrogen production and transportation using existing natural gas and ammonia infrastructure. This review further provides an overview of existing commercial hydrogen sensors and also addresses the potential for hydrogen as an interferent gas for currently used sensors. This review can help developers and users make informed decisions about how to drive hydrogen sensor technology forward and to incorporate hydrogen sensors into the various hydrogen deployment projects in the coming decade.
Quantitative Risk Assessment of Hydrogen Releases in a Hydrogen Fueling Station with Liquid Hydrogen Storage
Feb 2025
Publication
Quantitative Risk Assessments (QRA) is an important tool for enabling safe deployment of hydrogen technologies and is increasingly embedded in the permitting process. Following the framework developed in our companion paper we conducted a detailed QRA on the uncontrolled releases from a high-capacity hydrogen fueling station with liquid hydrogen (LH2) storage. We characterized gaseous and liquid hydrogen releases determined the causal pathways that led to them and the frequency of the potential hazardous outcomes. These hazardous scenarios were modeled to estimate their potential harm on station users. The analysis results reveal that the total frequency for a major hydrogen release is 1.48 × 10− 2 times per station-year. However considering the control barriers in the station the expected frequency of ignition events is reduced to 1.35 × 10− 5 ignition per stationyear. The expected fatality risk is within the tolerable limit for hydrogen fueling stations but still remains higher than that of conventional gasoline stations. The most severe scenario identified involves a high-pressure GH2 release leading to a jet fire with jet flames reaching up to 15 m in length. The most probable sources of GH2 releases are from the gaseous hydrogen filters while for LH2 releases cryogenic pumps are the primary contributors. To improve the accuracy of QRAs for LH2 systems we identified critical gaps including the need for improved reliability data that must be addressed.
A Thermodynamically Consistent Methodology to Develop Predictive Simplified Kinetics for Detonation Simulations
Sep 2023
Publication
The number of species and elementary reactions needed for describing the oxidation of fuels increases with the size of the molecule and in turn the complexity of detailed mechanisms. Although the kinetics for conventional fuels (H2 CH4 C3H8...) are somewhat well-established chemical integration in detonation applications remains a major challenge. Significant efforts have been made to develop reduction techniques that aim to keep the predictive capabilities of detailed mechanisms intact while minimizing the number of species and reactions required. However as their starting point of development is based on homogeneous reactors or ZND profiles reduced mechanisms comprising a few species and reactions are not predictive. The methodology presented here relies on defining virtual chemical species such that the thermodynamic equilibrium of the ZND structure is properly recovered thereby circumventing the need to account for minor intermediate species. A classical asymptotic expression relating the ignition delay time with the reaction rate constant is then used to fit the Arrhenius coefficients targeting computations carried out with detailed kinetics. The methodology was extended to develop a three-step mechanism in which the Arrhenius coefficients were optimized to accurately reproduce the one-dimensional laminar ZND structure and the D−κ curves for slightly-curved quasi-steady detonation waves. Two-dimensional simulations performed with the three-step mechanism successfully reproduce the spectrum of length scales present in soot foils computed with detailed kinetics (i.e. cell regularity and size). Results attest for the robustness of the proposed methodology/approximation and its flexibility to be adapted to different configurations.
Experimental Study of the Mitigation of Hydrogen-Air Explosions by Inhibiting Powder
Sep 2023
Publication
The development of hydrogen production technologies and new uses represents an opportunity to accelerate the ecological transition and create a new industrial sector. However the risks associated with the use of hydrogen must be considered. Mitigation of a hydrogen explosion in an enclosure is partly based on prevention strategies such as detection and ventilation and protection strategies such as explosion venting. Even if applications involving hydrogen probably are most interesting for vented explosions in weak structures the extreme reactivity of hydrogen-air mixtures often excludes the use of regular venting devices such as in highly constrained urban environments. Thus having alternative mitigation solutions can make the effects of the explosion acceptable by reducing the flame speed and the overpressure loading or suppressing the secondary explosion. The objective of this paper is to present experimental studies of the mitigation of hydrogen-air deflagration in a 4 m3 vented enclosure by injection of inhibiting powder (NaHCO₃). After describing the experimental set-up the main experimental results are presented for several trial configurations showing the influence of inhibiting powder in the flammable cloud on flame propagation. An interpretation of the mitigating effect of inhibiting powder on the explosion effects is proposed based on the work of Proust et al.
Explosion Free in Fire Self-venting (TPRD-less) Composite Tanks: Performance Under Fire Intervention Conditions
Sep 2023
Publication
This paper describes the performance of explosion free in fire self-venting (TPRD-less) composite tanks of Type IV in fires of realistic intensity HRR/A=1 MW/m2 in conditions of first responders’ intervention. This breakthrough safety technology does not require the use of thermally activated pressure relief devices (TPRD). It provides microleaks-no-burst (LNB) performance of high-pressure hydrogen storage tanks in a fire. Two fire intervention strategies are investigated one is the removal of a vehicle with LNB tank from the fire and another is the extinction of the fire. The removal from the fire scenario is investigated for one carbon-carbon and one carbon-basalt double-composite wall tank prototype. The fire extinction scenario is studied for four carbon-basalt prototypes. All six prototypes of 7.5 L volume and nominal working pressure of 70 MPa demonstrated safe release of hydrogen through microchannels of the composite wall after melting a liner. The technology allows fire brigades to apply standard intervention strategies and tactics at the fire scene with hydrogen vehicles if LNB tanks are used in the vehicle.
Design of Long-Life Wireless Near-Field Hydrogen Gas Sensor
Sep 2023
Publication
A wireless near-field hydrogen gas sensor is proposed which detects the leaking hydrogen near its source to achieve fast response and high reliability. The proposed sensor can detect leaking hydrogen in 100ms with nearly no delay due to hydrogen diffusion in space. The overall response time is shortened by orders of magnitude compared to conventional sensors according to simulation results. Over 1 year of maintenance interval is empowered by wireless design based on Bluetooth low energy protocol.
Accidental Releases of Hydrogen in Maintenance Garages: Modelling and Assessment
Sep 2023
Publication
This study investigates the light gas dispersion behaviour in a maintenance garage with natural or forced ventilation. A scaled-down garage model (0.71 m high 3.07 m long and 3.36 m wide) equipped with gas and velocity sensors was used in the experiments. The enclosure had four rectangular vents at the ceiling and four at the bottom on two opposing side walls. The experiments were performed by injecting helium continuously through a 1-mm downward-facing nozzle until a steady state was reached. The sensitivity parameters included helium injection rate the elevation of the injection nozzle and forced flow speeds. Exhaust fans were placed at one or all of the top vent(s) to mimic forced ventilation. Numerical simulations conducted using GOTHIC a general-purpose thermal-hydraulic code and calculations with engineering models were compared with experimental measurements to determine the relative suitability of each approach to predict the light gas transport behaviour. The GOTHIC simulations captured the trends of the helium distribution gas movement in the enclosure and the passive vent flows reasonably well. Lowesmith’s model predictions for the helium transients in the upper uniform layer were also in good agreement with the natural venting experiments.
Performance Comparison of Hydrogen Dispersion Models in Enclosure Adapted to Forced Ventilation
Sep 2023
Publication
In confined spaces hydrogen released with low momentum tends to accumulate in a layer below the ceiling; the concentration in this layer rises and can rapidly enter the flammability range. In this context ventilation is a key safety equipment to prevent the formation of such flammable volumes. To ensure its well-sizing to each specific industrial context it is necessary to dispose of reliable engineering models. Currently the existing engineering models dealing with the buoyancy-driven H2 dispersion in a ventilated enclosure mainly focus on the natural-ventilation phenomenon. However forced ventilation is in some situations more adapted to the industrial context as the wind direction and intensity remains constant and under control. Therefore two existing wind-assisted ventilation models elaborated by Hunt and Linden [1] and Lowesmith et al. [2] were tested on forced ventilation applications. The main assumption consists in assuming a blowing ventilation system rather than a suction system as the composition and velocity of the entering air are known. The fresh air enters the down opening and airhydrogen mixture escapes through the upper one. The adapted models are then validated with experimental data releasing helium rather than hydrogen. Experiments are conducted on a 1-m3 ventilated box controlling the release and ventilation rates. The agreement between both analytical and experimental results is discussed from the different comparisons performed.
Study on Liquid Hydrogen Leakage and Diffusion Behavior in a Hydrogen Production Station
Jun 2024
Publication
Liquid hydrogen storage is an important way of hydrogen storage and transportation which greatly improves the storage and transportation efficiency due to the high energy density but at the same time brings new safety hazards. In this study the liquid hydrogen leakage in the storage area of a hydrogen production station is numerically simulated. The effects of ambient wind direction wind speed leakage mass flow rate and the mass fraction of gas phase at the leakage port on the diffusion behavior of the liquid hydrogen leakage were investigated. The results show that the ambient wind direction directly determines the direction of liquid hydrogen leakage diffusion. The wind speed significantly affects the diffusion distance. When the wind speed is 6 m/s the diffusion distance of the flammable hydrogen cloud reaches 40.08 m which is 2.63 times that under windless conditions. The liquid hydrogen leakage mass flow rate and the mass fraction of the gas phase have a greater effect on the volume of the flammable hydrogen cloud. As the leakage mass flow rate increased from 5.15 kg/s to 10 kg/s the flammable hydrogen cloud volume increased from 5734.31 m3 to 10305.5 m3 . The installation of a barrier wall in front of the leakage port can limit the horizontal diffusion of the flammable hydrogen cloud elevate the diffusion height and effectively reduce the volume of the flammable hydrogen cloud. This study can provide theoretical support for the construction and operation of hydrogen production stations.
The Latest Voyage of Discovery - Quantifying the Consequences of LH2 Releases for the Marine Industry
Sep 2023
Publication
Following a desktop study undertaken in 2021 to identify hazard scenarios associated with the use of liquid and compressed hydrogen on commercial shipping Shell has started a programme of large-scale experiments on the consequences of a release of liquid hydrogen. This work will compliment on-going research Shell has sponsored within several joint industry projects but will also address immediate concerns that the maritime industry has for the transportation of liquid hydrogen (LH2). This paper will describe the first phase of experiments involving the release of LH2 onto various substrates as well as dispersion across an instrumented test pad. These results will be used to address the following uncertainties in risk assessments within the hydrogen economy such as (1) Quantify the impact of low wind speed and high humidity on the buoyancy of both a passive and momentum jet dispersion cloud (2) Gather additional data on liquid hydrogen jet fires (3) Understand the likelihood for the formation of a sustained pool of hydrogen (4) Characterise materials especially passive fire protective coatings that are exposed to LH2. Not only will these experiments generate validation data to provide confidence in the Shell consequence tool FRED but they will also be used by Shell to support updates and new regulations developed by the International Maritime Organisation as it seeks to reduce CO2 intensity in the maritime industry.
Very Low-cost Wireless Hydrogen Leak Detection for Hydrogen Infrastructure
Sep 2023
Publication
A unique hydrogen leak detection strategy is the use of powerless indicator wraps for fittings and other pneumatic elements within a hydrogen facility. One transduction mechanism of such indicators is a color change that is induced by a reaction between a pigment and released hydrogen. This is an effective way to detect hydrogen leaks and to identify their source before they become a safety event however this technology requires visual (manual) inspection to identify a color change or leak. One improvement in this strategy would be to improve the communication of the visual response to an end-user. Element One (E1) has previously developed and introduced DetecTape® a self-fusing silicone non-reversible hydrogen leak detecting tape for application to potential leak sites in hydrogen piping valves and fittings and it has been successfully commercialized with excellent feedback. Element One’s sensors can be fabricated using either pigments or thin films which both change color and conductivity. Neither change requires an external power source. The conductivity change may be communicated as a wireless transmission such as passive radio frequency identification devices (RFID) to an appropriate receiving system where it may be remotely monitored to achieve higher levels of safety and reliability at low cost. Element One will report on its recent progress in the commercial development of remotely monitored hydrogen leak detection using several wireless protocols including passive RFID.
Exploratory Numerical Study of Liquid Hydrogen Hazards
Sep 2023
Publication
Hydrogen is one of a handful of new low carbon solutions that will be critical for the transition to net zero. The upscaling of production and applications entails that hydrogen is likely to be stored in liquid phase (LH2) at cryogenic conditions to increase its energy density. Widespread LH2 use as an alternative fuel will require significant infrastructure upgrades to accommodate increased bulk transport storage and delivery. However current LH2 bulk storage separation distances are based on subjective expert recommendations rather than experimental observations or physical models. Experimental studies of large-scale LH2 release are challenging and costly. The existing large-scale tests are scarce and numerical studies are a viable option to investigate the existing knowledge gaps. Controlled or accidental releases of LH2 for hydrogen refueling infrastructure would result in high momentum two-phase jets or formation of liquid pools depending on release conditions. Both release scenarios lead to a flammable/explosive cloud posing a safety issue to the public.<br/>The manuscript reports exploratory study to numerically determine the safety zone resulting from cryogenic hydrogen releases related to LH2 storage and refueling using the in-house HyFOAM solver further modified for gaseous hydrogen releases at cryogenic conditions and the subsequent atmospheric dispersion and ignition within the platform of OpenFOAM V8.0. The current version of the solver neglects the flashing process by assuming that the temperature of the stored LH2 is equal to the boiling point at the atmospheric condition. Numerical simulations of dispersion and subsequent ignition of LH2 release scenarios with respect to different release orientations release rates release temperatures and weather conditions were performed. Both hydrogen concentration and temperature fields were predicted and the boundary of zones within the flammability limit was also defined. The study also considered the sensitivities of the consequences to the release orientation wind speed ambient temperature and release content etc. The effect of different barrier walls on the deflagration were also evaluated by changing the height and location.
Raman Gas Sensor for Hydrogen Detection via Non-Dispersive and Dispersive Approaches
Jul 2025
Publication
The current solicitude in hydrogen production and its utilization as a greenhouse-neutral energy vector pushed deep interest in developing new and reliable systems intended for its detection. Most sensors available on the market offer reliable performance; however their limitations such as restricted dynamic range hysteresis reliance on consumables transducer–sample interaction and sample dispersion into the environment are not easily overcome. In this paper a non-dispersive Raman effect-based system is presented and compared with its dispersive alternative. This approach intrinsically guarantees no sample dispersion or preparation as no direct contact is required between the sample and the transducer. Moreover the technique does not suffer from hysteresis and recovering time issues. The results evaluated in terms of sample pressures and camera integration time demonstrate promising signal-to-noise ratio (SNR) and limit of detection (LOD) values indicating strong potential for direct field application.
No more items...